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Abstract. In the scope of discrete finite-state models of interacting
components, and calling the local state of a component a process, we
present an algorithm for extracting sets of processes that are necessary
for achieving the reachability of a given process. Those sets are referred to
as cut sets and are computed from a particular abstract causality struc-
ture, so-called Graph of Local Causality, inspired from previous work and
generalised here to Communicating Finite State Machines. We apply this
new method to a very large model of biological interactions, providing
sets of biological entities that, if de-activated, prevent molecules of in-
terest to be active, up to the correctness of the model.

1 Introduction

Aiming at understanding and, ultimately, controlling physical systems, one gen-
erally constructs dynamical models of the known interactions between the com-
ponents of the system. Because parts of those physical processes are still un-
known or ignored, dynamics of such models have to be interpreted as an over-
approximation of the real system dynamics: any (observed) behaviour of the real
system has to have a matching behaviour in the abstract model, the converse
being potentially false. In such a setting, a valuable contribution of formal meth-
ods on abstract models of physical systems resides in the ability to prove the
impossibility of particular behaviours.

Given a discrete finite-state model of interacting components, we are inter-
ested in the control of reachability of the local state, referred to as process, of a
given component from a partially-determined initial global state.

In this paper, we present an algorithm to extract sets of processes that are
necessary to achieve the wanted reachability: informally, each trace leading to
the reachability of interest has to involve, at one point, at least one process of
such a set. Those sets are referred to as cut sets, and we limit ourselves to N -sets,
i.e. having a maximum cardinality of N .

Applied to a model of a real system where the reachability of a process of
interest has been observed, disabling all the processes referenced in a cut set
should make the process reachability impossible from delimited initial states.
The contrary implies that the abstract model is not an over-approximation of
the real concrete system.



The computation of the cut N -sets takes advantage of an abstraction of the
formal model which highlights some of the causalities of processes reachability.
This results in a causality structure called a Graph of Local Causality, which
is inspired by [1], and that we generalise here to Communicating Finite State
Machines [2] (CFSMs).

The proposed algorithm aims at being tractable on systems composed of a
very large number of interacting components, but each of them having a small
number of processes (local states). Our method principally overcomes two chal-
lenges: (1) prevent a complete enumeration of candidate N -sets, which is in-
tractable when having a large number of components; (2) prevent the use of
model-checking techniques to check if disabling a set of processes break the
reachability of the given process. It inherently handles partially-determined ini-
tial states: the resulting cut N -set of processes are proven to be necessary for
the reachability of the process of interest from any of the supplied admissible
initial states.

In order to demonstrate the applicability of our approach, we perform the
search for cutN -sets of processes within a very large model of biological processes
(relating more than 9000 components). Despite the very high combinatoric of
possible dynamics of such a system, a prototype implementation of our algorithm
manages to compute up to the 5-sets of necessary processes within a few minutes.

Related work and limitations. The aim of the presented method is somehow sim-
ilar to the generation of minimal cut sets in fault trees [3,4], as the structure
representing reachability causality contains both and and or connectors. How-
ever, the major difference is that we are here dealing with cyclic directed graphs
which prevents the above mentioned methods to be straightforwardly applied.
[5] develops a method for generating minimal cut sets (also called intervention
sets) dedicated to biochemical reactions networks, hence involving cycling depen-
dencies. This method has been later generalised to boolean models of signalling
networks [6]. Those algorithms are mainly based on the enumeration of possible
candidates, with techniques to reduce the search state space, for example by
exploiting symmetry of dynamics. Our method follows a different approach than
[5,6] in particular by not relying on candidate enumeration but on minimal cut
sets propagations and combinations driven by our special structure of causality.
In addition our method is generic to any dynamical discrete system, but relies on
dynamics over-approximation which leads to under-approximating the minimal
cut sets for reachability. Finally, we focus on finding the minimal cut sets for the
reachability of only one process (i.e. state of one component). Nevertheless when
our algorithm terminates the minimal cut sets for the (independent) reachability
of all processes referenced in the causality structure are computed.

