Laurent Fousse
email: laurent.fousse@imag.fr

Pascal Lafourcade
email: pascal.lafourcade@imag.fr

Mohamed Alnuaimi
email: mohamed.alnuaimi@nkc.ae

Benaloh's Dense Probabilistic Encryption Revisited

Keywords: public-key encryption, probabilistic encryption, homomorphic encryption scheme, Benaloh's scheme

In 1994, Josh Benaloh proposed a probabilistic homomorphic encryption scheme, enhancing the poor expansion factor provided by Goldwasser and Micali's scheme. Since then, numerous papers have taken advantage of Benaloh's homomorphic encryption function, including voting schemes, private multi-party trust computation, non-interactive verifiable secret sharing, online poker. In this paper we show that the original description of the scheme is incorrect, because it can result in ambiguous decryption of ciphertexts. Then we show on several applications that a bad choice in the key generation phase of Benaloh's scheme has a real impact on the behaviour of the application. For instance in an e-voting protocol, it can inverse the result of an election. Our main contribution is a corrected description of the scheme (we provide a complete proof of correctness). Moreover we also compute the probability of failure of the original scheme. Finally we show how to formulate the security of the corrected scheme in a generic setting suitable for several homomorphic encryptions.

Introduction

An encryption scheme is homomorphic when it preserves some algebraic structure (usually group, sometimes ring) between the cleartext space and the ciphertext space, allowing computations on data encrypted with the same key. Examples of such encryptions are RSA [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF] or ElGamal [START_REF] Elgamal | Proceedings of CRYPTO 84 on Advances in Cryptology. In A Public key Cryptosystem and a Signature Scheme Based on Discrete Logarithms[END_REF] which have the property that E(m 1) × E(m 2) = E(m 1 × m 2). In 1982 Goldwasser-Micali [START_REF] Goldwasser | Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information[END_REF] introduced an encryption scheme with the different property

E(b 1) × E(b 2) = E(b 1 ⊕ b 2).
Several homomorphic encryption schemes have followed: Benaloh [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF], Naccache and Stern [START_REF] Naccache | A New Public Key Cryptosystem Based on Higher Residues[END_REF], Okamoto and Uchiyama [START_REF] Okamoto | A New Public-key Cryptosystem as Secure as Factoring[END_REF], Paillier [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF] and its generalization proposed by Damgård and Jurik [START_REF] Damgård | A Generalisation, a Simplification and Some Applications of Paillier's Probabilistic Public-Key System[END_REF], Sander, Young and Yung [START_REF] Sander | Non-Interactive CryptoComputing for NC 1[END_REF], Boneh et al [START_REF] Boneh | Evaluating 2-dnf formulas on ciphertexts[END_REF]. All these schemes are partially homomorphic, meaning they allow homomorphic computation of only one operation (either addition or multiplication) on plaintexts. A cryptosystem allowing for homomorphic computation of two operations is called fully homomorphic. In 2009, Craig Gentry [START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF] found the first fully homomorphic encryption scheme, using lattice-based cryptography. However his scheme, while revolutionary, is not really practical and several recent works focus on concrete realizations of a fully homomorphic encryption scheme [START_REF] Smart | Fully homomorphic encryption with relatively small key and ciphertext sizes[END_REF][START_REF] Van Dijk | Fully homomorphic encryption over the integers[END_REF][START_REF] Gentry | Toward basing fully homomorphic encryption on worst-case hardness[END_REF][START_REF] Gentry | -hop homomorphic encryption and rerandomizable yao circuits[END_REF]. Practitioners rely therefore on already existing partially homomorphic encryption. A survey of such cryptosystems can be found in [START_REF] Fontaine | A Survey of Homomorphic Encryption for Nonspecialists[END_REF] for non specialists, or in [START_REF] Akinwande | Advances in Homomorphic Cryptosystems[END_REF] with a complexity analysis. In [START_REF] Doerte | Homomorphic Cryptosystems and their Applications[END_REF], Rappe considers homomorphic cryptosystems and their applications, such as multiparty computation [START_REF] Cramer | Multiparty Computation from Threshold Homomorphic Encryption[END_REF][START_REF] Jha | Privacy Preserving Clustering[END_REF][START_REF] Dolev | Computing Multi-Party Trust Privately: in O(n) time units sending one (possibly large) message at a time[END_REF][START_REF] Damgård | Universally composable efficient multiparty computation from threshold homomorphic encryption[END_REF], electronic voting [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF][START_REF] Cohen | A robust and verifiable cryptographically secure election scheme (extended abstract)[END_REF][START_REF] Sako | Secure voting using partially compatible homomorphisms[END_REF][START_REF] Ruiz | Publicly Verifiable Secret Sharing from Paillier's Cryptosystem[END_REF][START_REF] Cohen | Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret[END_REF][START_REF] Benaloh | Dense Probabilistic Encryption[END_REF][START_REF] Cramer | A secure and optimally efficient multi-authority election scheme[END_REF][START_REF] Damgård | A generalization of paillier's public-key system with applications to electronic voting[END_REF][START_REF] Cramer | Multi-autority secret-ballot with linear work[END_REF][START_REF] Hirt | Efficient receipt-free voting based on homomorphic encryption[END_REF], key exchange using a server [START_REF] Tatebayashi | Key distribution protocol for digital mobile communication systems[END_REF], non-interactive zero-knowledge [START_REF] Damgård | Non-interactive zero-knowledge from homomorphic encryption[END_REF], e-auction [START_REF] Abe | M+1-st price auction using homomorphic encryption[END_REF][START_REF] Suzuki | Secure generalized vickrey auction using homomorphic encryption[END_REF][START_REF] Chen | Receipt-free electronic auction schemes using homomorphic encryption[END_REF], non-interactive verifiable secret sharing [START_REF] Cohen | Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret[END_REF], and others [START_REF] Groth | A verifiable secret shuffle of homomorphic encryptions[END_REF][START_REF] Golle | Dealing Cards in Poker Games[END_REF][START_REF] Michael | Efficient private matching and set intersection[END_REF][START_REF] Lipmaa | Verifiable homomorphic oblivious transfer and private equality test[END_REF].

