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PRIMITIVE MULTIPLE CURVES: CLASSIFICATION, DEFORMATIONS
AND MODULI SPACES OF SHEAVES

JEAN–MARC DRÉZET

1. Introduction

A primitive multiple curve is an algebraic variety Y over C wich is Cohen-Macaulay, such that
the induced reduced variety C = Yred is a smooth irreducible curve, and that every closed point
of Y has a neighbourhood that can be embedded in a smooth surface. These curves have been
defined and studied by C. Bănică and O. Forster in [1]. The simplest examples are infinitesimal
neighbourhoods of smooth curves embedded in a smooth surface (but most primitive multiple
curves cannot be globally embedded in smooth surfaces, cf. [2], theorem 7.1).

Let Y be a primitive multiple curve with associated reduced curve C, and suppose that Y 6= C.
Let IC be the ideal sheaf of C in Y . The multiplicity of Y is the smallest integer n such that
InC = 0. We have then a filtration

(1) C = C1 ⊂ C2 ⊂ · · · ⊂ Cn = Y

where Ci is the subscheme corresponding to the ideal sheaf I iC and is a primitive multiple curve
of multiplicity i. The sheaf L = IC/I2

C is a line bundle on C, called the line bundle on C
associated to Y .

Let P be a closed point of C and S a smooth surface containing a neighbourhood of P in Y
as a locally closed subvariety. There exists elements y, t of mS,P (the maximal ideal of OS,P )
whose images in mS,P/m

2
S,P form a basis, and such that for 1 ≤ i < n we have ICi,P = (yi)

(ICi,P beeing the ideal sheaf of Ci in Y ).

This paper is a survey of the theory of projective primitive multiple curves.

In chapter 1 we describe a parametrization of primitive multiple curves. The case of double
curves has been treated in [2], and the case of multiplicities > 2 in [6].

In chapter 2, we give a description of the local structure of coherent sheaves on primitive
multiple curves, and a few results on the moduli spaces of semi-stable sheaves on them. Most
results come from [5], [7] and [8].

In chapter 3, we study the deformations of primitive multiple curves. In the case of multiplicity
2, the deformations in smooth curves has been treated in [15]. Some results on deformations in
reduced reducible curves with the maximal number of components have been obtained in [10].
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2. Classification of primitive multiple curves

(See [6])

2.1. Parametrization

Let C be a smooth irreducible curve over C. Let L ∈ Pic(C). We can view C as embedded
in the dual L∗, seen as a smooth surface, using the zero section. Then the n-th infinitesimal
neighbourhood of C in L∗ is a primitive multiple curve of multiplicity n with associated line
bundle L. We call it the trivial primitive curve with associated line bundle L.

The primitive double (i.e. of multiplicity 2) curves are usually called ribbons. D. Bayer and
D. Eisenbud have obtained in [2] the following classification: if Y is of multiplicity 2, then we
have an exact sequence of vector bundles on C

(2) 0 −→ L −→ ΩY |C −→ ωC −→ 0

which splits if and only if Y is the trivial curve. In particular, if C is not projective, then Y
is trivial. If C is projective and Y non trivial, then Y is completely determined by the line of
Ext1

OC
(ωC , L) induced by the exact sequence (2). The non trivial primitive double curves with

associated line bundle L are thus parametrized by the projective space P(Ext1
OC

(ωC , L)).

To parametrize the primitive multiple curves of multiplicity n ≥ 2, we first need to study their
local structure. Let Y be a primitive multiple curve of multiplicity n, C its underlying smooth
curve, Zn = spec(C[t]/(tn)) and ∗ its unique closed point. For every open subset U ⊂ C, let
Y (U) be the corresponding open subset of Y . The local structure of Y is given by

2.1.1. Proposition: Let P ∈ C be a closed point. Then there exists an open subset U ⊂ C
containing P and an isomorphism

Y (U) ' U × Zn
leaving U × {∗} invariant.

The primitive multiple curves are then obtained by taking an open cover (Ui)i∈I of C, and auto-
morphisms τij of Uij × Zn (leaving Uij × {∗} invariant) satisfying obvious cocycle conditions.
So it is natural to consider the following sheaf Gn of non abelian groups on C: for every open
subset U ⊂ C, Gn(U) is the group of automorphisms of U × Zn leaving U × {∗} invariant.
We can also view Gn(U) as the group of automorphisms φ of the C-algebra OC(U)[t]/(tn) such
that for every α ∈ OC(U)[t]/(tn), the terms of degree 0 of α and φ(α) are the same.

We say that two primitive multiple curves Y , Y ′ of multiplicity n, with the same underlying
smooth curve C, are isomorphic if there exists an isomorphism Y → Y ′ inducing the identity
on C. The set of isomorphism classes of such curves can be identified with the cohomology set
H1(C,Gn) (cf. [13]).

Let U be an open subset of C, such that ωC|U is trivial, generated by dx, for some x ∈ OC(U).
Let µ, ν ∈ OC(U)[t]/(tn−1), with ν invertible. Then we can define an automorphism φµ,ν of
OC(U)[t]/(tn) by

φµ,ν(α) =
n−1∑
k=0

1

k!
(µt)k

dkα

dxk
for every α ∈ OC(U)



PRIMITIVE MULTIPLE CURVES 3

(formally we could write φµ,ν(α) = α(x+ µt)), and

φµ,ν(t) = νt .

