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This paper describes an investigation of the acoustic properties of a low-porosity perfo-
rated plate in a compressible ideal inviscid fluid in the absence of mean flow. The study
shows in particular how the reflection and transmission coefficients of an acoustic plane
wave produced by such a device can be expressed in terms of the Rayleigh conductivity of
an isolated perforation by extending the approach introduced for the case of thick plates
by Leppington and Levine, Reflexion and transmission at a plane screen with periodi-

cally arranged circular or elliptical apertures, J. Fluid Mech., 1973, p.109-127. Lower and
upper bounds for the Rayleigh conductivity of a perforation in a thick plate are usually
derived from intuitive approximations and by reasoning based on physical observation.
The paper addresses a mathematical justification of these approaches, yielding accurate
bounds for various geometries, untilted or tilted, with a conical shape or an elliptical
section. Accurate estimates of the Rayleigh conductivity for a single perforation have
a direct impact on the precision of models used for predicting the acoustic behavior
of a perforated plate mainly on the basis of its reflection and transmission coefficients.
It is shown in this paper how asymptotic expansions can be used to derive first and
second-order accurate, albeit approximate expressions of these coefficients, as well as of
the effective compliance of the perforated plate.

Key words:

1. Introduction

Perforated plates and screens are widely used in engineering systems due to their
ability to absorb sound or to reduce sound transmission, in a variety of applications
including room acoustics and aeroacoustics (Ingard 1994; Beranek 1992). They can be
used as protective layers of porous materials (Allard 1993), to form sandwich structures in
aircraft fuselages (Abrahams 1999) or as facing layers of liners. In this case, the perforated
plates are either backed by honeycomb cells which are mounted on a rigid backplate (Maa
1998) or by a plenum acting as a resonant cavity in gas turbine combustion chambers
(Lefebvre 1999).
The reflection and transmission properties of such perforated panels can be modeled
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directly, as was done by Leppington & Levine (1973) by means of an integral equation
or later by the method of matched asymptotic expansions (see Bendali et al. (2012) and
Leppington (1990) for the case of elastic plates). The Leppington and Levine approach
was later extended by Howe (1980) and Dowling & Hughes (1992) to include a mean
tangential or bias flow to the perforated screen. In these papers, the asymptotic solution
is sought in the long wavelength limit, i.e., the size of each perforation is assumed to be
small in comparison with the distance between two neighbouring apertures, viewed in
turn as being much smaller than the wavelength of the impinging sound waves.
While the acoustic behaviour of an aperture can be modeled in various way, depending

on the actual problem being considered, the acoustic effect of perforated plates is usually
addressed by studying the acoustic behaviour of a single aperture in an infinite wall and
by designing a homogeneous model for the whole plate, mainly by means of an aver-
aging procedure. In the studies for aeronautical turbofan engines (see for example Tam
et al. 2008, for a recent review), the acoustic impedance is the relevant parameter, more
precisely, the ratio of the fluctuating pressure across the hole to the normal fluctuating
velocity through it. The real part of the impedance is denoted as a resistance and its
imaginary part as a reactance. On the contrary, with respect to gas turbines (see Andreini
et al. 2011; Scarpato et al. 2012, for instance), the acoustic behaviour of the aperture
is described in terms of its compliance, termed in this context ‘Rayleigh conductivity’,
which characterizes the fluctuating volume flow rate through the hole as a function of
the difference in unsteady pressure between each side of the plate.

The physical phenomenon involved in the acoustic behaviour of an aperture can be
broken down into three mechanisms. The first one is purely inviscid and is associated
with the sound radiation of the perforation and the distortion of the acoustic flow at the
plate surface. This flow can be assumed to be potential and governed by the linearized
Helmholtz equation, under the assumption that a characteristic size of the hole is small
in comparison with the acoustic wavelength. Consequently, no acoustic damping can
be predicted by this approach, which means that the impedance Z of the aperture is
purely imaginary, while its Rayleigh conductivity KR is purely real. This mechanism
is generally explained by considering that the flow within the hole behaves as a small
piston of air, whose thickness is larger than the neck depth because of inertial effect. This
amounts to increasing the mass of the vibrating air and is accounted for using correction
lengths, which need to be added to the plate thickness. For a circular aperture of radius
r, Rayleigh (1945) gave a lower and an upper bound for this end correction: πr/2 ≈ 1.57r
and 16r/3π ≈ 1.70r. Later, Morfey (1969) derived approximated expressions for openings
of arbitrary shape at low frequencies. The second mechanism is linked to viscous effects
occurring within the viscous boundary layers which develop at the perforation’s inner
walls, and around the perforation edges at the plate surface. This induces a real part
for the acoustic impedance (i.e., an imaginary part of the Rayleigh conductivity), which
is linked to an absorption of acoustic energy. Viscous effects also modify the imaginary
part of the impedance, which is usually modeled by viscous end corrections (Melling
1973; Maa 1998).
Finally, the third mechanism consists of vortex shedding, which converts acoustical

