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Abstract

Reaction networks are commonly used to model the dynamics of populations subject to transform-

ations that follow an imposed stoichiometry.

This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction

Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic transitions

of stochastic models of reaction networks. In that sense, a proof of non-reachability in a given DRN

has immediate implications for any concrete stochastic model based on that DRN, independent of the

choice of kinetic laws and constants. Moreover, if we assume that stochastic kinetic rates are given by

the mass-action law (or any other kinetic law that gives non-vanishing probability to each reaction if

the required number of interacting substrates is present), then reachability properties are equivalent in

the two settings.

The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e.,

the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return to

any initial state. Our results consider both the verification of such properties when species are present

in a large copy number, and in the general case. The necessary and sufficient conditions obtained

involve algebraic conditions on the network reactions which in most cases can be verified using linear

programming.

Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of stochastic

and continuous models of reaction networks is discussed.

1 Introduction

Reaction networks describe the possible transformations between species in a system, subject to stoi-

chiometry constraints (e.g. 2A+ B → C +D). They are widely used for fine-grained modelling of various
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complex dynamical systems, and in particular biochemical dynamical systems. Typically, reaction network

models are equipped with kinetic laws in order to take into account the influence of the various speeds and

propensities of the reactions involved on the overall dynamics. Depending on the nature of the systems and

interacting species, those kinetics may follow different laws. These reaction networks and kinetic rules are

then generally interpreted either in continuous frameworks, such as ODEs (Feinberg, 1979; Craciun et al.,

2006; Shinar and Feinberg, 1987), which relates the dynamics of the concentration of the species; or in

stochastic frameworks, such as continuous-time Markov chains (Wilkinson, 2006; Anderson et al., 2010),

which precisely track the population (copy number) of each species along time.

In practice, such modelling techniques face two challenges: the actual kinetics are most often unknown

and may substantially vary between systems sharing the same reaction network; and formal analysis of

the emerging dynamical properties is computationally intractable for large-scale continuous and stochastic

models.

In this paper, we propose a more abstract level of interpretation of reaction networks, by focusing on

the nondeterministic discrete evolution of the population of the species. Given the population of each

species (discrete state), the system can evolve due to the application of any reaction, if the minimum

required amount of each substrate species for that reaction is present. We consider that only one discrete

reaction can be applied at a time. Such nondeterministic systems can be formally considered as the discrete

underlying dynamics of stochastic models of reaction networks (Fages and Soliman, 2008).

In such a setting, dynamics of Discrete Reaction Networks (DRNs) naturally delimit the dynamics of

concrete stochastic systems, whatever the kinetic laws and constants: if a reachability is proved impossible

in a DRN, it is also impossible for any particular stochastic model of the network. In the case where the

rate (or probability) of a reaction in the stochastic model never becomes zero, the (discrete) reachability

properties of the stochastic model are equivalent with the corresponding properties of the underlying DRN.

In general, one can think of a DRN as underlying any discrete stochastic model of the reaction network.

Here, we demonstrate that some general dynamical reachability properties can be efficiently derived from

a DRN: the capacity to reach any discrete state from any other state (irreducibility); and the reversibility of

the reachability properties (recurrence). Such properties are both considered in the case where species are

present in a large copy number as well as in the general case. These results help provide an understanding

of the possible global dynamics of reaction networks, and give a direct relationship between the structure

of the set of reactions and the verification of the dynamical properties mentioned, without any assumption

on kinetic laws.

The main objects and results presented in this paper are summarised below.

Notations. For any a, b in Z, [a; b] denotes the set of integers between a and b, i.e., {a, a + 1, . . . , b}.

For any x, x ′ in Zd , we say that x is greater than x ′, denoted x � x ′, if every component of x is greater or

equal than the corresponding component in x ′, i.e., for any i in [1; d ], we have xi ≥ x ′i . The set of matrices
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of elements in some set G ⊆ R having n rows and d columns is denoted by Gn×d . If the matrix V is in

Gn×d , then for any j ∈ [1; n], Vj is the j th row, and Vj is in Gd . Given a set F ⊆ R, and a matrix V ∈ Gn×d ,

the span of V over F is denoted by spanFV
∆
= {λV | λ ∈ F n}, and is a subset of Rd . Finally, the null vector

in Rd is denoted 0.

Discrete Reaction Networks We consider a set of reactions between d species Ai , i ∈ [1; d ] of the form

c1A1 + · · ·+ cdAd −→ c ′1A1 + · · ·+ c ′dAd (1)

where for any i in [1; d ] the numbers ci and c ′i are in Z≥0. Such a reaction can be applied as soon as

the population of species Ai is at least ci , for any i in [1; d ]. Its application decreases the population of

species Ai by ci and then increases it by c ′i . Such a reaction can be summarised by two vectors of dimension

d : v = (c ′1 − c1, · · · , c ′d − cd), the drift vector describing the population changes after application of the

reaction; and o = (c1, · · · , cd), the origin of the reaction, i.e., the minimum required population for applying

the reaction.

In this setting, a Discrete Reaction Network (DRN) of n reactions between d species can be defined by

a couple (V,O) of two matrices having d columns and n rows: V gathers the drift vectors of the n reactions

and O gathers their origins (Def. 1.1). The definition considers only reactions that can be applied at least

once from their origin, i.e. ∀i ∈ [1; n], Oi + Vi � 0.