Motivations and contributions:

In 1994, Benaloh [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF] proposed a homomorphic encryption which has a better expansion factor than Goldwasser-Micali's scheme [START_REF] Goldwasser | Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information[END_REF]. This leads to a more practical scheme which has found several applications, such as voting schemes [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF][START_REF] Ruiz | Publicly Verifiable Secret Sharing from Paillier's Cryptosystem[END_REF][START_REF] Cohen | Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret[END_REF], private multi-party trust computation [START_REF] Cramer | Multiparty Computation from Threshold Homomorphic Encryption[END_REF][START_REF] Jha | Privacy Preserving Clustering[END_REF][START_REF] Dolev | Computing Multi-Party Trust Privately: in O(n) time units sending one (possibly large) message at a time[END_REF], non-interactive verifiable secret sharing [START_REF] Cohen | Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret[END_REF], online poker [START_REF] Golle | Dealing Cards in Poker Games[END_REF]. Given all these applications of Benaloh's scheme, we were surprised to discover that its key generation process may in some cases lead to an ambiguous encryption.

Our first contribution is to show that the original scheme proposed by Benaloh in [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF] does not give a unique decryption for all ciphertexts. We exhibit a simple example and characterize when this can happen and how to produce such counter-examples. The problem comes from the condition in public key generation: the original condition is not strong enough and allows to generate such keys that will compute ambiguous ciphertexts for some plaintexts.

Our second contribution is to describe how this error in key generation can have dramatic consequences in the applications of Benaloh's scheme. In each case we briefly explain how the application works on a simple example and show that a wrong key generation can have important consequences. In the case of the e-voting protocol it can change the result of an election; for private multi-party trust computation it can completely modify the computed trust value.

Our last contribution is a new condition (suitable for implementations) for the key generation which avoids such problems. We also compute the probability of failure of the original scheme, in order to understand why nobody discovered the problem before us. Moreover we discuss some schemes related to Benaloh's encryption. We also put the semantic security of the corrected encryption in the context of Kristian Gjøsteen's work [START_REF] Gjøsteen | Homomorphic cryptosystems based on subgroup membership problems[END_REF]. Indeed revisited Benaloh's scheme can be seen as an instance of the general framework proposed for homomorphic cryptosystem based on subgroup membership problem.

Outline: In Section 2 we recall the original Benaloh scheme. In Section 3 we give a small example of parameters following the initial description and where we have ambiguous decryption. In the next section, we discuss the (possibly serious) consequences of the problem we discovered in some applications. In Section 5 we give a corrected description of the scheme, with a proof of correctness. Then in Section 6, we analyze the probability of choosing incorrect parameters in the initial scheme. In Section 7 we discuss some schemes related to Benaloh's scheme. Finally before concluding, a semantic security analysis of the corrected scheme is given in Section 8.