It can be proved that

2.1.2. Proposition: For every automorphism σ of OC(U)[t]/(tn) there exists unique
µ, ν ∈ OC(U)[t]/(tn−1), with ν invertible, such that σ = φµ,ν.

The product in Gn is given by
φµ′ν′ ◦ φµν = φµ”ν”,

with
µ” = µ′ + ν ′φµ′,ν′(µ), ν” = ν ′φµ′,ν′(ν),

and we have φ−1
µν = φµ′,ν′ , with

µ′ = −φ−1
µν (

µ

ν
), ν ′ = φ−1

µν (
1

ν
).

By associating ν|C to φµ,ν we define a surjective morphism ξn : Gn → O∗C . The induced map

H1(ξn) : H1(C,Gn) −→ H1(C,O∗C) = Pic(C)

associates to a primitive multiple curve Y its associated line bundle L on C.

Suppose that n > 2. Then we have an obvious surjective morphism ρn : Gn → Gn−1, which on
U sends φµ,ν to φµ,ν , where µ, ν are the images of µ, ν respectively in OC(U)[t]/(tn−2). Let TC
denote the tangent vector bundle of C. Using proposition 2.1.2 it is easy to see that

2.1.3. Proposition: We have ker(ρn) ' TC ⊕OC .

Hence we have an exact sequence of sheaves of groups on C

0 // TC ⊕OC // Gn
ρn // Gn−1

// 0 .

Now the map
H1(ρn) : H1(C,Gn) −→ H1(C,Gn−1)

sends a point representing the primitive multiple curve Cn to the point representing Cn−1.

If g = gn ∈ H1(C,Gn), we will denote by gn−1, . . . , g2 its images in H1(C,Gn−1), . . . , H1(C,G2).
If gn corresponds to the primitive curve Y = Cn, gn−1, . . . , g2 correspond to the primitive curves
Cn−1, . . . , C2 of the filtration (1).

Let g = gn ∈ H1(C,Gn) and (gij) a cocycle representing g (with respect to an open cover (Ui)
of C). Then we can define new sheaves of groups (Gn)g, (Gn−1)g and (TC ⊕OC)g on C, obtained
by glueing the restrictions of the sheaves on the Uij using the automorphisms gij (acting by
conjugation). The sheaf (Gn)g is naturally isomorphic to the sheaf AutC(Cn) of automorphisms
of Cn leaving C invariant.

Let Cn be the primitive multiple curve corresponding to g. Let E(g2) = (ΩC2|C)∗ (i.e. the dual
of the vector bundle ΩC2|C on C). Then from equation (2) we deduce that
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2.1.4. Proposition: We have (TC ⊕OC)g ' E(g2)⊗ Ln−1 .

Now we can examine the fibers of H1(ρn). The theory of cohomology of sheaves of non abelian
groups implies that if g = gn ∈ H1(C,Gn) and gn−1 = H1(ρn)(gn), there exists a canonical sur-
jective map

λg : H1(C,E(g2)⊗ Ln−1) −→ H1(ρn)−1(gn−1)

which sends 0 to g, whose fibers are the orbits of an action of AutC(Cn−1) on
H1(C,E(g2)⊗ Ln−1). The proof of the surjectivity of λg uses the fact that (TC ⊕OC)g is a
sheaf of abelian groups, whose second cohomology group vanishes. It follows that

2.1.5. Proposition: Every primitive multiple curve of multiplicity n− 1 can be extended to
a primitive multiple curve of multiplicity n.

Let Y be a primitive multiple curve of multiplicity n− 1 with associated smooth curve C. Two
extensions Z,Z ′ of Y in primitive multiple curves of multiplicity n are called (n−1)-isomorphic
if there exists an isomorphism Z ' Z ′ inducing the identity on Cn−1. Let HY be the set of such
extensions, and Z ∈ HY . Then there exists a canonical bjection

ΛZ : H1(C,E(g2)⊗ Ln−1) −→ HY

sending 0 to Z. If Z ′ is another extension of Y , then the composition

H1(C,E(g2)⊗ Ln−1)
ΛZ // HY

Λ−1
Z′ // H1(C,E(g2)⊗ Ln−1)

is a translation. It follows that HY has a canonical structure of affine space, with associ-
ated vector space H1(C,E(g2)⊗ Ln−1). This means that to a pair (Cn, C

′
n) of extensions

of Cn−1 to a primitive multiple curve of multiplicity n, we can associate a well defined
c(Cn, C

′
n) ∈ H1(E(g2)⊗ Ln−1) (the vector from Cn to C ′n).