Outline. Sect. 2 introduces a generic characterisation of a Graph of Local Causal-
ity with respect to CFSMs; Sect. 3 states and sketches the proof of the algorithm
for extracting a subset of minimal N -sets of processes necessary for the reachabil-
ity of a given process. Sect. 4 shows a real-case application of this new method to



the analysis of a very large model of a biological system. Finally, Sect. 5 discusses
the results presented and some of their possible extensions.

Notations. ∧ and ∨ are the usual logical and and or connectors. [1;n] =
{1, · · · , n}. Given a finite set A, #A is the cardinality of A; ℘(A) is the power
set of A; ℘≤N (A) is the set of all subsets of A with cardinality at most N . Given
sets A1, . . . , An,

⋃
i∈[1;n]A

i is the union of those sets, with the empty union⋃
∅
∆
= ∅; and A1 × · · · × An is the usual Cartesian product. Given sets of sets

B1, . . . , Bn ∈ ℘(℘(A)),
∏̃
i∈[1;n]B

i ∆= B1×̃ · · · ×̃Bn ∈ ℘(℘(A)) is the sets of sets

product where {e1, . . . , en}×̃{e′1, . . . , e′m}
∆
= {ei ∪ e′j | i ∈ [1;n] ∧ j ∈ [1;m]}. In

particular ∀(i, j) ∈ [1;n] × [1;m], Bi×̃Bj = Bj×̃Bi and ∅×̃Bi = ∅. The empty
sets of sets product

∏̃
∅
∆
= {∅}. If M : A 7→ B is a mapping from elements in A

to elements in B, M(a) is the value in B mapped to a ∈ A; M{a 7→ b} is the
mapping M where a ∈ A now maps to b ∈ B.

2 Graph of Local Causality

We first give basic definitions of process disabling, context and process reach-
ability upon Communicating Finite State Machines; then we define the local
causality of an objective (local reachability), and the Graph of Local Causality.
A simple example is given at the end of the section.

2.1 Finite Discrete Dynamical Systems

We consider any dynamical system Sys relating a finite number of interacting
components, each of these component having a finite number of local states.
Without loss of generality, we build our definitions upon Communicating Finite
State Machines (CFSMs, Def. 1). CFSMs (Σ,S,L, T ) relate a finite number of
interacting finite state automata, where the global state of the system is the
gathering of the local state of composing automata. Each automaton can evolve
on its own following internal transitions labelled with ε, or by changing of state
synchronously with at least one other automaton by applying transitions with a
synchronisation label ` ∈ L.

Definition 1 (CFSMs (Σ,S,L, T )). A set of Communicating Finite State Ma-
chines (CFSMs) is defined by a tuple (Σ,S,L, T ) where

– Σ = {a, b, . . . , z} is the finite set of automata identifiers;
– S =

∏
a∈Σ [1; ka] the finite set of global states; ka being the number of local

states of automaton a ∈ Σ. We note S(a) ∆= [1; ka]; and given s ∈ S we note
s(a) the local state of automaton a.

– L = {`1, . . . , `m} is the finite set of synchronisation labels;
– T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ,Ta ⊂ [1; ka] × (L ∪ {ε}) × [1; ka], is

the mapping from automata to their finite set of local transitions.
We note i `−→ j ∈ T (a) ∆⇔ (i, `, j) ∈ Ta and ai

`−→ aj ∈ T
∆⇔ i

`−→ j ∈ T (a).



The set of processes is defined as Proc
∆
= {ai | a ∈ Σ ∧ i ∈ [1; ka]}.