Original Description of Benaloh's Scheme

Benaloh's "Dense Probabilistic Encryption" [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF] describes a homomorphic encryption scheme with a significant improvement in terms of expansion factor compared to Goldwasser-Micali [START_REF] Goldwasser | Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information[END_REF]. For the same security parameter (the size of the RSA modulus n), the ciphertext is in both cases an integer mod n, but the cleartext in Benaloh's scheme is an integer mod r for some parameter r depending on the key, whereas the cleartext in Goldwasser-Micali is only a bit. When computing the expansion factor for random keys, we found that it is most of the times close to 2 while it is log 2 (n) for Goldwasser-Micali. We now recall the three steps of the original scheme given in Benaloh's paper [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF].

Key Generation: The public and private key are generated as follows:

-Choose a block size r and two large primes p and q such that:

• r divides (p -1).

• r and (p -1)/r are relatively prime.

• r and q -1 are relatively prime.

• n = pq.

-Select y ∈ (Z n) * = {x ∈ Z n : gcd(x, n) = 1} such that y ϕ/r = 1 mod n (1)
where ϕ denotes (p -1)(q -1).

The public key is (y, r, n), and the private key is the two primes p and q.

Encryption: If m is an element in Z r and u a random number in (Z n) * then we compute the randomized encryption of m using the following formula:

E r (m) = {y m u r mod n : u ∈ (Z n) * }.
It is easily verified that:

E r (m 1) × E r (m 2) = E r (m 1 + m 2).
Decryption: We first notice that for any m, u we have:

(y m u r) (p-1)(q-1)/r = y m(p-1)(q-1)/r u (p-1)(q-1) = y m(p-1)(q-1)/r mod n.

Since m < r and y (p-1)(q-1)/r = 1 mod n, Benaloh concludes that m = 0 mod r if and only if (y m u r) (p-1)(q-1)/r = 1 mod n. So if z = y m u r mod n is an encryption of m, given the secret key (p, q) we can determine whether m = 0 mod r. If r is small, we can decrypt z by doing an exhaustive search of the smallest non-negative integer m such that (y -m z mod n) ∈ E r (0). By precomputing values and using the baby-step giant-step algorithm it is possible to perform the decryption in time O(√ r). Finally if r is smooth we can use classical indexcalculus techniques. More details about these optimization of decryption are discussed in the original paper [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF].

We remark that there is a balance to find between three parameters in this cryptosystem:

ease of decryption, which requires that r is a product of small prime powers, a small expansion factor, defined as the ratio between the size of the ciphertexts and the size of the cleartexts. Because p and q have the same size and r | p -1, this expansion factor is at least 2, strength of the private key, meaning that n should be hard to factorize. In the context of the P-1 factorization method [START_REF] Pollard | Theorems on Factorization and Primality Testing[END_REF], a large smooth factor of p -1 is a definite weakness.

We notice that the cryptosystem proposed by Naccache-Stern [START_REF] Naccache | A New Public Key Cryptosystem Based on Higher Residues[END_REF] four years after Benaloh's scheme and based on the same approach addresses this issue and does not produce ambiguous encryption.

A Small Counter-Example

We start by picking a secret key n = pq = 241 × 179 = 43139, for which we can set r = 15. Algorithm 1 may be used to compute the maximal suitable value of the r parameter if you start by picking p and q at random, but a smaller and smoother value may be used instead, for an easier decryption.

Algorithm 1 Compute r from p and q.

r ← p -1; while gcd(q -1, r) = 1 do r ← r/ gcd(r, q -1); end while

We verify that r = 15 divides p -1 = 240 = 16 × 15, r and (p -1)/r = 16 are relatively prime, r = 15 = 3 × 5 and q -1 = 178 = 2 × 89 are coprime. Assume we pick y = 27, then gcd(y, n) = 1 and y (p-1)(q-1)/r = 40097 = 1 mod n so according to Benaloh's key generation procedure all the original conditions are satisfied.