2.2. Canonical sheaves

(cf. [9], [6], 6-)

Let Y = Cn be a primitive multiple curve of multiplicity n ≥ 2 with underlying smooth
curve C and associated line bundle L on C. The canonical sheaf ΩCn is locally isomorphic
to OCn ⊕OCn−1 . Let P ∈ C be a closed point, t ∈ OCn,P over a generator of the maximal ideal
of OC,P and z ∈ OCn,P an equation of C. Then dt, dz generate ΩCn,P : dt generates the factor
OCn,P and dz the factor OCn−1,P (because zn−1dz = 0). It follows that ΩCn|Cn−1 is a rank 2
vector bundle on Cn−1. It is then easy to see that

2.2.1. Lemma: The kernel of the canonical morphism ΩCn|Cn−1 → ΩCn−1 is isomorphic to
Ln−1.

It follows that we have an exact sequence of coherent sheaves on Cn−1

(3) 0 −→ Ln−1 −→ ΩCn|Cn−1 −→ ΩCn−1 −→ 0.
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The sheaves on the left and on the right are fixed, only the middle depends on Cn. So it is
interesting to find which element of Ext1

OCn−1
(ΩCn−1 , L

n−1) corresponds to (3). We use the

exact sequence

H1(Hom(ΩCn−1 , L
n−1)) �

� // Ext1
OCn−1

(ΩCn−1 , L
n−1)

π // // H0(Ext1OCn−1
(ΩCn−1 , L

n−1))

(cf. [14], 7.3). There exists a line bundle L on Cn−1 such that L|C = L. We have then a locally
free resolution of Ln−1 on Cn−1: · · ·Ln −→ Ln−1 −→ Ln−1, which gives with (3) a locally free
resolution of ΩCn−1 on Cn−1

· · ·Ln −→ Ln−1 −→ ΩCn|Cn−1 −→ ΩCn−1 .

Using this resolution it is easy to see that Ext1OCn−1
(ΩCn−1 , L

n−1) ' OC . We have

Hom(ΩCn−1 , L
n−1) ' Hom(ΩCn−1|C , L

n−1) ' Hom(ΩC2|C , L
n−1) = E(g2)⊗ Ln−1 .

Hence we have an exact sequence

0 // H1(E(g2)⊗ Ln−1) // Ext1
OCn−1

(ΩCn−1 , L
n−1)

π // C // 0 .

Now let 0 −→ Ln−1 −→ E −→ ΩCn−1 −→ 0 be an exact sequence, associated to
θ ∈ Ext1

OCn−1
(ΩCn−1 , L

n−1). A local study gives

2.2.2. Lemma: The sheaf E is locally free on Cn−1 if and only if π(θ) 6= 0.

Let σ(Cn) ∈ Ext1
OCn−1

(ΩCn−1 , L
n−1) the element corresponding to the exact sequence (3). By

correctly choosing the isomorphism of lemma 2.2.1 we can assume that π(σ(Cn)) = 1. Hence,
if C ′n is another extension of Cn−1 to a primitive multiple curve of multiplicity n− 1, we have
π(Cn)− π(C ′n) ∈ H1(E(g2)⊗ Ln−1) .

Using the representation of primitive multiple curves with cocycles, it is then possible to prove
(cf. [9])

2.2.3. Theorem: Let Cn, C ′n two extensions of Cn−1 in a primitive multiple curve of multi-
plicity n. Then we have π(C ′n)− π(Cn) = (n− 1)c(Cn, C

′
n) .
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3. Coherent sheaves on primitive multiple curves, and moduli spaces of
sheaves

Let Y = Cn a primitive multiple curve of multiplicity n ≥ 2, underlying smooth curve C pro-
jective, irreducible, of genus g and associated line bundle L on C. Let P ∈ C be a closed point,
z ∈ OY,P an equation of C and M a OCn,P -module of finite type. Let E be a coherent sheaf on
Cn.

3.1. Canonical filtrations, generalized rank and degree and the Riemann-Roch the-

orem

The two canonical filtrations are useful tools to study the coherent sheaves on primitive multiple
curves.

3.1.1. First canonical filtration – The fitst canonical filtration of M is

Mn = {0} ⊂Mn−1 ⊂ · · · ⊂M1 ⊂M0 = M

where for 0 ≤ i < n, Mi+1 is the kernel of the surjective canonical morphism
Mi →Mi ⊗On,P

OC,P . So we have

Mi/Mi+1 = Mi ⊗On,P
OC,P , M/Mi ' M ⊗On,P

OCi,P , Mi = ziM.

If i > 0, let Gi(M) = Mi/Mi+1 . The graduate

Gr(M) =
n−1⊕
i=0

Gi(M) =
n−1⊕
i=0

ziM/zi+1M

is an OC,P -module. If 1 < i ≤ n, then

– Mi = {0} if and only if M is an OCi,P -module.
– Mi is a OCn−i,P -module, and its first canonical filtration is {0} ⊂ Mn ⊂ · · · ⊂ Mi+1 ⊂
Mi.

– Every morphism of OCn,P -modules is compatible with the first canonical filtrations of
the modules.

One defines similarly the first canonical filtration of E : it is the filtration

En = 0 ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ E0 = E
such that for 0 ≤ i < n, Ei+1 is the kernel of the canonical surjective morphism Ei → Ei|C . So
we have Ei/Ei+1 = Ei|C , E/Ei = E|Ci

. If i ≥ 0, let Gi(E) = Ei/Ei+1. the graduate

Gr(E) =
n−1⊕
i=0

Gi(E)

is a OC-module. If 1 < i ≤ n we have

– Ei = I iCE .
– Ei = 0 if and only if E is a sheaf on Ci.
– Ei is a sheaf on Cn−i, and its first canonical filtration is 0 ⊂ En ⊂ · · · ⊂ Ei+1 ⊂ Ei .
– Every morphism of coherent sheaves on Cn sends the first canonical filtration of the first

sheaf to that of the second.
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3.1.2. Complete type of a coherent sheaf – The pair((
rg(G0(E)), . . . , rg(Gn−1(E))

)
,
(

deg(G0(E)), . . . , deg(Gn−1(E)
))

is called the complete type of E .