The global transition relation →⊂ S × S is defined as:

s→ s′
∆⇔


∃a ∈ Σ : s(a)

ε−→ s′(a) ∈ T (a) ∧ ∀b ∈ Σ, b 6= a, s′(b) = s(b) or,

∃` ∈ L,∀a ∈ Σ, s′(a) 6= s(a)⇔ s(a)
`−→ s′(a) ∈ T (a)

∧∃a, b ∈ Σ, a 6= b : s′(a) 6= s(a) ∧ s′(b) 6= s(b).

We refer to the local state of an automaton (component) as a process: ai ∈
Proc is the process representing the local state i ∈ S(a) of automaton a ∈ Σ.

Given a dynamical system Sys and a set of its processes ps ⊆ Proc, Sys	ps
refers to the system where all processes in ps have been disabled, i.e. they can not
be involved in any transition. In the case of CFSMs, this is equivalent to removing
all transitions outgoing from processes (states) referenced in ps (Def. 2).

Definition 2 (Process Disabling). Given Sys = (Σ,S,L, T ) and ps ∈ ℘(Proc),
Sys	 ps ∆= (Σ,S,L, T ′) where T ′ = {ai

`−→ aj ∈ T | ai /∈ ps}.

From a set of acceptable initial states delimited by a context ς (Def. 3), we say
a given process aj ∈ Proc is reachable if and only if there exists a finite number
of transitions in Sys leading to a global state where aj is present (Def. 4).

Definition 3 (Context ς). Given CFSMs (Σ,S,L, T ), a context ς is a mapping
from each automaton a ∈ Σ to a non-empty subset of its local states: ∀a ∈
Σ, ς(a) ∈ ℘(S(a)) ∧ ς(a) 6= ∅.

Definition 4 (Process reachability). Given CFSMs (Σ,S,L, T ) and a con-
text ς, the process aj ∈ Proc is reachable from ς if and only if ∃s0, . . . , sm ∈ S
such that ∀a ∈ Σ, s0(a) ∈ ς(a), and s0 → · · · → sm, and sm(a) = j.

2.2 Local Causality

Locally reasoning within one automaton, the reachability of process aj from ς
can be expressed as the reachability of aj from a process ai ∈ ς(a). This local
reachability specification is referred to as an objective noted ai→∗ aj (Def. 5)

Definition 5 (Objective). Given CFSMs (Σ,S,L, T ), the reachability of pro-
cess aj from ai is called an objective and is denoted ai→∗ aj. The set of all
objectives is referred to as Obj

∆
= {ai→∗ aj | (ai, aj) ∈ Proc×Proc}.

Given an objective P = ai→∗ aj ∈ Obj, we define sol(P ) the local causality
of P (Def. 6): each element ps ∈ sol(P ) is a subset of processes, referred to
as a (local) solution for P , which are all involved at some times prior to the
reachability of aj . This set of solutions is sound if when at least one process in
each solution is disabled, the reachability of aj from any global state containing
ai is impossible (Property 1). Note that if sol(P ) = {{ai} ∪ ps1, . . . , psm} is
sound, sol′(P ) = {ps1, . . . , psm} is also sound. sol(ai→∗ aj) = ∅ implies that aj
can never be reached from ai, and ∀ai ∈ Proc, sol(ai→∗ ai)

∆
= {∅}.



Definition 6. sol : Obj 7→ ℘(℘(Proc)) is a mapping from objectives to set of
set of processes such that ∀P ∈ Obj,∀ps ∈ sol(P ),@ps′ ∈ sol(P ), ps 6= ps′ such
that ps′ ⊂ ps. The set of these mappings is noted Sol

∆
= {〈P, ps〉 | ps ∈ sol(P )}.

Property 1 (sol soundness). sol(ai→∗ aj) = {ps1, . . . , psn} is a sound set of solu-
tions if and only if ∀kps ∈

∏̃
i∈[1;n]ps

i, aj is not reachable from any state s ∈ S
such that s(a) = i in Sys	 kps.

In the rest of this paper we assume that Property 1 is verified, and consider
sol computation out of the scope of this paper.