By definition, y 1 12 r = 24187 mod n is a valid encryption of m 1 = 1, while y 6 4 r = 24187 mod n is also a valid encryption of m 2 = 6. In fact we can verify that with this choice of y, the true cleartext space is now Z 5 instead of Z 15 (hence the ambiguity in decryption): first notice that in Z p , y 5 = 27 5 = 8 = 41 15 = 41 r . This means that a valid encryption of 5 is also a valid encryption of 0. For any message m, the set of encryptions of m is the same as the set of encryptions of m + 5, hence the collapse in message space size. The fact that the message space size does not collapse further can be checked by brute force with this small set of parameters.

For this specific choice of p and q, there are r-1 r ϕ(n) = 39872 possible values of y according to the original paper, but 17088 of them would lead to an ambiguity in decryption (that's a ratio of 3/7), decreasing the cleartext space to either Z 3 or Z 5 . Details are provided in Section 6.

Applications

In this section, we present some applications which explicitly use Benaloh's encryption scheme. We analyze the consequences of using a bad y parameter produced during the key generation for each application. In general, the ambiguity in the ciphertexts means that for a given cleartext m ∈ Z r the value actually computed by the decryption algorithm is

m = D(E r (m)) ≡ m mod r (2)
with r = r. Depending on the implementation of the discrete logarithm used by D (naive enumeration, baby steps/giant steps, possibly combined with a divideand-conquer strategy when r is smooth) the value m can be any of the values defined mod r that satisfy Equation [START_REF] Akinwande | Advances in Homomorphic Cryptosystems[END_REF]. As the discrete logarithm algorithm used is not aware of the reduction from r to r , the impact in terms of computation time should be minimal (except for a naive increasing enumeration strategy which will always finish earlier, and where we are guaranteed to get the canonical solution mod r).

Receipt-free Elections

In [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF], Benaloh and Tuinstra propose an application of homomorphic encryption for designing new receipt-free secret-ballot elections. They describe two protocols which use a homomorphic encryption scheme and verify a list of properties. They also give in the appendix of the paper a precise description of an encryption scheme which satisfies their properties. Its relation with [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF] is given in Section 7.

The new voting protocol uses the fact that the encryption is homomorphic and probabilistic. If we have two candidates Nicolas and Ségolène then the system associates for instance the ballot 0 for Nicolas and the ballot 1 for Ségolène. The main idea is that the server collects the m authenticated encrypted ballots {v i } k corresponding to the choices v i of the m voters. Then the server performs the multiplication of the ciphertexts to sum the votes and decrypts the product once to obtain the result. The number obtained corresponds to the number of votes n S for Ségolène and the difference m -n S gives the number of votes for Nicolas.

We construct a basic application of the first protocol proposed in [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF] and based on the example described in Section 3. In this example we consider only 12 voters. Suppose when the encryption is correctly done the final result is {11} k . It means that after decryption Ségolène has 11 votes and Nicolas has 1 vote. But if as we explain in Section 3 instead of computing the result 11 mod 15 we are taking the result modulo 5, then we obtain a result of 11 mod 5 = 1. This time the server concludes that Nicolas obtains 11 votes and Ségolène only 1. This example clearly shows that the flaw in the parameters generation process can have important consequences.

Private Multi-Party Trust Computation

In [START_REF] Dolev | Computing Multi-Party Trust Privately: in O(n) time units sending one (possibly large) message at a time[END_REF], Dolev et al give a multiple private key protocol for private multi-party computation of a trust value: an initiating user wants to know the (possibly weighted) average trust the network of nodes has in some user. In a first phase of the protocol, each of the n nodes splits its trust value

t in n -1 shares (s i) such that t = s 1 + s 2 + . . . + s n-1 mod r.
Here r is a common modulus chosen large enough with respect to the maximum possible global trust value, and in order to ensure the privacy of its trust value the shares should be taken as random number mod r, except for the last one. The shares are then sent encrypted (using Benaloh's scheme) to each other user, to be later recombined. If we assume that one of the users has chosen a faulty value for his public parameter y, then his contribution to the recombined value will be computed mod r instead of mod r for some divisor r of r. As an extreme example, assume that the queried user is a newcomer, untrusted by anyone (hence the private value of t for every node is 0), that the true recombined value contributed by the faulty user should have been r -1, that r = r/3.