3.1.3. Second canonical filtration – One defines similarly the second canonical filtration of M :
it is the filtration

M (0) = {0} ⊂M (1) ⊂ · · · ⊂M (n−1) ⊂M (n) = M

with M (i) =
{
u ∈M ; ziu = 0

}
. If Mn = {0} ⊂Mn−1 ⊂ · · · ⊂M1 ⊂M0 = M is the

first canonical filtration of M , we have Mi ⊂M (n−i) for 0 ≤ i ≤ n. If i > 0, let
G(i)(M) = M (i)/M (i−1) . The graduate

Gr2(M) =
n⊕
i=1

G(i)(M)

is a OC,P -module. If 1 < i ≤ n, then

– M (i) is a OCi,P -module, and its second canonical filtration is {0} ⊂ M (1) ⊂ · · · ⊂
M (i−1) ⊂M (i).

– Every morphism of On,P -modules sends the second canonical filtration of ther first sheaf
to that of the second.

One defines in the same way the second canonical filtration of E :

E (0) = {0} ⊂ E (1) ⊂ · · · ⊂ E (n−1) ⊂ E (n) = E .
If i > 0, let G(i)(E) = E (i)/E (i−1). The graduate

Gr2(E) =
n⊕
i=1

G(i)(E)

is a OC-module. If 0 < i ≤ n, then

– E (i) is a sheaf on Ci, and its second canonical filtration is 0 ⊂ E (1) ⊂ · · · ⊂ E (i−1) ⊂ E (i).
– Every morphism of coherent sheaves on Cn sends the second canonical filtration of the

first sheaf to that of the second.

3.1.4. Invariants and the Riemann-Roch theorem – The integer R(M) = rk(Gr(M)) is called
the generalized rank of M .

The integer R(E) = rk(Gr(E)) is called the generalized rank of E .

The integer Deg(E) = deg(Gr(E)) is called the generalized degree of E .

LetO(1) be a very ample line bundle on Cn and OC(1) = O(1)|C . From Riemann-Roch theorem
on C we deduce easily

3.1.5. Proposition: We have χ(E) = Deg(E) +R(E)(1− g). The Hilbert polynomial of E
is

PE(m) = Deg(E) +R(E)(1− g) +R(E) deg(OC(1)).m .
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which implies that the canonical rank and degree of E can be computed by using any filtration
of E whose graduates are sheaves of OC-modules, and that

3.1.6. Proposition: The generalized rank and degree are invariant by deformation of the
sheaves, and additive, i.e. for every exact sequence

0 −→ E ′ −→ E −→ E ′′ −→ 0

of coherent sheaves on Cn we have

R(E) = R(E ′) +R(E”) and Deg(E) = Deg(E ′) + Deg(E”).

3.1.7. Examples: 1 – Let E be a locally free sheaf on Cn and E = E|C . Then the two canon-

ical filtrations of E are the same (i.e we have E (i) = En−i for 1 ≤ i ≤ n), and Gi(E) = E ⊗ Li
for 0 ≤ i < n.

2 – Let F = IP be the ideal sheaf of P on Cn. Then we have Fi/Fi+1 = (OC(−P )⊗ Li)⊕ CP

for 0 ≤ i < n− 1, Fn−1 = OC(−P )⊗ Ln−1, F (i)/F (i−1) = Ln−i for 1 ≤ i ≤ n− 1 and
F (n)/F (n−1) = OC(−P ).

3.2. Torsion free sheaves

(cf. [7])

Let E be a coherent sheaf on Cn. We say that E is torsion free if it is pure of dimension 1, i.e
if it is non zero and has no proper subsheaf with finite support.

We denote by E∨ the dual sheaf of E , i.e E∨ = Hom(E ,OCn). This definition depends on n, i.e
if E is a sheaf on Ci, 1 ≤ i < n, its dual on Ci is not the same as its dual on Cn. For example,
if E is a vector bundle on C, then E∨ = E∗ ⊗ Ln−1 (E∗ beeing the ordinary dual of E on C).
We say that E is reflexive if the canonical morphism E → E∨∨ is an isomorphism.

3.2.1. Theorem: Let E be a coherent sheaf on Cn. Then the following assertions are equiv-
alent:

(i) E is torsion free.
(ii) E is reflexive.

(iii) E (1) is locally free on C.
(iv) Ext1OCn

(E ,OCn) = 0 .

If E is torsion free, then all the sheaves G(i)(E) are locally free. From theorem 3.2.1 it is
easy to deduce that if E is any coherent sheaf on Cn (even not torsion free) then we have
ExtiOCn

(E ,OCn) = 0 for i ≥ 2.