Definition 1.1 (Discrete Reaction Network). A Discrete Reaction Network (DRN) is a couple (V,O), where

V ∈ Zn×d , O ∈ Zn×d≥0 , and ∀i ∈ [1; n], Oi + Vi � 0. The number n is the size and d is the dimension of the

DRN.

Example. Fig. 1 shows two examples of DRNs with 3 reactions between 2 species.

• Example (a). reactions:

∅ → 2A

A+ B → ∅

5A → 4A+ 3B

⇒ V =


2 0

−1 −1

−1 3

 ,O =


0 0

1 1

5 0

 .

• Example (b). reactions:

∅ → 2A

A+ B → ∅

5A → 4A+ 2B

⇒ V =


2 0

−1 −1

−1 2

 ,O =


0 0

1 1

5 0

 .

We will see in Sect. 3 and 4 that these similar-looking DRNs have different dynamical properties.

Discrete transitions The population of the d species of the DRN forms a discrete state (or point) of the

DRN, and is represented as a vector x in Zd≥0. At state x , only the reactions j in [1; n] such that x � Oj

can occur. The occurrence of a single reaction leads to the state x ′ = x + Vj , with necessarily x ′ in Zd≥0.

The transition relation → (see Def. 1.2) is defined such that x → x ′ if and only if x ′ can be reached by the

occurrence of a single reaction from x . The binary relation→∗ extends the binary relation→ by considering
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Figure 1: Two DRNs with 3 reactions involving 2 species A and B.

the successive occurrence of any finite number of reactions. Hence for any x, x ′ in Zd≥0, x →∗ x ′ if and

only if there exists a sequence of reaction occurrences from x leading to exactly x ′, which never causes the

population of any species to become negative.

Definition 1.2 (Transition relation→). Given a DRN (V,O) and two points x, x ′ ∈ Zd≥0, we write x →(V,O)

x ′ if and only if ∃i ∈ [1; n] such that x � Oi and x + Vi = x ′. We denote by →∗(V,O) the transitive closure

of the binary relation →(V,O). When clear from context, →(V,O) is written as →.

DRNs may be regarded as discrete Petri nets (Petri, 1962; Murata, 1989), where the places are the

species, the transitions are the reactions, and arc multiplicities reflect the stoichiometry. This connection

has been used previously for the study of ODE models of chemical networks (Angeli et al., 2007; Shiu and

Sturmfels, 2010).

Irreducibility and Recurrence In this paper, we focus on two dynamical properties of DRNs:

• Irreducibility : a DRN is irreducible if and only if one can reach any point x ′ ∈ Z≥0 from any point

x ∈ Z≥0 (Def. 1.3).

• Recurrence: a DRN is recurrent if and only if one can always reverse the application of any sequence

of reactions (Def. 1.4).

It is worth noticing that any irreducible DRN is recurrent (Remark 1).

Definition 1.3 (Irreducibility). DRN (V,O) is irreducible if and only if ∀x, x ′ ∈ Zd≥0, x →∗ x ′ and x ′ →∗ x .

Definition 1.4 (Recurrence). DRN (V,O) is recurrent if and only if ∀x, x ′ ∈ Zd≥0, x →∗ x ′ =⇒ x ′ →∗ x .

Remark 1. Irreducibility =⇒ Recurrence.

The terms irreducibility and recurrence have the same meaning as in the Markov chain literature (Lawler,

2006). The term irreducibility is motivated by the fact that is not possible to reduce the state space of
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the network by ignoring the states that are not reachable from a given initial state x , or states that cannot

reach x . Hence, if the reachability class of x (composed of all states y such that y →∗ x and x →∗ y) is

Zd≥0, we say the DRN is irreducible. The term recurrence comes from the fact that if we leave a state along

some path, it is always possible for that state to occur again (i.e., to recur). In the Petri net literature,

recurrence is usually referred to as reversibility.

In addition to considering irreducibility and recurrence from any possible population of species of the

DRN, we also investigate a less restrictive version of these dynamical properties, when assuming the species

are present at a Large Copy Number (LCN). This basically restricts the above dynamical properties to

population of species greater than a certain thresholdM0 in Zd≥0. We refer to these less restrictive properties

as LCN irreducibility (Def. 1.5) and LCN recurrence (Def. 1.6). Note that the inclusion relationship between

irreducibility and recurrence still holds (Remark 2).

Definition 1.5 (LCN Irreducibility). DRN (V,O) is LCN irreducible if and only if ∃M0 ∈ Zd≥0 such that

∀x, x ′ ∈ Zd≥0 with x � M0 and x ′ � M0, x →∗ x ′ and x ′ →∗ x .

Definition 1.6 (LCN Recurrence). DRN (V,O) is LCN recurrent if and only if ∃M0 ∈ Zd≥0 such that

∀x, x ′ ∈ Zd≥0 with x � M0 and x ′ � M0, x →∗ x ′ =⇒ x ′ →∗ x .

Remark 2. LCN Irreducibility =⇒ LCN Recurrence.

Note that a reaction network that has any conservation laws cannot be irreducible or LCN irreducible.

Main Results

In Sect. 3 we prove that LCN irreducibility is equivalent to having both the strictly positive real span of drift

vectors being Rd and the integer span of drift vectors being Zd .