Due to his miscalculation, the faulty node will contribute the value r -1 instead of -1, causing the apparent calculated trust value to be quite high (about 1/3 of the maximum possible trust value, instead of 0). This can have dramatic consequences if the trust value is used later on to grant access to some resource. These assumptions are not entirely unlikely: remember that r = 3 k is an explicitly suggested choice of parameter of the cryptosystem in which we will find that the failure probability (ρ) is close to 1/3 and faulty nodes occur with high probability even with moderate-sized networks (see Section 6). We also note that the description from [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF] is given in extenso, with its incorrect condition. One reason for choosing Benaloh's cryptosystem in this application is because the cleartext space can be common among several private keys, a feature unfortunately not achieved e.g. by Paillier's cryptosystem [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF] but also possible with Naccache-Stern's [START_REF] Naccache | A New Public Key Cryptosystem Based on Higher Residues[END_REF].

Privacy Preserving Clustering

In [START_REF] Jha | Privacy Preserving Clustering[END_REF] the authors present another application of additive homomorphic encryption. They propose two new algorithms for solving the problem of privacypreserving for clustering. Its allow them to solve the weighted average problem (WAP): two parties A and B knowing respectively (x, n) and (y, m) want to compute x+y n+m without revealing their own knowledge. The second algorithm they present uses a probabilistic semantically-secure additive homomorphic encryption scheme. They explicitly advise to use Benaloh's scheme. Their protocol works as follows:

1. A generates a Benaloh secret and public keys; 2. A knows (x, n) and B knows (y, m); 3. A starts the protocol by sending to B the two following encrypted messages

x 1 = E(x) and n 1 = E(n). 4. B samples a random number z, computes z 1 = E(z × y) and z 2 = E(z × m).
Moreover he sends to A the two following messages A synthetic description of the protocol is given in Figure 1. A wrong choice in the key parameters could produce wrong values for m 1 and m 2 , resulting in a wrong result shared by A and B as produced by the WAP algorithm. As a consequence the privacy-preserving k-means algorithm would not compute the correct value. The authors have implemented their protocols using Benaloh's encryption and they provide execution timings (they claim that the implementation using Benaloh's encryption is more efficient that the one using oblivious polynomial evaluation). It is really surprising that they did not discover the problem, as they chose a value of r = 3 k for which the probability of picking a faulty parameter is close to 1/3 (see §6).

m 1 = x z 1 × z 1 and m 2 = n z 1 × z 2 .
A B (x, n) -→ x1 = E(x) -→ n1 = E(n) (y, m), z ← Rand z1 = E(z × y), z2 = E(z × m) ←-m1 = x z 1 × z1 ←- m2 = n z 1 × z2 m1 = E(z × x + z × y) m2 = E(z × n + z × m) -→ x+y n+m -→

Secure Cards Dealing

Another application of this encryption scheme is given in [START_REF] Golle | Dealing Cards in Poker Games[END_REF]: securely dealing cards in poker (or similar games). Here again the author gives the complete description of the original scheme, with a choice of parameter r = 53 (which is prime). Because r is prime, this application does not suffer from the flaw explained here, but this choice of a prime number is done for reasons purely internal to the cards dealing protocol, namely testing the equality of dealt cards.

Given two ciphertext E(m 1) and E(m 2), the players need to test if m 1 = m 2 without revealing anything more about the cards m 1 and m 2 . The protocol is as follows:

1. Let m = m 1 -m 2 , each player can compute E(m) = E(m 1)/E(m 2) because
of the homomorphic property of the encryption. 2. Each player P i secretly picks a value 0 < α i < 53, computes E(m) αi and discloses it to everyone. 3. Each player can compute i E(m) αi = E(m) α with α = i α i . The players jointly decrypt E(m) α to get the value mα mod r.

Now because for each player the value of α is unknown and random, if mα = 0 mod r then the players learn nothing about m. Otherwise they conclude that the cards are equal. We claim that this protocol fails to account for two problems:

there is no guarantee that α = 0 mod r. When this happens, two distinct cards will be incorrectly considered equal. One possible fix is to repeat the protocol to decrease the probability of false positive to an acceptable level.

knowing the value of E(m) and E(m) αi , it is easy to recover α i because of the small search space for α i . This means the protocol leaks information when m 1 = m 2 . The fix here is to multiply by some random encryption of 0.

It should be noted that these problems are unrelated to the incorrect parameter generation flaw discussed in this paper.

Corrected Version of Benaloh's Scheme

Let g be a generator of the group (Z p) * , and since y is coprime with n, let α be the value in Z p-1 such that y = g α mod p. We will now state in Theorem 1 our main contribution:

Theorem 1 The following properties are equivalent: a) α and r are coprime; b) decryption works unambiguously; c) for all prime factors s of r, we have y (ϕ/s) = 1 mod n.