3.2.2. Serre duality for reflexive sheaves – Since Cn is locally a complete intersection, it has a
dualizing sheaf ωCn , which is a line bundle on Cn. We have ωCn|C = ωC ⊗ L1−n, and
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3.2.3. Theorem: Let E be a reflexive coherent sheaf on Cn. Then there exists functorial
isomorphisms

H i(Cn, E) ' H1−i(Cn, E∨ ⊗ ωCn)∗

for i = 0, 1.

3.3. Quasi locally free sheaves

(cf. [5], [7])

Let M be a OCn,P -module of finite type. Then M is called quasi free if there exist non negative
integers m1, . . . ,mn and an isomorphism M ' ⊕ni=1miOCi,P . The integers m1, . . . ,mn are
uniquely determined: it is easy to recover them from the first canonical filtration of M . We
say that (m1, . . . ,mn) is the type of M .

Let E be a coherent sheaf on Cn. We say that E is quasi free at P if EP is quasi free, and that
E is quasi locally free if it is quasi free at every point of C.

3.3.1. Theorem: The following two assertions are equivalent:

(i) The On,P -module M is quasi free.
(ii) Gr(M) is a free OC,P -module, i.e all the Mi/Mi+1 are free OC,P -modules.

We have of course a corresponding theorem for sheaves on Cn, i.e. E is quasi locally free if and
only if Gr(E) is a vector bundle on C, if and only if all the Ei/Ei+1 are vector bundles on C.

It follows from theorem 3.3.1 that for any sheaf E , the set of points Q ∈ C such that E is quasi
free at Q is open and nonempty. Moreover the sequence of integers m1, . . . ,mn does not depend
on the point of C where E is quasi free. It is called the type of E .

The complete type of a coherent sheaf on Cn has been defined in 3.1.2. The type of E can be
deduced from the complete type: if ((ri), (di)) is the complete type of E and (mi) its type, then
we have ri = mi+1 + · · ·+mn for 0 ≤ i < n.

For families of quasi locally free sheaves of fixed type, the complete type is invariant by defor-
mation. More precisely

3.3.2. Proposition: Let Z be an irreducible algebraic variety and E a coherent sheaf on
Z × Cn, flat on Z, such that for every closed point z ∈ Z, Ez is quasi locally free and of fixed
type (m1, . . . ,mn). Then the complete type of Ez is independent of z.

This means that not only the ranks of the Gi(Ez) are fixed, but also their degrees.

3.3.3. Irreducible families – Let Y be a nonempty set of isomorphism classes of coherent sheaves
on Cn. We say that Y is irreducible if for any E0, E1 ∈ Y there exists an irreducible algebraic
variety Z and a coherent sheaf E on Z × Cn, flat on Z, such that for every closed point z of Z
we have Ez ∈ Y , and such that there exists two closed points z0, z1 ∈ Z such that Ez0 = E0 and
Ez1 = E1.
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It is well known that the vector bundles of fixed rank and degree on C form an irreducible
family. We have an analogous result on primitive multiple curves:

3.3.4. Theorem: The family of isomorphism classes of quasi locally free sheaves on Cn of
fixed complete type is irreducible.

(The proof is by induction on n.)

3.3.5. Open families – Let Y be a nonempty set of isomorphism classes of coherent sheaves on
Cn. We say that Y is open if for any algebraic variety Z and any coherent sheaf E on Z × Cn,
flat on Z, if z0 ∈ Z is a closed point such that Ez0 ∈ Y , there exists an open neighbourhood U
of z0 in Z such that Ez ∈ Y for every closed point z ∈ U .

3.3.6. Quasi locally free sheaves of rigid type – In general, the family of all quasi locally free
sheaves on Cn with fixed given complete type is not open. For example, all quasi locally
free sheaves degenerate to vector bundles on C, hence in general the family of quasi locally
free sheaves of complete type ((r, 0, . . . , 0), (d, 0, . . . , 0) (i.e vector bundles on C of rank r and
degree d) is not open.

A quasi locally free sheaf E on Cn is called of rigid type if it is locally free, or locally isomorphic
to aOCn ⊕OCk

, with a ≥ 0 and 1 ≤ k < n. So E , of type (mi), is of rigid type if and only there
is at most one integer i such that 1 ≤ i < n and mi > 0, and in this case mi = 1.

It is easy to see, using proposition 3.3.2 and theorem 3.3.4, that

3.3.7. Proposition: The family of isomorphism classes of quasi locally free sheaves of rigid
type and fixed complete type is irreducible and open.

3.3.8. Deformations of quasi locally free sheaves of rigid type – Let E be a coherent sheaf on

Cn. Let (Ẽ , S, s0, ε) be a semi-universal deformation of E : Ẽ is a flat family of sheaves on Cn
parametrized by S, s0 ∈ S is a closed point and ε : Ẽs0 ' E (cf. [22]). The Kodäıra-Spencer

map of Ẽ at s0

ωẼ,s0 : Ts0S −→ Ext1
OCn

(E , E)

is an isomorphism.

We say that E is smooth if S is smooth at s0. This is true if Ext2
OCn

(E , E) = {0}, for example
if E is locally free.

We say that E is smooth for reduced deformations if Sred is smooth at s0.