Nevertheless, we briefly describe a construction of a sound sol(ai→∗ aj) from
CFSMs (Σ,S,L, T ); an example is given at the end of this section. For each
acyclic sequence ai

`1−→ . . .
`m−−→ aj of local transitions in T (a), and by defining

exta(`)
∆
= {bj ∈ Proc | bj

`−→ bk ∈ T, b 6= a}, we set ps ∈
∏̃
`∈{`1,...,`m}\{ε}exta(`)⇒

ps ∈ sol(ai→∗ aj), up to sursets removing. One can easily show that Property 1
is verified with such a construction. The complexity of this construction is expo-
nential in the number of local states of automata and polynomial in the number
of automata. Alternative constructions may also provide sound (and not neces-
sarily equal) sol.

2.3 Graph of Local Causality

Given a process aj ∈ Proc and an initial context ς, the reachability of ai is
equivalent to the realization of any objective ai→∗ aj , with ai ∈ ς(a). By defini-
tion, if aj is reachable from ς, there exists ps ∈ sol(ai→∗ aj) such that, ∀bk ∈ ps,
bk is reachable from ς.

The (directed) Graph of Local Causality (GLC, Def. 7) relates this recursive
reasoning from a given set of processes ω ⊆ Proc by linking every process aj to
all objectives ai→∗ aj , ai ∈ ς(a); every objective P to its solutions 〈P, ps〉 ∈ Sol;
every solution 〈P, ps〉 to its processes bk ∈ ps. A GLC is said to be valid if sol is
sound for all referenced objectives (Property 2).

Definition 7 (Graph of Local Causality). Given a context ς and a set of
processes ω ⊆ Proc, the Graph of Local Causality (GLC) Aως

∆
= (V ως , E

ω
ς ), with

V ως ⊆ Proc∪Obj∪Sol and Eως ⊆ V ως ×V ως , is the smallest structure satisfying:

ω ⊆ V ως
ai ∈ V ως ∩Proc⇔ {(ai, aj→∗ ai) | aj ∈ ς} ⊆ Eως

ai→∗ aj ∈ V ως ∩Obj⇔ {(ai→∗ aj , 〈ai→∗ aj , ps〉) | 〈ai→∗ aj , ps〉 ∈ Sol} ⊆ Eως
〈P, ps〉 ∈ V ως ∩ Sol⇔ {(〈P, ps〉, ai) | ai ∈ ps} ⊆ Eως .

Property 2 (Valid Graph of Local Causality). A GLC Aως is valid if, ∀P ∈ V ως ∩
Obj, sol(P ) is sound.



a3

a1→∗ a3

c2b1

c2→∗ c2

c1→∗ c2

b1→∗ b1

b3

b1→∗ b3

d2 d1→∗ d2

Fig. 1. Example of Graph of Local Causality that is valid for the CFSMs defined
in Example 1

This structure can be constructed from processes in ω and by iteratively
adding the imposed children. It is worth noticing that this graph can contain
cycles. In the worst case, #V ως = #Proc+#Obj+#Sol and #Eως = #Obj+
#Sol+

∑
〈P,ps〉∈Sol #ps.

Example 1. Fig. 1 shows an example of GLC. Processes are represented by boxed
nodes and elements of Sol by small circles.