Of course property (b

) is what we expect of the scheme, while (a) is useful to analyze the proportion of invalid y's and (c) is more efficient to verify in practice than (a), especially considering that in order to decrypt efficiently the factorization of r is assumed to be known. In the following proof we interpret statement (b) to mean that two different cleartexts cannot be encrypted to the same value:

∀m 1 , m 2 ∈ Z r , ∀u 1 , u 2 ∈ (Z n) * , y m1 u r 1 = y m2 u r 2 mod n ⇒ m 1 = m 2 mod r.
Another way to interpret (b) is that, for a given z mod n, there is at most one value m mod r such that y -m z is an r-th power mod n. In fact these two interpretations are equivalent: assume we can write

y -m1 z = u r 1 y -m2 z = u r 2 for two messages m 1 , m 2 ∈ Z r and two numbers u 1 , u 2 ∈ (Z n) * . Then z = y m1 u r 1 = y m2 u r 2
and the proof follows.

Proof. We prove first (a) ⇔ (b) then we show (a) ⇔ (c).

-We start by showing (a) ⇒ (b). Assume two messages m 1 and m 2 are encrypted to the same element using nonce u 1 and u 2 :

y m1 u r 1 = y m2 u r 2 mod n.
Reducing mod p we get: g α(m1-m2) = (u 2 /u 1) r mod p and using the fact that g is a generator of (Z p) * , there exists some β such that g α(m1-m2) = g βr mod p which in turns implies

α(m 1 -m 2) = βr mod p -1.
By construction r divides (p -1), we can further reduce mod r and get α(m 1 -m 2) = 0 mod r and since r and α are coprime, we can deduce m 1 = m 2 mod r, which means that decryption works unambiguously since the cleartexts are defined mod r.

-We now prove (b) ⇒ (a). Assume α and r are not coprime and let s = gcd(α, r), r = sr , α = sα . Then y r = g αr mod p = (g α) r mod p.

Since r and q -1 are coprime, every invertible number mod q is an r-th power. Therefore y r is an r-th power mod n and is a valid encryption of 0 as well as a valid encryption of r .

-We now prove that (a) ⇒ (c). Assume that there exists some prime factor s of r such that y (ϕ/s) = 1 mod n.

As above, by reducing mod p and using the generator g of (Z p) * we get

α ϕ s = 0 mod p -1. So α ϕ s = (p -1) α(q -1)
s is a multiple of p -1 and s divides α(q -1). Since s does not divide q -1, s divides α and α and r are not coprime.

-We now prove (c) ⇒ (a). Assume α and r are not coprime and denote by s some common prime factor. Then

y (ϕ/s) = g αϕ/s mod p = g (α/s)ϕ mod p = 1 mod p.
And by construction of r, s q -1 so y (ϕ/s) = 1 mod q.

Notice than in the example of Section 3 we have y (p-1)(q-1)/3 = 1 mod n so condition (c) is not satisfied. We claimed that the real ciphertext space is now Z 5 , and we gave a precise analysis of the cleartext space reduction at the end of Section 6.

Probability of Failure of Benaloh's Scheme

We now estimate the probability of failure in the scheme as originally described. For this we need to count the numbers y that satisfy Equation (1) in Section 2 and not property (c) of Theorem 1. We call these values of y "faulty".

Lemma 1 Equation (1) is equivalent to the statement: r α.

Proof. Assume that r divides α: α = rα . So

y ϕ/r = g αϕ/r mod p = (g α) ϕ mod p = 1 mod p.
Since r divides p -1, y ϕ/r = 1 mod q hence y ϕ/r = 1 mod n.

Conversely, if y ϕ/r = 1 mod n, then

g αϕ/r = 1 mod p α ϕ r = 0 mod p -1.
Since r divides p -1 and is coprime with ϕ r (by definition), we have r | α.