Let Dred(E) ⊂ Ext1
OCn

(E , E) be the linear subspace corresponding to deformations of E
parametrized by reduced algebraic varieties: Dred(E) = ωẼ,s0(Ts0(Sred)). It is the smallest linear

subspace H ⊂ Ext1
OCn

(E , E) having the following property: let Z be a reduced variety, F a
coherent sheaf on Z × Cn, flat on Z, z ∈ Z a closed point such that Fz ' E , and

ωF ,z : TzZ −→ Ext1
OCn

(E , E)

the Kodäıra-Spencer map of F at z. Then im(ωF ,z) ⊂ H.
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We have a canonical exact sequence

0 −→ H1(End(E)) −→ Ext1
OCn

(E , E) −→ H0(Ext1OCn
(E , E)) −→ 0.

Now we have

3.3.9. Theorem: If E is a generic quasi locally free sheaf of rigid type, then
Dred(E) = H1(End(E)).

from which we deduce

3.3.10. Corollary: If E is a quasi locally free sheaf of rigid type such that dimC(H1(End(E)))
is minimal (i.e is such that for every quasi locally free sheaf F having the same complete type as
E, we have dimC(H1(End(F))) ≥ dimC(H1(End(E)))), then we have Dred(E) = H1(End(E))
and E is smooth for reduced deformations.

3.4. Moduli spaces of semi-stable sheaves

(See [7], [8])

It follows from proposition 3.1.5 that the definition of a (semi-)stable sheaf on Cn does not
depend on the choice of a very ample line bundle on Cn: a pure coherent sheaf of dimension 1
on Cn is semi-stable (resp. stable) if and only if for every proper subsheaf F ⊂ E we have

Deg(F)

R(F)
≤ Deg(E)

R(E)
(resp. < ).

From now on, we suppose that deg(L) < 0 (otherwise the only stable sheaves on Cn are the
stable vector bundles on C).

Let R, D be integers, with R ≥ 1. Let M(R,D) denote the moduli space of stable sheaves on
Cn of generalized rank R and generalized degree D.

Let E be a quasi locally free coherent sheaf of rigid type on Cn, and supose that E is not locally
free. Then E is locally isomorphic to aOCn ⊕OCk

, for some integers a, k such that a ≥ 0 and
1 ≤ k < n. Let

E = E|C , F = Gk(E)⊗ L−k.
Then we have rg(E) = a+ 1 , rg(F ) = a, and

(G0(E), G1(E), . . . , Gn−1(E)) = (E,E ⊗ L, . . . , E ⊗ Lk−1, F ⊗ Lk, . . . , F ⊗ Ln−1) .

Hence

Deg(E) = k deg(E) + (n− k) deg(F ) +
(
n(n− 1)a+ k(k − 1)

)
deg(L)/2 .

Let δ = δ(E) = deg(F ), ε = ε(E) = deg(E) . According to proposition 3.3.7 the deformations
of E are quasi locally free sheaves of rigid type, and a(E), k(E), δ(E), ε(E) are also invariant by
deformation. Let

R = an+ k , D = kε+ (n− k)δ +
(
n(n− 1)a+ k(k − 1)

)
deg(L)/2 .

The stable quasi locally free sheaves of rigid type F such that a(F) = a, k(F) = k, δ(F) = δ,
ε(F) = ε correspond to an open subset of M(R,D), denoted by N (a, k, δ, ε).
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Using corollary 3.3.10 one can then prove

3.4.1. Proposition: The variety N (a, k, δ, ε) is irreductible, and the underlying reduced
subvariety N (a, k, δ, ε)red is smooth. If it is nonempty, then we have

dim(N (a, k, δ, ε)) = 1−
(n(n− 1)

2
a2 +k(n−1)a+

k(k − 1)

2

)
deg(L) + (g−1)(na2 +k(2a+ 1))

For every sheaf F of N (a, k, δ, ε)red, the tangent space of N (a, k, δ, ε)red at F is canonically
isomorphic to H1(End(F)) .

It should be noted that if R and D are fixed, then a and k are uniquely determined, but not δ
and ε. So M(R,D) can have several irreducible components.

We now give some results on the existence of (semi-)stable sheaves on Cn. For locally free
sheaves we have

3.4.2. Theorem: Let E be a vector bundle on Cn. If E|C is semi-stable (resp. stable), then
so is E.

If there exists a semi-stable vector bundle E of rank R and degree D, then we can write

R = rn, D = nd+
n(n− 1)

2
r deg(L)

(with r = rk(E|C), d = deg(E|C)). So this is only possible if R and D − n(n−1)
2

r deg(L) are
multiples of n. In this case the open subset ofM(R,D) corresponding to stable vector bundles

is nonempty, irreducible and smooth, of dimension 1 + nr2(g − 1)− n(n−1)
2

r2 deg(L) .

Now we consider the moduli spaces of proposition 3.4.1. We have

3.4.3. Theorem: If
ε

a+ 1
<

δ

a
<

ε− (n− k) deg(L)

a+ 1
then N (a, k, δ, ε) is nonempty.

4. Deformations of primitive multiple curves

4.1. Deformations in smooth curves

Only deformations of multiplicity 2 primitive multiple curves in smooth curves have been stud-
ied, by M. González in [15]. He obtained the

4.1.1. Theorem: Let Y be a smooth irreducible projective curve and let E be a line bundle
on Y . Assume that there is a smooth irreducible double cover π : X → Y with π∗OX/OY = E.