Theorem (3.4). DRN (V,O) is LCN irreducible if and only if spanR>0
V = Rd and spanZV = Zd .

Verifying spanR>0
V = Rd can be done using linear programming, and verifying spanZV = Zd can be also

efficiently done by computing, for instance, the Hermite normal form of V.

Then, we point out additional properties that characterize full irreducibility: self-starting (capability to

reach a strictly positive point from 0) and self-stopping (capability to reach 0 from a strictly positive point).

Theorem (3.8). DRN (V,O) is irreducible if and only if (V,O) is LCN irreducible, self-starting and self-

stopping.

Self-starting and self-stopping properties can be decided using a backtracking algorithm combined with linear

programming to find a particular order of reactions

In Sect. 4, we prove that LCN recurrence is equivalent to the presence of 0 in the strictly positive real

span of drift vectors. This property is also considered in a different context, where it was called positive
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dependence of drift vectors (Feinberg, 1987). Surprisingly, no integer constraints need to be checked for

LCN recurrence, so this property can be easily decided using only linear programming.

Theorem (4.2). DRN (V,O) is LCN recurrent if and only if 0 ∈ spanR>0
V.

Sect. 5 applies those results to DRNs modelling biological systems. The results and their relationships

with stochastic and continuous models of reaction networks are discussed in Sect. 6. For example, we

show how we can use the theorems above to check that common phosphorylation chain networks are LCN

recurrent and some circadian clock networks are LCN irreducible.

2 Additional definitions and basic properties

2.1 Set of points and paths manipulation

We introduce the following notations to manipulate sets of points and paths (sequences of reactions):

lowerpoint Given a set of m points {x1, . . . , xm} ⊂ Zd , we denote by lowerpoint({x1, . . . , xm}) the largest

point that is lower than all the given points:

lowerpoint({x1, . . . , xm})
∆
= y ∈ Zd with ∀i ∈ [1; d ], yi = min{xj,i | j ∈ [1;m]}

orderings Given λ ∈ Zn≥0 with ` =
∑n

i=1 λi , we denote by orderings(λ) all the mappings π : [1; `]→ [1; n]

which map exactly λi distinct values to i , ∀i ∈ [1; n]:

orderings(λ)
∆
= {π : [1; `]→ [1; n] | ∀i ∈ [1; n], λi = #{j ∈ [1; `] | π(j) = i}}

where #S denotes the cardinality of the finite discrete set S.

Hereafter, we use such mappings π : [1; `]→ [1; n] to refer to paths, i.e., sequences of reactions. In

such a context, λ ∈ Zn≥0 should be understood as the vector giving the number of times each reactions

in [1; n] has to be used in a path; and orderings(λ) as all the possible realizations of such paths.

path application (x • π) Given a DRN (V,O) of size n and dimension d , a path π : [1; `]→ [1; n], and an

initial point x ∈ Zd , x • π is the set of points resulting from the sequential application of π from x :

x • π ∆
= {x +

k∑
i=1

Vπ(i) | k ∈ [0; `]} .

We remark that lowerpoint(x • π) = x + lowerpoint(0 • π).
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2.2 Inverse DRN

The inverse DRN (Def. 2.1) is defined by the negative drift vectors and the origins shifted by the original

drift vector. For instance, the inverse of the reaction described in Eq. (1) results in:

c ′1A1 + · · ·+ c ′dAd −→ c1A1 + · · ·+ cdAd (2)

Definition 2.1 (Inverse DRN). Given a DRN (V,O), then (V,O)−1 ∆
= (−V,O + V) is the inverse DRN.

Lemma 2.2. x →(V,O) x
′ ⇐⇒ x ′ →(V,O)−1 x .

2.3 Basic properties

From the definition of transitions between the discrete states of the DRN (Def. 1.2), one can easily derive

that if x →∗ x ′ then any succession of reactions from x to x ′ can be applied from x (positively) shifted by

any δ ∈ Zd≥0, leading to x ′ + δ (Lemma 2.3). In the particular case when 0→∗ x ′, one can instantiate the

latter property with δ = x ′, which by transitivity of →∗ leads to 0→∗ αx ′ with α ∈ Z>0 (Lemma 2.4).

Lemma 2.3. Given x, x ′ ∈ Zd≥0, x →∗ x ′ =⇒ ∀δ ∈ Zd≥0, x + δ →∗ x ′ + δ.

Lemma 2.4. 0→∗ x ′ ⇒ ∀α ∈ Z>0, 0→∗ αx ′.

3 Deciding Irreducibility

DRN (V,O) is irreducible if any point in Zd≥0 can be reached from any other point in Zd≥0 (Def. 1.3). We

first address the LCN irreducibility, and then exhibit supplementary properties that lead to full irreducibility.

3.1 LCN Irreducibility

Recall that DRN (V,O) is LCN irreducible if and only if any point above a certain M0 ∈ Zd≥0 can be reached

from any other point above M0 (Def. 1.5).

Before using the LCN hypothesis, we remark that the DRN is irreducible if (and only if) one can reach

each elementary point ei ,∀i ∈ [1; d ] from 0 and vice-versa (Lemma 3.1). Here ei is the d-dimensional

vector having 0 at each of its component, except the i th component being 1.

Lemma 3.1. DRN (V,O) is irreducible if and only if ∀i ∈ [1; d ], 0→∗ ei and ei →∗ 0.