into mechanical energy, subsequently dissipated into heat. This may be due to nonlinear
effects, when high-amplitude sound waves impinge on the aperture in the absence of
mean flow (Cummings 1984), or to the effect of mean flow. In the presence of a grazing
mean flow, empirical (Guess 1975; Kirby & Cummings 1998), semi-empirical (Cummings
1986, 1987) or analytical (Howe 1996) models are used to find the impedance or the
Rayleigh conductivity of the aperture. It is shown that the resistance induced by a
high-speed grazing flow is much larger than the viscous resistance obtained without
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flow, consequently an increased loss of acoustic power is generally observed. However the
phenomena involved are quite complex and has not been accurately and comprehensively
modelled. On the contrary, when the perforation is subject to a bias flow, even when
mechanisms similar to the grazing case are involved, Howe (1979) developed an analytical
model for the aperture Rayleigh conductivity which proved to be quite reliable (Hughes
& Dowling 1990; Jing & Sun 1999; Eldredge & Dowling 2003; Bellucci et al. 2004; Mendez
& Eldredge 2009; Scarpato et al. 2012). It consists in multiplying the no-flow Rayleigh
conductivity of a zero-thickness circular aperture (taken equals to KR = 2r, i.e., an
inertial end correction of πr/2) by a complex function of the mean bias flow Mach
number. The Reynolds number within the perforation is assumed to be large enough so
that viscous effects can be neglected except near the edges, where flow separation takes
place. Later, this model was improved to take into account the perforation thickness,
by adding it to the inertial end correction (Jing & Sun 2000) or by modifying the flow-
dependent function (Luong et al. 2005). However these expressions only deal with the
simplified geometry of a non-tilted circular aperture, while in actual combustors the
apertures are tilted downstream and their cross-section in the plate plane is elliptical.
Recent papers have numerically (Eldredge et al. 2007) or experimentally (Andreini et al.
2011) investigated such a realistic geometry, by using Howe’s model with a modified
thickness and by neglecting some other geometric effects. Finally, only a few studies have
addressed the acoustic response of a perforation in the complex configuration where an
exiting bias flow interacts with a grazing flow, except for the work of Sun et al. (2002),
who attempted to correlate experimental results with an empirical model.
If the distance between two successive holes of a perforated plate is sufficiently great

when compared to the size of each perforation and if the ratio of this distance to the wave-
length is sufficiently small, the device behaves acoustically as though each perforation
were isolated. In this case, the Rayleigh conductivity (or impedance) of a single aperture,
as defined above, is used to define an expression for the compliance (or impedance) of
a homogeneous screen of such apertures, by assuming that the fluctuating volume flux
through each hole is uniformly distributed over each cell of the array of perforations (see
Eldredge & Dowling 2003; Hughes & Dowling 1990; Melling 1973; Maa 1998; Atalla &
Sgard 2007). The layout of the array of holes is not involved in any way. When the poros-
ity σ of the perforated plate is greater than about 4%, interaction between the apertures
can no longer be neglected. The problem of acoustic interaction was solved by Fok (1941)
for the case of an infinitely thin plate with circular perforations. He derived a modified
Rayleigh conductivity defined as K ′

R = 2rψ(
√
σ). Melling (1973) used Fok’s function ψ

for modifying the inertial end correction (taken equal to 16r/3π in his model) while other
authors (Guess 1975; Beranek 1992; Allard 1993) preferred to use empirical expressions.
Recently, interaction effects were studied numerically and experimentally by Lee et al.