Then every ribbon Ỹ with underlying smooth curve Y , with conormal bundle E and arithmetic

genus pa(Ỹ ) is smoothable.
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Note that the conormal bundle E of Y in Ỹ is our line bundle L (cf. (2)).

4.1.2. Inadequacy of deformations in smooth curves – Let Cn a primitive multiple curve of
multiplicity n ≥ 2, underlying smooth curve C of genus g and associated line bundle L on C.
If one wants to study the deformations of moduli spaces of semi-stable sheaves together with
the deformations of Cn, deformations of Cn in smooth curves are inapropriate, because one
would need to consider only sheaves E such that R(E) is a multiple of n. To see this, consider
a flat family of projective curves π : C → S, parametrized by a neighbourhood of 0 in C, such
that π−1(0) = Cn and that π−1(z) is a smooth irreducible curve if z ∈ S\{0}. Let O(1) be
a very ample line bundle on C. Let z ∈ S\{0}, and γ the genus of Cz. From the equality

χ(OCz) = χ(OCn) we deduce that 1− γ = n(n−1)
2

deg(L) + n(1− g), and using this and the
equality χ(OCn(1)) = χ(OCz(1)), we obtain deg(OCz(1)) = n. deg(OC(1)). Now let E be a
coherent sheaf on C, flat on S. The Hilbert polynomials of E0 and Ee are the same, and so
are their leading coefficients, and we obtain rk(Ez) deg(OCz(1)) = R(E0) deg(OC(1)), whence
R(E0) = n.rk(Ez).

4.2. Primitive multiple curves coming from deformations of smooth curves

(See [9])

Let C be a smooth projective irreducible curve. Let T be a smooth curve and t0 ∈ T a closed
point. Let D → T be a flat family of projective smooth irreducible curves such that C = Dt0 .
Then the n-th infinitesimal neighbourhood of C in D is a primitive multiple curve Cn of
multiplicity n, embedded in the smooth surface D. We say that such a primitive multiple
curve comes from a family of smooth curves. In this case IC , the ideal sheaf of C in Cn, is the
trivial line bundle on Cn−1 (so the associated line bundle on C is OC). In fact we have

4.2.1. Theorem: Let Cn be a primitive multiple curve of multiplicity n, with underlying
smooth curve C. Then Cn comes from a family of smooth curves if and only if the ideal sheaf
of C in Cn is trivial on Cn−1.

The proof uses the parametrization of multiple curves given in 2.1 and theorem 2.2.3.

4.3. Deformations in reduced reducible curves

(See [10])

Let Y = Cn be a projective primitive multiple curve of multiplicity n ≥ 2, underlying smooth
curve C and associated line bundle L on C.

Let (S, P ) be a germ of smooth curve. Let k a positive integer. Let π : C → S be a flat
morphism, where C is a reduced algebraic variety, such that
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– For every closed point s ∈ S such that s 6= P , the fiber Cs has k irreducible components,
which are smooth and transverse, and any three of these components have no common
point.

– The fiber CP is isomorphic to Y .

4.3.1. Proposition: 1 – There exists a germ of smooth curve (S ′, P ′) and a non constant
morphism τ : S ′ → S such that, if π′ : C ′ = π∗C → S ′, C ′ has exactly k irreducible components,
inducing on every fiber C ′s′, s′ 6= P ′ the k irreducible components of C ′s′.
2 – We have k ≤ n.

We call π′ a reducible deformation of Y of length k. We say that π (or C) is a maximal reducible
deformation of Y if k = n.

We have then

4.3.2. Theorem: Suppose that π is a maximal reducible deformation of Cn. Then

1 – If C ′′ is the union of i > 0 irreducible components of C, and π′′ : C ′′ → S is the restriction
of π, then π′′−1(P ) ' Ci, and π′′ is a maximal reducible deformation of Ci.

2 – Let s ∈ S\{P}. Then the irreducible components of Cs have the same genus as C. More-
over, if D1, D2 are distinct irreducible components of Cs, then D1 ∩D2 consists of − deg(L)
points.

In particular, the n components C1, . . . , Cn of C are smooth surfaces, and the restrictions of π,
Ci → S, are flat families of smooth curves with the same fiber C over P .

4.4. fragmented deformations

(See [10])

We keep the notations of 4.3. Let π : C → S a maximal reducible deformation of Y . We call
it a fragmented deformation of Y if deg(L) = 0, i.e. if for every s ∈ S\{P}, Cs is the disjoint
union of n smooth curves (cf. theorem 4.3.2). The variety C appears as a particular case of a
glueing of C1, . . . , Cn along C:

4.4.1. Definition: For 1 ≤ i ≤ n, let πi : Ci → S be a flat family of smooth projective irre-
ducible curves, with a fixed isomorphism π−1

i (P ) ' C. A glueing of C1, · · · , Cn along C is an
algebraic variety D such that

- for 1 ≤ i ≤ n, Ci is isomorphic to a closed subvariety of D, also denoted by Ci, and D
is the union of these subvarieties.