Note that a necessary condition for LCN irreducibility is that spanZ≥0
V = Zd . This property is actually

sufficient for LCN irreducibility (Lemma 3.2) by choosing M0 big enough such that for any i ∈ [1; d ] at least

one reachability path from M0 to M0 ± ei never goes outside Zd≥0, and such that M0 is greater than all the

reaction origins.
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Remarking that spanQ>0
V = Qd ⇔ spanR>0

V = Rd (Lemma 3.3), Theorem 3.4 establishes that verifying

spanZ≥0
V = Zd is equivalent to verifying both spanZV = Zd and spanR>0

V = Rd .

While the verification of spanZ≥0
V = Zd involves integer programming techniques, verifying if spanR>0

V =

Rd and spanZV = Zd can be done more efficiently: the former can be decided using linear programming,

for instance by first checking whether 0 ∈ spanR>0
V and then whether spanR≥0

V = Rd ; the latter can be

decided, for instance, by computing the Hermite normal form of V (Cohen, 1993).

Lemma 3.2. DRN (V,O) is LCN irreducible ⇐⇒ spanZ≥0
V = Zd .

Proof. spanZ≥0
V = Zd ⇒ ∀i ∈ [1; d ],∃λi ,+, λi ,− ∈ Zn≥0 : λi ,+V = ei and λi ,−V = −ei .

For each i ∈ [1; d ] and s ∈ {+,−}, we pick an arbitrary ordering πi ,s ∈ orderings(λi ,s).

If M0 is defined such that ∀i ∈ [1; d ],∀s ∈ {+,−},∀j ∈ [1; n], M0 + lowerpoint(0 • πi ,s) � Oj , then it

is clear that ∀i ∈ [1; d ], M0 →∗ M0 + ei and M0 + ei →∗ M0.

Lemma 3.3. spanR>0
V = Rd ⇔ spanQ>0

V = Qd .

Proof. (⇒) Let us consider λ ∈ Rn>0 such that λV = w , where w ∈ Qd .

Consider a basis (βα)α∈I of R over Q such that βα0 = 1 (i.e. ∀r ∈ R, ∃ a unique choice of rα ∈ Q : r =∑
α∈I r

αβα). Then w = λV =
∑n

j=1 λjVj =
∑n

j=1(
∑

α∈I λ
α
j βα)Vj =

∑
α∈I(

∑n
j=1 λ

α
j Vj)βα with λα ∈ Qn.

On the other hand, w = wβα0 +
∑

α∈I\{α0} 0βα. Hence,
∑n

j=1 λ
α0

j Vj = w and ∀α ∈ I, α 6= α0,
∑n

j=1 λ
α
j Vj =

0.

(⇐) Because spanQ>0
V = Qd , Qd ⊆ spanR≥0

V. This implies that the convex hull of Qd is a subset of

spanR≥0
V, hence Rd ⊆ spanR≥0

V which implies spanR≥0
V = Rd . Finally, we conclude that spanR≥0

V =

spanR>0
V because, from hypothesis, 0 is a positive linear combination of elements rows of V: 0 ∈

spanQ>0
V =⇒ ∃λ̃ ∈ Qn>0 : λ̃V = 0. Hence, for any w ∈ Rd , there exists λ ∈ Rn≥0 such that w =

w + 0 = λV + λ̃V = (λ+ λ̃)V, with (λ+ λ̃) ∈ R>0.

Theorem 3.4. spanZ≥0
V = Zd ⇐⇒ spanR>0

V = Rd and spanZV = Zd . Therefore, DRN (V,O) is LCN

irreducible if and only if spanR>0
V = Rd and spanZV = Zd .

Proof. (⇐) spanR>0
V = Rd ⇔ spanQ>0

V = Qd (Lemma 3.3). Therefore, ∃λ ∈ Qn>0 such that λV = 0 and

∃α ∈ Z>0 such that αλ ∈ Zd>0. Moreover, ∀i ∈ [1; d ] and ∀s ∈ {+,−}, ∃λi ,s ∈ Zn such that λi ,sV = sei .

Hence, there exists β ∈ Z>0 such that λ∗ = βαλ + λi ,s with λ∗ ∈ Zd≥0, resulting in λ∗V = sei . (⇒) use

the fact that spanZ≥0
V = Zd ⇒ spanZ>0

V = Zd , which follows from −Vj ∈ spanZ≥0
V.

Example. One can check that both examples of Fig. 1 verify spanR>0
V = Rd . However, the computation

of Hermite normal forms shows that only example (b) verifies the second necessary condition spanZV = Zd .

Hence, example (a) is not LCN irreducible whereas example (b) is LCN irreducible.
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3.2 Full Irreducibility

In this subsection, we demonstrate that a DRN is totally irreducible if and only if it is LCN irreducible and

is both self-starting (Def. 3.5) and self-stopping (Def. 3.6). A DRN is self-starting if at least one strictly

positive point can be reached from 0, and is self-stopping if there exists at least one strictly positive point

from which 0 can be reached – which is equivalent to the inverse DRN being self-starting.

Definition 3.5 (Self-starting DRN). DRN (V,O) is self-starting if and only if ∃x ∈ Zd>0 such that 0→∗ x .

Definition 3.6 (Self-stopping DRN). DRN (V,O) is self-stopping if and only if inverse DRN (V,O)−1 is

self-starting.