(2007) for the case of perforated plates with a bias flow.
In this paper, we focus on a few questions arising from the previous discussion. First,

it was shown that all the impedance or conductivity models are based on the inertial end
corrections given by Rayleigh (1945) for a single circular aperture in an infinitely thin
plate. It should be noted that in room acoustics and liner applications, it is the 16r/3π
bound which is used, seemingly introduced by Ingard (1953). On the contrary, Howe’s
model (Howe 1979) with an end correction of πr/2 seems to be the one most widely
used in papers dealing with gas turbines. The aim of the present paper is to provide a
rigorous mathematical framework in order to derive accurate bounds of the inertial end
correction. This will makes it possible to determine these bounds for complex geometries
of the perforation, especially when the aperture is thick, tilted and has a circular bore,
as in gas turbine problems. Finally, we shall see how the Leppington and Levine method
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Figure 1: The geometry of the perforated screen

can be adapted to deal with such configurations while at the same time obtaining some
second-order terms for approximation of the effective compliance of the plate.

2. Description of the perforated plate and governing equations

Consider the situation shown in figure 1 of a perforated screen in a compressible ideal
inviscid fluid in the absence of mean flow. A time-periodic acoustic plane wave is obliquely
incident to an infinitely rigid plate of thickness h that lies in the plane x3 = 0 (see
figure 1a) at an angle Φ to the normal direction to the plate, with −π/2 < Φ < π/2.
Throughout the paper, the coordinate system x is decomposed into the two-dimensional
variable x′ = (x1, x2) and the coordinate along the normal to the plate x3. The pressure
variation of the incident wave is given by

pi = exp (iκ(τ ′
· x′ − x3 cosΦ)− iωt) (2.1)

with τ = (τ ′,− cosΦ) the cosine directors of the direction of propagation. The wavenum-
ber κ = ω/c0 expresses the ratio of the angular frequency ω to the speed of sound c0.
At a great enough distance from the perforated plate, the scattered pressure field can be
decomposed into a reflected wave

pr = R exp (iκ(τ ′
· x′ + x3 cosΦ)− iωt) (2.2)

and a transmitted one

pt = T exp (iκ(τ ′
· x′ − x3 cosΦ)− iωt) (2.3)

where R and T are complex constants, which depend on the acoustic properties of the
perforated plate. The time multiplicative factor e−iωt is hereafter suppressed by linearity.

In the fluid domain, the pressure field satisfies the homogeneous Helmholtz equation
and the cancellation of normal velocity on the rigid walls, equivalently expressed from
the linearized momentum equation, by cancelling the pressure normal derivative. Thus,
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Figure 2: Schematic view of the lattice unit cell. The aperture is depicted by the blue
dashed area, the walls of the plate are plotted in thick black lines.

the acoustic wave is governed by the following boundary-value problem:




∇2p+ κ2p = 0 in the fluid domain
∂np = 0 on the rigid walls
p = pi + pr as x3 → +∞
p = pt as x3 → −∞

(2.4)

The perforated plate contains a two-dimensional doubly-periodic lattice of arbitrary-
shaped apertures, with centres at the points

ξm = m1ξ1 +m2ξ2, (2.5)

where m = (m1,m2) is a pairing of two integers and ξi are the periodicity vectors of the
lattice (see figure 1b). The surface of the unit lattice cell is A = |ξ1×ξ2| and the spacing
between two successive perforations is denoted by L = max (|ξ1|, |ξ2|).

The acoustic wavelength 2π/κ is assumed to be large in comparison with the aperture
size, however the spacing parameters |ξ1| and |ξ2| are only required to be less than half
a wavelength (see (Bendali et al. 2012))

L < λ/2. (2.6)

This ensures that only the fundamental mode, corresponding to m1 = m2 = 0, is pro-
pagating for any incident wave. All the short-range interaction effects between the aper-
tures are neglected, i.e. acoustically, the plate is assumed to be of low-porosity.