For instance, such a GLC is valid for the following CFSMs (Σ,S,L, T ), with
initial context ς = {a 7→ {1}; b 7→ {1}; c 7→ {1, 2}; d 7→ {2}}:

Σ = {a, b, c, d} L = {`1, `2, `3, `4, `5, `6}

S(a) = [1; 3] T (a) = {1 `2−→ 2; 2
`3−→ 3; 1

`1−→ 3; 3
`4−→ 2}

S(b) = [1; 3] T (b) = {1 `2−→ 2; 1
`5−→ 3; 1

`6−→ 1; 3
`1−→ 2}

S(c) = [1; 2] T (c) = {1 `4−→ 2; 2
`3−→ 1}

S(d) = [1; 2] T (d) = {1 `6−→ 2; 2
`5−→ 1}

For example, within automata a, there are two acyclic sequences from 1 to 3:
1
`2−→ 2

`3−→ 3 and 1
`1−→ 3. Hence, if a3 is reached from a1, then necessarily, one of

these two sequences has to be used (but not necessarily consecutively). For each
of these transitions, the synchronisation label is shared by exactly one process
in another automaton: b1, c2, b3 for `2, `3, `1, respectively. Therefore, if a3 is
reached from a1, then necessarily either both b1 and c2, or b3 have been reached
before. Hence sol(a1→∗ a3) = {{b1, c2}, {b3}} is sound, as disabling either b1 and
b3, or c2 and b3, would remove any possibility to reach a3 from a1.



3 Necessary Processes for Reachability

We assume a global GLC Aως = (V ως , E
ω
ς ), with the usual accessors for the direct

relations of nodes:

children : V ως 7→ ℘(V ως ) parents : V ως 7→ ℘(V ως )

children(n)
∆
= {m ∈ V ως | (n,m) ∈ Eως } parents(n)

∆
= {m ∈ V ως | (m,n) ∈ Eως }

Given a set of processes Obs ⊆ Proc, this section introduces an algorithm
computing upon Aως the set V(ai) of minimal cut N -sets of processes in Obs that
are necessary for the independent reachability of each process ai ∈ Proc ∩ V ως .
The minimality criterion actually states that ∀ps ∈ V(ai), there is no different
ps′ ∈ V(ai) such that ps′ ⊂ ps.

Assuming a first valuation V (Def. 8) associating to each node a set of (min-
imal) cut N -sets, the set of cut N -sets for the node n can be refined following
update(V, n) (Def. 9):

– if n is a solution 〈P, ps〉 ∈ Sol, it is sufficient to prevent the reachability of
any process in ps to cut n; therefore, the cut N -sets results from the union
of the cut N -sets of n children (all processes).

– If n is an objective P ∈ Obj, all its solutions (in sol(P )) have to be cut in
order to ensure that P is not realizable: hence, the cut N -sets result from
the product of children cut N -sets (all solutions).

– If n is a process ai, it is sufficient to cut all its children (all objectives) to
prevent the reachability of ai from any state in the context ς. In addition, if
ai ∈ Obs, {ai} is added to the set of its cut N -sets.

Definition 8 (Valuation V). A valuation V : V ως 7→ ℘(℘≤N (Obs)) is a map-
ping from each node of Aως to a set of N -sets of processes. Val is the set of all
valuations. V0 ∈ Val refers to the valuation such that ∀n ∈ V ως ,V0(n) = ∅.

Definition 9 (update : Val× V ως 7→ Val).

update(V, n) ∆=


V{n 7→ ζN (

⋃
m∈children(n) V(m))} if n ∈ Sol

V{n 7→ ζN (
∏̃
m∈children(n)V(m))} if n ∈ Obj

V{n 7→ ζN (
∏̃
m∈children(n)V(m))} if n ∈ Proc \ Obs

V{n 7→ ζN ({{ai}} ∪
∏̃
m∈children(n)V(m))} if n ∈ Proc ∩ Obs

where ζN ({e1, . . . , en})
∆
= {ei | i ∈ [1;n] ∧#ei ≤ N ∧ @j ∈ [1;n], j 6= i, ej ⊂ ei},

ei being sets, ∀i ∈ [1;n].

Starting with V0, one can repeatedly apply update on each node of Aως to re-
fine its valuation. Only nodes where one of their children value has been modified
should be considered for updating.