Lemma 3.7 establishes that a DRN is self-starting if and only if there exists a sequence of d reactions

(not necessarily unique) such that for each dimension at least one reaction of this sequence has a positive

drift along that dimension, and such that the origin of the k th reaction belongs to the positive real span

of the k − 1 preceding drift vectors (the first reaction having necessarily 0 as origin). Therefore, one can

derive a backtrack algorithm to determine if such an ordering of reactions exists.

Then, Theorem 3.8 states that if an LCN irreducible DRN is both self-starting and self-stopping then

it is irreducible. Indeed, if the DRN is self-starting, then there exists a strictly positive point x ∈ Z>0 such

that 0 →∗ x . From Lemma 2.4, the self-starting property implies that there exists a point x ′ � M0 such

that 0→∗ x ′. Then, if the DRN is self-stopping, one can show similarly that there exists a point x ′′ � M0

such that x ′′ →∗ 0. Because the DRN is LCN recurrent, we know that any pair of points above M0 is

reversibly reachable. Hence, by using Lemma 2.3, one can verify the existence of a reversible path from 0

to all ei , i ∈ [1; d ].

Informally, the self-starting property allows to reach the LCN region, and the self-stopping allows to

reach any ±ei or 0 from any point in the LCN region. The LCN irreducibility property finally ensures that

those two paths can be connected. This is illustrated in Fig. 2.

Lemma 3.7. (∃x ∈ Zd>0 s.t. 0→∗ x)⇐⇒ ∃ a mapping σ : [1; d ]→ [1; n] with:

1. ∀k ∈ [1; d ],∃i ∈ [1; d ],Vσ(i),k ≥ 1, and

2. Oσ(1) = 0 and ∀k ∈ [2; d ],Oσ(k) ∈ spanR≥0


Vσ(1)

...

Vσ(k−1)

.

Proof. (⇐) Let us define ∀k ∈ [1; d ],Ωk ∆
= {j ∈ [1; d ] | ∃i ∈ [1; k ],Vσ(i),j ≥ 1} and xk such that ∀i ∈ [1; d ],

xki = 1
∆⇔ i ∈ Ωk and xki = 0

∆⇔ i /∈ Ωk . We show by induction that ∀k ∈ [1; d ],∃x ′ � xk s.t. 0→∗ x ′:

• k = 1: 0→ Vσ(1) with ∀j ∈ Ω1, Vσ(1),j ≥ 1.
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A1

A2

0

M0

LCN

Self-starting

Self-stopping

Figure 2: Illustration of the reasoning for Theorem 3.8 on irreducibility. If the DRN is self-starting, by

repeating the reactions, we eventually reach the LCN region from 0. In the same manner, if the DRN is

self-stopping, we eventually reach 0 from a point in the LCN region. If the DRN is LCN irreducible, any

point in the LCN region can be reached by any other point in the LCN region. Therefore, one can construct

a path from 0 to each elementary vector, and vice-versa.

• k + 1: by induction, (2), and Lemma 2.4, ∃α ∈ Z>0 such that αxk ≥ Oσ(k+1) (with 0 →∗ αxk).

Hence, αxk → αxk + Vσ(k+1). We remark that if ∃i ∈ Ωk+1 such that (αxk + Vσ(k+1))i < 1, then

necessarily i ∈ Ωk . Hence, ∃β ∈ Z>0 such that (βαxk + Vσ(k+1)) � xk+1. Therefore, 0 →∗ x ′ with

x ′ � xk+1.

Finally, as Ωd = [1; d ], ∃x ∈ Zd>0 s.t. 0→∗ x .

(⇒) 0→∗ x ⇒ ∃` ∈ Z>0,∃ a path π : [1; `]→ [1; n] with
∑`

i=1 Vπ(i) ∈ Zd>0, and ∀i ∈ [1; `],
∑i−1

j=1 Vπ(j) �

Oπ(i). Let us define the mapping ς : [1; d ]→ [1; `] iteratively, starting with ς(1)
∆
= 1 and ∀k ∈ [2; d ]:

• with ωk ∆
= {j ∈ [1; d ] | @i ∈ [1; k − 1],Vπ(ς(i)),j ≥ 1},

• if ωk = ∅, ς(k)
∆
= 1;

• otherwise, ς(k)
∆
= min{m ∈ [ς(k−1)+1; `] | ∃j ∈ ωk ,Vπ(m),j ≥ 1}. We remark that this minimum ne-

cessarily exists (otherwise x /∈ Zd>0), and ∀m ∈ [ς(k−1); ς(k)−1],
∑m

j=1 π(j) ∈ spanR≥0


Vσ(1)

...

Vσ(k−1)

.

From construction, σ ∆
= ς ◦ π verifies (1) and (2).

Theorem 3.8. DRN (V,O) is irreducible if and only if (V,O) is LCN irreducible and ∃x ∈ Zd>0 s.t. 0→∗(V,O)

x and ∃x ′ ∈ Zd>0 s.t. 0→∗(V,O)−1 x
′ (i.e. (V,O) is self-starting and self-stopping).
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Proof. (⇒) obvious.