Since picking y ∈ (Z p) * at random is the same when seen mod p as picking α ∈ {0, . . . , p -2} at random, we can therefore conclude that the proportion ρ of faulty y's is exactly the proportion of non-invertible numbers mod r among the non-zero mod r. So ρ = 1 -ϕ(r) r-1 . We notice that this proportion depends on r only, and it is non-zero when r is not a prime. Since decryption in Benaloh's scheme is essentially solving a discrete logarithm in the subgroup of (Z p) * of order r, the original scheme recommends to use r as a product of small primes' powers, which tends to increase ρ. In fact, denoting by (p i) the prime divisors of r we have:

ρ = 1 - ϕ(r) r -1 = 1 - r r -1 ϕ(r) r = 1 - r r -1 i p i -1 p i ≈ 1 - i p i -1 p i
which shows that the situation where decryption is easy also increases the proportion of invalid y's when using the initial description of the encryption scheme.

As a practical example, assume we pick two 512 bits primes p and q as

p = 2 × (3 × 5 × 7 × 11 × 13) × p + 1 p = 4464804505475390309548459872862419622870251688508955\ 5037374496982090456310601222033972275385171173585381\ 3914691524677018107022404660225439441679953592 q = 1005585594745694782468051874865438459560952436544429\ 5033292671082791323022555160232601405723625177570767\ 523893639864538140315412108959927459825236754568279. Then gcd(q -1, p -1) = 2 r = (3 × 5 × 7 × 11 × 13) × p ρ = 1 - r r -1 × 2 3 × 4 5 × 6 7 × 10 11 × 12 13 × p -1 p ρ > 61%.
This example was constructed quite easily: first we take p of suitable size, and multiply its value until p = k × p + 1 is prime. Then we generate random primes q of suitable size until the condition gcd(p -1, q -1) = 2 is verified; it took less than a second a current laptop using Sage [START_REF] Stein | Sage Mathematics Software (Version 4.5.1). The Sage Development Team[END_REF].

Putting it all together, we can also characterize the faulty values of y, together with the actual value r of the cleartext space size (compared to the expected value r):

Lemma 2 Let u = gcd(α, r). Then r = r u . Moreover if r = r, this faulty value of y goes undetected by the initial condition as long as u = r.

Proof. Let r = r u and α = α u . Consider y r = g urα mod p = (g α) r mod p.

Since r is coprime with q -1, y r is an r-th power mod q. Hence y r is a valid encryption of r and of 0 at the same time, which means r |r.

We need to prove that the smallest positive power of y which is an r-th power is y r . Assume The second point of Lemma 2 is a mere rephrasing of the previous lemma. This result can be used to craft counter-examples as we did in Section 3: for a valid value y of the parameter and u a proper divisor of r, the value y = y u mod n is an undetected faulty value with actual cleartext space size r = r/u. It can also be used to determine precisely, for every proper divisor r of r the probability of picking an undetected faulty parameter y of actual cleartext space size r . Such an extensive study was not deemed necessary in the examples of Section 4, but it confirms that ambiguous parameters can happen more frequently than expected.

Related Schemes

We briefly discuss in this section some schemes related to that of [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF].

In [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF], Benaloh and Tuinstra describe a cryptosystem which closely resembles that of [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF], but the conditions given on r are less strict. Let us recall briefly the parameters of the cryptosystem as described in [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF]:

-r | p -1 but r 2 p -1. -r q -1.
y is coprime with n and y (p-1)(q-1)/r = 1 mod n.

It is clear that r 2 p -1 is weaker than gcd((p -1)/r, r) = 1, and that r q -1 is weaker than gcd(q -1, r) = 1. Therefore any set of parameters satisfying [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF] are also valid parameters as defined in [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF].

Unfortunately the condition imposed on y is the same and still insufficient, and finding counter-examples is again a matter of picking α not coprime with r. Our theorem still stands for this cryptosystem if you replace condition (c) by the following condition: For all prime factors s of r, we have y (p-1)/s = 1 mod p.

(

) 3
Going back in time, the scheme of Goldwasser and Micali [START_REF] Goldwasser | Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information[END_REF] can be seen as a precursor of [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF] with a fixed choice of r = 2. The choice of y in [START_REF] Goldwasser | Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information[END_REF] as a quadratic non-residue mod n is clearly an equivalent formulation of condition [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF].

Before [START_REF] Benaloh | Dense Probabilistic Encryption[END_REF] and [START_REF] Benaloh | Receipt-free Secret-Ballot Elections (extended abstract)[END_REF], the scheme was defined by Benaloh in [START_REF] Daniel | Verifiable Secret-Ballot Elections[END_REF], with the parameter r being a prime. In this case our condition (c) is the same as the one proposed by Benaloh, and the scheme in this thesis is indeed correct. The main difference between the different versions proposed afterwards and this one is that it is not required for r to be prime, which leads in some cases to ambiguous ciphers. This remark clearly shows that all details are important in cryptography and that the problem we discovered is subtle because even Benaloh himself did not notice it.