Hence, the order of nodes updates should follow the topological order of the
GLC, where children have a lower rank than their parents (hence children are



Algorithm 1 Aως -Minimal-Cut-NSets
1: M← V ω

ς

2: V← V0

3: whileM 6= ∅ do
4: n← argminm∈M{rank(m)}
5: M←M\ {n}
6: V′ ← update(V, n)
7: if V′(n) 6= V(n) then
8: M←M∪ parents(n)
9: end if
10: V← V′
11: end while
12: return V

treated before their parents). If the graph is actually acyclic, then it is sufficient
to update the value of each node only once. In the general case, i.e. in the
presence of Strongly Connected Components (SCCs) — nodes belonging to the
same SCC have the same rank —, the nodes within a SCC have to be iteratively
updated until the convergence of their valuation.

Algorithm 1 formalizes this procedure where rank(n) refers to the topological
rank of n, as it can be derived from Tarjan’s strongly connected components
algorithm [7], for example. The node n ∈ V ως to be updated is selected as being
the one having the least rank amongst the nodes to update (delimited by M).
In the case where several nodes with the same lowest rank are inM, they can be
either arbitrarily or randomly picked. Once picked, the value of n is updated. If
the new valuation of n is different from the previous, the parents of n are added
to the list of nodes to update (lines 6-8 in Algorithm 1).

Lemma 1 states the convergence of Algorithm 1 and Theorem 1 its correct-
ness: for each process ai ∈ V ως ∩Proc, each set of processes kps ∈ V(ai) (except
{ai} singleton) references the processes that are all necessary to reach in order
to reach ai from any state in ς. Hence, if all processes in kps are disabled in the
dynamical system Sys, ai is not reachable from any state in ς.

Lemma 1. Aως -Minimal-Cut-NSets always terminates.

Proof. Remarking that ℘(℘≤N (Obs)) is finite, defining a partial ordering such
that ∀v, v′ ∈ ℘(℘≤N (Obs)), v � v′

∆⇔ ζN (v) = ζN (v ∪ v′), and noting Vk ∈ Val
the valuation after k iterations of the algorithm, it is sufficient to prove that
Vk+1(n) � Vk(n). Let us define v1, v2, v′1, v′2 ∈ ℘(℘≤N (Obs)) such that v1 � v′1
and v2 � v′2. We can easily check that v1 ∪ v2 � v′1 ∪ v′2 (hence proving the case
when n ∈ Sol). As ζN (v1) = ζN (v1 ∪ v′1) ⇔ ∀e′1 ∈ v′1,∃e1 ∈ v1 : e1 ⊆ e′1, we
obtain that ∀(e′1, e′2) ∈ v′1 × v′2,∃(e1, e2) ∈ v1 × v2 : e1 ⊆ e′1 ∧ e2 ⊆ e′2. Hence
e1∪e2 ⊆ e′1∪e′2, therefore ζN (v1×̃v2∪v′1×̃v′2) = ζN (v1×̃v2), i.e. v1×̃v2 � v′1×̃v′2;
which proves the cases when n ∈ Obj ∪Proc.



Node rank V
〈b1→∗ b1, ∅〉 1 ∅
b1→∗ b1 2 ∅
b1 3 {{b1}}

〈d1→∗ d2, {b1}〉 4 {{b1}}
d1→∗ d2 5 {{b1}}

d2 6 {{b1}, {d2}}
〈b1→∗ b3, {d2}〉 7 {{b1}, {d2}}

b1→∗ b3 8 {{b1}, {d2}}
b3 9 {{b1}, {b3}, {d2}}

〈a1→∗ a3, {b3}〉 10 {{b1}, {b3}, {d2}}
〈c2→∗ c2, ∅〉 11 ∅
c2→∗ c2 12 ∅
c2 13 {{c2}}

〈a1→∗ a3, {b1, c2}〉 13 {{b1}, {c2}}
a1→∗ a3 13 {{b1}, {b3, c2}, {c2, d2}}

a3 13 {{a3}, {b1}, {b3, c2}, {c2, d2}}
〈c1→∗ c2, {a3}〉 13 {{a3}, {b1}, {b3, c2}, {c2, d2}}

Table 1. Result of the execution of Algorithm 1 on the GLC in Fig. 1

Theorem 1. If Aως is a valid graph for causality abstraction, the valuation V
returned by Aως -Minimal-Cut-NSets verifies: ∀ai ∈ Proc∩V ως ,∀kps ∈ V(ai)\
{{ai}}, aj is not reachable from ς within Sys	 kps.