(⇐) For any fixedM0, from Lemma 2.4, ∃α ∈ Z>0 such that αx � M0 and αx ′ � M0, with 0→∗(V,O) αx

and 0→∗(V,O)−1 αx
′. Hence, ∀i ∈ [1; d ], from Lemma 2.3,

• 0→∗(V,O) αx →
∗
(V,O) (αx + ei)→∗(V,O) (αx ′ + ei)→∗(V,O) (0+ ei), and

• (0+ ei)→∗(V,O) (αx + ei)→∗(V,O) αx →
∗
(V,O) αx

′ →∗(V,O) 0.

Example. One can easily show that the two examples in Fig. 1 are self-starting and self-stopping. Using

LCN irreducibility criteria from the previous subsection, we conclude that example (b) is irreducible (recall

that example (a) is not LCN irreducible, so it is not irreducible).

4 Deciding Recurrence

Recall that DRN (V,O) is recurrent if and only if for all pair of points x, x ′ ∈ Zd≥0, x →∗ x ′ implies x ′ →∗ x

(Def. 1.4). First, we show that the LCN recurrence is equivalent to the presence of the null vector in the

strictly positive real span of drift vectors. Then, we discuss sufficient conditions to obtain the recurrence,

and reduce the full recurrence property to a set of reachability properties.

4.1 LCN Recurrence

Let us ignore reaction origins and population positivity constraints. If 0 ∈ spanZ>0
V, it is clear that from

any point x , one can undo any reaction application and then go back to x : 0 ∈ spanZ>0
V ⇒ ∃λ ∈ Zn>0 such

that λV = 0. Hence ∀i ∈ [1; d ], we obtain (λ− ei)V = −Vi .

By following the proof of Lemma 3.3, we remark in Lemma 4.1 that 0 ∈ spanQ>0
V (hence 0 ∈ spanZ>0

V)

is equivalent to 0 ∈ spanR>0
V. This can be verified with linear programming.

Lemma 4.1. 0 ∈ spanQ>0
V ⇐⇒ 0 ∈ spanR>0

V.

Proof. (⇒) obvious. (⇐) same proof as for Lemma 3.3 with w = 0.

Finally, Theorem 4.2 establishes that LCN recurrence is equivalent to 0 ∈ spanR>0
V. The main difficulty

is to prove that there exists aM0 ∈ Zd≥0 such that it is possible to reverse all the reactions connecting any pair

of points above M0 by staying in Zd≥0. For that, we consider a basis B = {b1, . . . , bk} of the free Z-module

generated by V. It is worth noticing that, because 0 ∈ spanZ>0
V, it follows that bi ∈ spanZ≥0

V,∀i ∈ [1; k ].

Let us pick M0 large enough such that there exists a sequence of reactions from M0 that can be successively

applied (i.e., never below their origins) and that goes to all the vertices of the fundamental region formed by

B that are adjacent to M0. Then any pair of points above M0 that is connected can be reversibly reached

from each other. Fig. 3 illustrates this reasoning.
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A1

A2

0

M0

Figure 3: Black dots are the points of the lattice generated by V. The lattice fundamental regions (formed

by the basis) are delimited by the gray lines.

The proof of Theorem 4.2 also indicates that the reachability graph above M0 becomes in a sense

maximal, or saturated: if x + δ →∗ x ′ + δ when x � M0, x
′ � M0, δ ∈ Zd≥0, then x →∗ x ′. This is stated by

Corollary 4.3.

Theorem 4.2. (V,O) is LCN recurrent ⇐⇒ 0 ∈ spanR>0
V.

Proof. (⇒) straightforward.

(⇐) Let us consider B = {b1, . . . , bk}, a basis of the free Z-module generated by V.

From Lemma 4.1, 0 ∈ spanZ>0
V, which implies ±bi ∈ spanZ≥0

V, ∀i ∈ [1; k ]. Hence, ∀i ∈ [1; k ],∀s ∈

{+,−},∃λi ,s ∈ Zn≥0 such that λi ,sV = bi ,s
∆
= sbi . Let us pick an arbitrary ordering πi ,s ∈ orderings(λi ,s).

Let us define M0 ∈ Zd≥0 such that for any mapping Π : [1 : 2k ] → [1; k ] × {+,−}, and ∀l , l ′ ∈

[1; 2k ],Π(l) = Π(l ′)⇒ l = l ′, then ∀l ∈ [1; 2k ], ∀j ∈ [1; n],M0 + lowerpoint((
∑l−1

m=1 b
Π(m−1))•πΠ(m)) � Oj .

From M0 construction, the set of lattice fundamental regions formed by b1, . . . , bk intersecting Zd≥M0

is connected and fits inside Zd≥0. Moreover, each edge of those fundamental regions can be translated to a

sequence of drift vectors v ∈ V in Zd≥0. Therefore, ∀x, x ′ � M0 we have x →′ x ′ ⇒ x ′ → x .

Corollary 4.3 (Reachability Graph Saturation). If 0 ∈ spanZ>0
V then there exists M0 ∈ Zd≥0 such that the

reachability graph on the setM0 +Zd≥0 becomes constant in the sense that: if x →∗ x ′, and x−δ, x ′−δ � M0

for some δ ∈ Zd≥0, then x − δ →∗ x ′ − δ.

We refer to this property as “saturation" of the reachability graph, because it means that, for M0 large

enough, and any M ′0 � M0, the reachability graph in the region above M ′0 is identical (up to a shift) to the

reachability graph in the region above M0.