Finally the scheme proposed by Naccache and Stern [START_REF] Naccache | A New Public Key Cryptosystem Based on Higher Residues[END_REF] is quite close to the one proposed in [START_REF] Daniel | Verifiable Secret-Ballot Elections[END_REF] but with a parameterization of p and q. It makes decryption correct, efficient, and leaves the expansion factor as an explicit function of the desired security level with respect to methods of factoring taking advantage of this specific form of n, like the P -1 method [START_REF] Pollard | Theorems on Factorization and Primality Testing[END_REF] (the expansion is essentially the added size of the big cofactors of p-1 and q-1). If we drop this requirement that p-1 and q-1 have big cofactors, their scheme becomes a corrected generalization of Benaloh's, so application writers should probably use Naccache-Stern's scheme directly. We note that a modulus size of 768 bits was considered secure at the time, a fact disproved twelve years later [START_REF] Kleinjung | Factorization of a 768-bit RSA modulus[END_REF] only! 8 Semantic Security of the Corrected Scheme

In [START_REF] Gjøsteen | Homomorphic cryptosystems based on subgroup membership problems[END_REF], Kristian Gjøsteen formulates the security of several homomorphic encryption schemes in a common setting and relates the semantic security of the schemes to a generic problem (the Decisional Subgroup Membership Problem) which we recall here: Problem 1 (DSMP). Let G be an abelian group with subgroups K, H such that G = KH and K ∩ H = {1}. The Decisional Subgroup Membership Problem is to decide whether a given g ∈ G is in K or not.

The cryptosystems by Goldwasser-Micali, Naccache-Stern, Okamoto-Uchiyama and Paillier respectively are shown to fit in this setting, with a proper definition for G (the ciphertexts space), H (coding the cleartexts) and K (the "cloak" space used to randomize encryptions). For example for Paillier's encryption, the ciphertext space is G = (Z n 2) * (Z n) * × Z n , the cleartexts coding subgroup H is the subgroup of order n (generated by g = 1 + n) and K is the set of the invertible n-th powers mod n 2 . This is consistent with the probabilistic encryption function E u (m) = (1 + n) m u n mod n 2 .

It can be verified quite easily that the following choices make the corrected version of Benaloh's scheme fit in this setting:

-G = (Z n) * -H the cyclic subgroup of order r of G -K the set of invertible r-th powers in G the public element y must generate H.

Using the result in [START_REF] Gjøsteen | Homomorphic cryptosystems based on subgroup membership problems[END_REF], the semantic security of our corrected scheme is therefore equivalent to the DSMP for K, that is, being able to distinguish r-th powers modulo n.

Although several homomorphic encryption schemes are analyzed in [START_REF] Gjøsteen | Homomorphic cryptosystems based on subgroup membership problems[END_REF], Benaloh's is not. Our correction ensures that the last condition is met, otherwise y could generate a strict subgroup of the intended group H.

Conclusion

We have shown that the original definition of Benaloh's homomorphic encryption does not give sufficient conditions in the choice of public key to get an unambiguous encryption scheme. We also explain on some examples what can be the consequences of the use of the original Benaloh scheme. Our discussion on the probability of choosing an incorrect public key shows that this probability is non negligible for parameters where decryption is efficient: for example using the suggested value of the form r = 3 k , this probability is already close to 1/3. Our main contribution is to propose a necessary and sufficient condition which fixes the scheme. In fact, it is surprising this result was not found before, considering the number of applications built on the homomorphic property of Benaloh's scheme. This strongly suggests this scheme was rarely implemented or even worse, implementations were rarely well tested.

5 .

 5 A decrypts m 1 and m 2 and performs the division D(m 1)/D(m 2) = x+y n+m . Finally A sends to B the result of his computation.

Fig. 1 .

 1 Fig. 1. Privacy preserving Weighted Average Protocol based on Benaloh' scheme E, introduced in [29]

1 αm

 1 y m = u r for some u ∈ (Z n) * . Then y m = u r mod n g αm = u r mod p = g βr mod p for some β αm = βr mod pthe effective cleartext space size r is at least r.

This work was supported by ANR SeSur AVOTE.