Proof. By recurrence on the valuations V: the above property is true at each
iteration of the algorithm.

Example 2. Table 1 details the result of the execution of Algorithm 1 on the GLC
defined in Fig. 1. Nodes receive a topological rank, identical ranks implying the
belonging to the same SCC. The (arbitrary) scheduling of the updates of nodes
within a SCC follows the order in the table. In this particular case, nodes are
all visited once, as V(〈c2→∗ c2, ∅〉)×̃V(〈c1→∗ c2, {a3}〉) = ∅ (hence update(V, c2)
does not change the valuation of c2). Note that in general, several iterations of
update may be required to reach a fix point.

4 Application to Systems Biology

In order to support the scalability of our approach, we apply the proposed algo-
rithm to a very large model of biological interactions, actually extracted from the
PID database [8] referencing various influences (complex formation, inductions
(activations) and inhibitions, transcriptional regulation, etc.) between more than
9000 biological components (proteins, genes, ions, etc.).

Amongst the numerous biological components, the activation of some of them
are known to control key mechanisms of the cell dynamics. Those activations are
the consequence of intertwining signalling pathways and depend on the environ-
ment of the cell (represented by the presence of certain entry-point molecules).



Uncovering the environmental and intermediate components playing a major
role in these signalling dynamics is of great biological interest.

A cut N -set for such biological models inform that at least one of the process
in the cut N -set has to be present in order to achieve the wanted reachability. A
process can represent, for instance, an active transcription factor or the absence
of a certain protein. This provides potential therapeutic targets if the studied
reachability is involved in a disease by preventing any process in a cut N -set to
appear, for instance using gene knock-down or knock-up techniques.

The full PID database has been interpreted into the Process Hitting frame-
work [9], a subclass of CFSMs from which the derivation of the GLC has been
addressed in previous work [1]. The obtained model gathers components repre-
senting either biological entities modeled as boolean value (absent or present),
or logical complexes. When a biological component has several competing reg-
ulators, we use of two different interpretations: all (resp. one of) the activators
and none (resp. all but one of) the inhibitors have to be present in order to make
the target component present. This leads to two different discrete models of PID
that we refer as whole_PID_AND and whole_PID_OR, respectively.

Focusing on whole_PID_OR, the Process Hitting model relates 67746 pro-
cesses split into 21513 components, the largest component grouping 4 processes.
Such a system could actually generate 233874 states. 3136 components act as
environment specification, which in our boolean interpretation leads to 23136

possible initial states, assuming all other components start in the absent state.
We focus on the (independent) reachability of active SNAIL transcription

factor, involved in the epithelial to mesenchymal transition [10], and of active
p15INK4b and p21CIP1 cyclin-dependent kinase inhibitors involved in cell cycle
regulation [11]. The GLC relates 20045 nodes, including 5671 processes (bio-
logical or logical); it contains 6 SCCs with at least 2 nodes, the largest being
composed of 10238 nodes and the others between 20 and 150.

Table 2 shows the results of a prototype implementation3 of Algorithm 1 for
the search of up to the 6-sets of biological processes. One can observe that the
execution time grows very rapidly with N compared to the number of visited
nodes. This can be explained by intermediate nodes having a large set of cut
N -sets leading to a costly computation of products.