Example. From the previous section we know that example (b) in Fig. 1 is irreducible hence recurrent, but

12



example (a) is not irreducible. Using the characterization above one can verify that example (a) is LCN

recurrent.

4.2 Full Recurrence

Assume a DRN (V,O) is LCN recurrent. If ∃x∗ ∈ Zd>0 such that 0 →∗ x∗ →∗ 0, then (V,O) is recurrent

(Lemma 4.4). Indeed, using Lemma 2.4, ∃α ∈ Z>0 such that αx∗ � M0. Then, for any pair of points

x, x ′ ∈ Zd≥0, if x →∗ x ′, then, by Lemma 2.3, x + αx∗ →∗ x ′ + αx∗. Because the DRN is LCN recurrent,

x ′ + αx∗ →∗ x + αx∗. Hence, x ′ →∗ x . We remark however that, to our knowledge, there is no efficient

general method to verify if ∃x∗ ∈ Zd>0 such that 0 →∗ x∗ →∗ 0. Moreover, this condition is sufficient but

not necessary, in order to insure that an LCN recurrent network is fully recurrent.

Lemma 4.4. If DRN (V,O) is LCN recurrent and ∃x∗ ∈ Zd>0 such that 0→∗ x∗ and x∗ →∗ 0, then (V,O)

is recurrent.

Proof. Consider α ∈ Z>0 such that αx∗ � M0. If x →∗ x ′ then x ′ →∗ x ′ + αx∗ →∗ x + αx∗ →∗ x .

In the general case, and independently of LCN recurrence, we notice that recurrence is equivalent to the

reachability of the origin of each reaction from the point that is its origin plus drift vector (Lemma 4.5).

Again, there is currently no efficient general method to verify these reachability properties.

Lemma 4.5. DRN (V,O) is recurrent if and only if ∀j ∈ [1; n],Oj + Vj →∗ Oj .

Proof. (⇒) straightforward. (⇐) ∀x ∈ Zd≥0,∀j ∈ [1; n] : x � Oj , x → x + Vj →∗ x .

The above lemma allows to conclude that any weakly reversible reaction network is recurrent (Lemma 4.6).

A reaction network is weakly reversible if each reaction is part of a cycle of reactions Johnston et al. (2012);

for instance X → Y ; Y → Z;Z → X is a weakly reversible reaction network.

Lemma 4.6. Any weakly reversible reaction network is recurrent.

Proof. A DRN models a weakly reversible reaction network if and only if each reaction is part of a cycle

of m ≤ n reactions where the origin of a reaction matches with the origin plus the drift vector of the

previous reaction, i.e. ∀j ∈ [1; n],∃m ∈ [1; n] and a path π : [1;m]→ [1; n] such that ∀k ∈ [1;m],Oπ(k) =

Oj + Vj +
∑k−1

l=1 Vπ(l) and Oj = Oj + Vj +
∑k

l=1 Vπ(l). Therefore, ∀j ∈ [1; n],Oj + Vj →∗ Oj .

Example. The sufficient condition for recurrence depicted in Lemma 4.4 is verified by example (a) of Fig. 1.

Indeed, 0 →∗ (6, 6) →∗ 0 (applying 3V1 then 2V3 from 0 results in (6, 6), then applying 6V2 results in 0).

Hence, example (a) is recurrent (but not irreducible), whereas example (b) is irreducible (and recurrent).
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PER/TIM phosphorylations: PER_prot_u� PER_prot_p� PER_prot_p_p

TIM_prot_u� TIM_prot_p� TIM_prot_p_p

PER/TIM degradations: PER_prot_u→ ∅ TIM_prot_u→ ∅

PER_prot_p→ ∅ TIM_prot_p→ ∅

PER_prot_p_p→ ∅ TIM_prot_p_p→ ∅

PER-TIM complex formation: PER_prot_p_p+ TIM_prot_p_p� PERTIM_cyt

PER-TIM transport: PERTIM_cyt� PERTIM_nuc

PER-TIM degradation: PERTIM_cyt→ ∅ PERTIM_nuc→ ∅

PER/TIM transcription: PERTIM_nuc→ PERTIM_nuc+ PER_mRNA

PERTIM_nuc→ PERTIM_nuc+ TIM_mRNA

PER/TIM production: PER_mRNA→ PER_mRNA+ PER_prot_u

TIM_mRNA→ TIM_mRNA+ TIM_prot_u

PER/TIM mRNA degradation: PER_mRNA→ ∅ TIM_mRNA→ ∅

Figure 4: Reaction network of the PER/TIM circadian oscillations (Leloup and Goldbeter, 1999)

5 Biological Examples

This section applies the results of this paper to show that a model of circadian clock is LCN irreducible,

and a generic model of phosphorylation chain is LCN recurrent.

5.1 Circadian clock

We study here a model of PER and TIM circadian oscillations from Leloup and Goldbeter (1999), extracted

from the BioModels database (Le Novère et al., 2006). This model involves 10 species and 26 reactions

(including 6 reversible). The list of reactions is given in Fig. 4

One can check that the necessary and sufficient conditions for LCN irreducibility of Theorem 3.4 are

verified by this DRN. Hence, there exists a threshold on the population of species such that there exists a

succession of reactions connecting any pair of states above this threshold.