-
∐

1≤i≤n(Ci\C) is an open subset of D.
- There exists a morphism π : D → S inducing πi on Ci, for 1 ≤ i ≤ n.
- The subvarieties C = π−1

i (P ) of Ci coincide in D.
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All the glueings of C1, · · · , Cn along C have the same underlying Zariski topological space.

Let A the initial glueing of the Ci along C. It is an algebraic variety whose points are the same
as those of C, i.e.

(
n∐
i=1

Ci)/ ∼ ,

where ∼ is the equivalence relation: if x ∈ Ci and y ∈ Cj, x ∼ y if and only if x = y, or if
x ∈ CiP ' C, y ∈ CjP ' C and x = y in C. The structural sheaf is defined by: for every open
subset U of A

OA(U) = {(α1, . . . , αn) ∈ OC1(U ∩ C1)× · · ·OCn(U ∩ Cn);α1|C = · · · = αn|C}.
For every glueing D of C1, · · · , Cn, we have an obvious dominant morphism A→ D. If follows
that the sheaf of rings OD can be seen as a subsheaf of OA.

The fiber D = A0 is not a primitive multiple curve (if n > 2): if IC,D denotes the ideal sheaf
of C in D we have I2

C,D = 0, and IC,D ' OC ⊗ Cn−1 . In fact we have

4.4.2. Proposition: Let D be a glueing of C1, · · · , Cn. Then π−1(P ) is a primitive multiple
curve if and only if for every closed point x of C, there exists a neighbourhood of x in D that
can be embedded in a smooth variety of dimension 3.

The situation is analogous to the following simpler situation: Consider n copies of C glued at 0.
Two extreme examples appear: the trivial glueing A0 (the set of coordinate lines in Cn), and
a set C0 of n lines in C2. We can easily construct a bijective morphism Ψ : A0 → C0 sending
each coordinate line to a line in the plane

Z

Y

X

z

y

x

ψ
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But the two schemes are of course not isomorphic: the maximal ideal of 0 in A0 needs n
generators, but 2 are enough for the maximal ideal of 0 in C0.

Let πC0 : C0 → C be a morphism sending each component linearly onto C, and
πA0 = πC0 ◦Ψ : A0 → C. The difference of A0 and C0 can be also seen by using the fibers of
0: we have

π−1
C0 (0) ' spec(C[t]/(tn)) and π−1

A0
(0) ' spec(C[t1, . . . , tn]/(t1, . . . , tn)2) .

Let D a general glueing of n copies of C at 0, such that there exists a morphism π : D → C
inducing the identity on each copy of C. It is easy to see that we have π−1(0) ' spec(C[t]/(tn))
if and only if some neighbourhood of 0 in D can be embedded in a smooth surface.

4.4.3. Properties of fragmented deformations – Let π : C → S be a fragmented deformation of
Y = Cn. Let I ⊂ {1, . . . , n} be a proper subset, Ic its complement, and CI ⊂ C the subscheme
union of the Ci, i ∈ I. then we have

4.4.4. Theorem: The ideal sheaf ICI of CI is isomorphic to OCIc .

In particular, the ideal sheaf ICi of Ci is generated by a single regular function on C. It is
possible to find such a generator such that for 1 ≤ j ≤ n, j 6= i, its j-th coordinate can be
written as απpj , with p > 0 and α ∈ H0(OS) such that α(P ) 6= 0. We can then suppose that
α = 1, and the generator can be written as

uij = (u1, . . . , um),

with
ui = 0, um = α

(m)
ij πpimm for m 6= i, α

(j)
ij = 1.

Let pii = 0 for 1 ≤ i ≤ n. The symmetric matrix (pij)1≤i,j≤n is called the spectrum of π (or C).
It follows also from the fact that ICi = (uij) that the ideal sheaf of C in Y = Cn is isomorphic
to OCn−1 . Conversely we prove using theorem 4.2.1

4.4.5. Theorem: If Y = Cn is a primitive multiple curve with underlying smooth curve
C such that the ideal sheaf IC of C in Y is trivial on Cn−1, then there exists a fragmented
deformation of Y .

4.4.6. n-stars and structure of fragmented deformations – A n-star of (S, P ) is a glueing S of
n copies of S at P , together with a morphism π : S → S which is an identity on each copy of
S. All the n-stars have the same underlying Zariski topological space S(n).

A n-star is called oblate if some neighbourhood of P can be embedded in a smooth surface.
This is the case if and only π−1(0) ' spec(C[t])/(tn).

Oblate n-stars are analogous to fragmented deformations and simpler.

Let π : C → S be a fragmented deformation of Y = Cn. We associate to it an oblate n-star
S of S: for every open subset U of S(n), OS(U) is the set of (α1, . . . , αn) ∈ OC(U) such that
αi ∈ OS(πi(U ∩ Ci)) for 1 ≤ i ≤ n. We obtain also a canonical morphism

Π : C −→ S.
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We can then prove, by using processes of contruction of fragmented deformations and oblate
stars by induction on n the

4.4.7. Theorem: The morphism Π is flat.

Hence Π is a flat family of smooth curves, with Π−1(P ) = C. The converse is also true, i.e.
starting from an oblate n-star of S and a flat family of smooth curves parametrized by it, we
obtain a fragmented deformation of a multiple primitive curve of multiplicity n.
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