While the precise biological interpretation of found N -sets is out of the scope
of this paper, we remark that the order of magnitude of the number of cut sets
can be very different (more than 1000 cut 6-sets for SNAIL; none cut 6-sets for
p21CIP1, except the gene that produces this protein). It supports a notion of
robustness for the reachability of components, where the less cut sets, the more
robust the reachability to various perturbations.

Applied to the whole_PID_AND model, our algorithm find in general much
more cut N -sets, due to the conjunctive interpretation. This brings a significant
increase in the execution time: the search up to the cut 5-sets took 1h, and the
6-sets leads to an out-of-memory failure.

3 Implemented as part of the Pint software – http://process.hitting.free.fr.
Models and command lines are provided in http://loicpauleve.name/lata13.tbz2

http://process.hitting.free.fr
http://loicpauleve.name/lata13.tbz2


Model N Visited nodes Exec. time Nb. of resulting N-sets
SNAIL1 p15INK4b1 p21CIP11

whole_PID_OR

1 29022 0.9s 1 1 1
2 36602 1.6s +6 +6 +0
3 44174 5.4s +0 +92 +0
4 54322 39s +30 +60 +0
5 68214 8.3m +90 +80 +0
6 90902 2.6h +930 +208 +0

Table 2. Number of nodes visited and execution time of the search for cut N -
sets of 3 processes. For each N, only the number of additional N-sets is displayed.

5 Discussion

We presented a new method to compute minimal cut sets for the reachability
of processes within discrete dynamical systems from any state delimited by a
provided so-called context. Those cut sets are sets of processes such that disabling
all processes of a cut set within the system guarantees to prevent the reachability
of the concerned process.

We consider finite systems with interacting components, each component
having a finite number of local states, that we refer to as processes: one and
only one process of each component is present at any time, giving the global
state of the system. Upon such a system, we characterized a Graph of Local
Causality (GLC) which relates the local reachability of one process from an-
other in the same component to the (external) processes that are necessary for
this reachability to occur. Note that several constructions of such a GLC are
possible and depend on the semantics of the model. We gave an example of such
a construction for Communicating Finite State Machines.

The proposed algorithm then propagates along the GLC the minimal cut
sets following a topological order. This leads to an under-approximation of the
cut N -sets for the reachability of any process referenced in the GLC from any
state delimited in a supplied context. At the current time, our algorithm does
not suggest any particular scheduling for the update of nodes within a strongly
connected component of the GLC. Further work may propose heuristics on this
scheduling in order to improve convergence time.

A prototype implementation of our algorithm has been successfully applied to
the extraction of minimal cut sets within a very large model of biological system,
involving more than 9000 interacting components. To our knowledge this is the
first attempt of such a dynamical analysis for such large biological models. We
note that most of the computation time is due to products between large sets
of cut N -sets. To partially address this issue, we use of BDD-like structures to
represent set of sets [12] on which we have specialized operations to stick to
sets of N -sets. There is still room for improvement as our prototype does not
implement any caching or variable re-ordering.



The work presented in this paper can be extended in several ways, notably
with a posterior enlarging of the cut sets. Because the algorithm computes the
cut N -sets for each node in the GLC, it is possible to construct a posteriori
cut sets that are not limited to N processes by chaining them. For instance, let
kps ∈ V(ai) be a cut N -set for the process ai, for each bj ∈ kps and kps′ ∈ V(bj),
(kps \ {bj}) ∪ kps′ is a cut set for the process ai. In our biological case study,
this method could be recursively applied until cut sets are composed of only
processes representing the environment input.

With respect to the defined computation of cut N -sets, one could also derive
static reductions of the GLC. Indeed, some particular nodes and arcs of the
GLC can be removed without affecting the final valuation of nodes. A simple
example are nodes representing objectives having no solution: such nodes can be
safely removed as they bring no candidate N -sets for parents processes. These
reductions conduct to both speedup of the proposed algorithm but also to more
reduced representations of reachability causality.
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