Because no reaction has an origin being 0, the DRN is not self-starting, hence not fully irreducible; and

because of the presence of degradation reaction, the DRN is not fully recurrent (for instance, 0 is reachable

from the state where all species are 0 except PER_mRNA being 1, but the converse is false).
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5.2 Phosphorylation chains

We consider a generic model of chains of phosphorylation, where an enzyme E can progressively phos-

phorylate a protein up to a certain level k . In concurrence, a kinase F can progressively de-phosphorylate

this protein (Angeli et al., 2007).

S0 + E � S0E → S1 + E � S1E → S2 + E � · · · → Sk + E

S0 + F ← S1F � S1 + F ← S2F � S2 + F ← · · ·� Sk + F

Because of mass conservation properties (for example
∑k

m=0 Sm +
∑k−1

m=0 SmE +
∑k

m=1 SmF being

constant), such a DRN is not irreducible – in particular, spanR>0
V 6= Rd .

Assuming LCN, one can notice that the irreversible reactions such as SmE → Sm+1 +E can be undone

using the chain of reaction Sm+1 + F → Sm+1F → Sm + F followed by Sm + E → SmE. The undoing of

Sm + F ← SmF irreversible reactions is achieved similarly. This shows that the DRN is LCN recurrent as

0 ∈ spanR>0
V. In addition, we remark that it is actually sufficient that all the species are present with at

least one copy in order to undo any irreversible reaction of this network (i.e., M0 can be the vector having

all its components being 1).

Removing the LCN hypothesis, and in particular considering that F is absent (0 copy), it becomes

impossible to revert the reaction S0E → S1 + E. Hence, the DRN is not fully recurrent.

LCN irreducibility depends both on stoichiometry properties (as highlighted by the two examples in

Fig. 1) and on the dimension of the lattice generated by V: if the free Z-module generated by V has a

lower dimension than V, the DRN is not LCN irreducible. This typically occurs in the presence of mass

conservation properties, as highlighted by the example on phosphorylation chains.

In addition, as stated in Lemma 4.6, we recall that any weakly reversible reaction networks is recurrent,

as they verify necessarily 0 ∈ spanR>0
V.

6 Discussion

Relationships between DRNs and stochastic models dynamics Markov chains are a widely used mod-

elling framework for analysing dynamics of biochemical reaction networks. Typically, the discrete states of

such Markov chains represent the population of each biochemical species, and the transitions follow the

drift vectors of reactions, when applicable (population of species greater than the reaction origin). Then,

Markov chains associate either probabilities (DTMCs) or continuous rates (CTMCs) to transitions following

biochemical laws, for instance.

In that sense, a DRN can be considered as the underlying discrete dynamics of any Markov chain

modelling the same set of reactions (Fages and Soliman, 2008). If we assume that the probabilities or rates
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associated to reactions are never null, we obtain the following correspondence between DRNs and Markov

chains dynamical properties:

• DRN is irreducible if and only if the associated Markov chain is irreducible.

• DRN is recurrent if and only if all states in the associated Markov chain are recurrent.

In the case where probability or rates may become null, DRN irreducibility (resp. recurrence) is still a

necessary condition for Markov chain irreducibility (resp. recurrence).

We note that a DRN which is not recurrent implies that there exist some irreversible reactions. On

the other hand, weak reversibility allows, in some cases, an efficient characterization of the stationary

distribution in the associated Markov chain models (Anderson et al., 2010).

Relationships between DRNs and continuous models dynamics Continuous models of reaction net-

works, such as ODE systems, typically evolve in the continuous space of concentrations of species and

implicitly assume that species are present in large copy numbers. In that way, we may want to relate

dynamical properties of such continuous models of reaction networks to LCN properties of DRNs.

In particular, one can remark that if a DRN is not LCN recurrent, i.e. 0 /∈ spanR>0
V, then there exists a

hyperplane H in Rd such that all reaction vectors point on the same side of this hyperplane, and at least one

reaction vector points strictly inside the corresponding half-space. This implies that no oscillation is possible

in the continuous dynamics, i.e. there cannot exist any periodic solution. Indeed, if 0 /∈ spanR>0
V, then

there exists a vector vH perpendicular to the hyperplane H which gives rise to the linear function L(x) = vHx

which is a strict Lyapunov function for the ODE model (there we assume that reaction rate functions do

not vanish if reactant concentrations are strictly positive).

Future work One possible future direction following the results presented is the derivation of necessary

or sufficient conditions for persistence of DRNs.

Informally, persistent dynamical systems are ones where no species “goes extinct", i.e., if we start with

all species being present in the system, then no trajectory will wipe out some species in the long run.

The notion of persistence for continuos systems has been of great interest recently (Angeli et al., 2007;

Craciun et al., 2013). It is not obvious how to define persistence for discrete systems, but one possible

definition is given in Def. 6.1. Note that recurrence is a particular case of this notion of persistence

(Remark 3).

Definition 6.1 (Persistence). DRN (V,O) is persistent if and only if ∀x ∈ Zd>0,∀x ′ ∈ Zd≥0 such that

∃k ∈ [1; d ] with x ′k = 0, x →∗ x ′ =⇒ ∃x ′′ ∈ Zd>0 such that x ′ → x ′′.

Remark 3. Recurrence =⇒ Persistence.

More generally, the study of DRNs may allow to efficiently prove the absence of certain dynamical

properties in a wide-range of concrete models, independent of rate laws or kinetic parameters.
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