As depicted in figure 2, each aperture of the perforated plate consists of a bounded
domain Ω located between the two planes x3 = −h/2 and x3 = h/2. The lower and
upper openings of the perforation are denoted by D− and D+ and its lateral part by
Σ. It is convenient to consider the decomposition of domain U within the unit cell into
non-overlapping domains, filled by the fluid consisting of, respectively, the lower and
upper semi-infinite tubes U− and U+ and the hole Ω. The lateral parts of the boundaries
of, respectively, U−, U+ and Ω will be denoted as ∂U−, ∂U+ and ∂Ω. Conveniently, we
consider the following local coordinate systems of respectively U

±:

x± = (x′
±, x

±
3 ) with x+3 > 0 and x−3 6 0. (2.7)

Because the acoustic wavelength is large as compared with the aperture size, each
aperture can be considered as acoustically compact. This means that the local motion
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through an aperture is assumed to be incompressible:

∇ · v = 0 in Ω, (2.8)

where v is the acoustic velocity field. As a result, the governing equations (2.4) can be
expressed in terms of a potential:





∇2p = 0 in U

∂np = 0 on the rigid walls
lim|x|→±∞ p = P±,

(2.9)

where P+ and P− are limiting values of pressure at big distance from the aperture. By
identification with (2.1), (2.2) and (2.3), we have P+ = pi + pr and P

− = pt. Under this
assumption, the Rayleigh conductivity of the aperture is defined as (Howe 1998):

KR =
iωρ0Q

P+ − P−
, (2.10)

where ρ0 denotes the mean density of the fluid and Q is the volume flux through the
aperture in the x3 direction : Q =

∫
D+

v3 dx1dx2 =
∫
D−

v3 dx1dx2. Using the linearized

momentum equation, the Rayleigh conductivity can be expressed as a function of pressure
only:

KR =
1

P+ − P−

∫

D+

∂x3
p dx′. (2.11)

3. Rayleigh conductivities for thick plates with holes having complex

geometries

In this section, we propose a rigorous method for estimating the Rayleigh conductivity
of thick plates. This method matches Howe’s estimates for cylindrical and conical untilted
perforations (Howe 1998), but also allows an extension to other geometries, such as a
tilted cylindrical perforation for instance. As in Rayleigh’s (Rayleigh 1945) and Howe’s
(Howe 1998) methods, the main ingredient is a variational theory linked to minimization
of kinetic energy, but here both the dual Dirichlet and Kelvin variational principles come
into play. This theory arises in Lagrangian and Hamiltonian mechanics and is of great
importance in several fields, especially in mathematical modelling (Courant & Hilbert
1953, Chap 4, Sect 9) to obtain lower and upper bounds for potential and kinetic energies,
in optimization (Luenberger 1997) to derive the dual formulations, and in numerical
analysis (Roberts & Thomas 1991, Chap 1) for assessing the validity or the accuracy of a
numerical solution. Laurens et al. (2012) derived a rigorous mathematical framework for
applying this theory to the thick perforated plate configuration. Here, the main points
of this theoretical work are summarized, without giving details of the mathematical
proofs. Our focus is rather on the results obtained for several geometrical configurations
including in particular the case of elliptical apertures which were not covered in Laurens
et al. (2012).

3.1. A brief description of the theory

First of all, the boundary-value problem (2.9) is converted in a more condensed form
through the change of variable p′ = (p− (P+ + P−)/2) / (P+ − P−). For simplicity, in
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what follows the prime will be removed. This yields:




∇2p = 0 in U

∂np = 0 on the walls

p± = limx3→±∞ p = ± 1/2 on U±.

(3.1)

The Rayleigh conductivity (2.11) can now be defined as:

KR =

∫

D+

∂x3
p dx′. (3.2)

Consider the functional

J(ψ, q) =

∫

U

|q(x)−∇ψ(x)|2 dx, (3.3)

where (ψ, q) run over adequate spaces of functions H1/2(U) and W(U), where H1/2(U) is
the space of functions ψ so that ∇ψ is square integrable in U and with traces at infinity
ψ± = ±1/2, and W(U) is the space of square integrable vectorial functions q so that
∇ · q = 0 in U and q · n = 0 on the boundary of U. The functional J(ψ, q) can also be
written in the form:

J(ψ, q) =

∫

U

|q(x)|2 dx+

∫

U

|∇ψ(x)|2 dx− 2

∫

U

∇ψ · q(x) dx (3.4)

Laurens et al. (2012) proved that the following relation holds, thanks to the properties
of the spaces of functions H1/2(U) and W(U):

∫

U

∇ψ · q(x) dx =

∫

D+

q3 dx
′ =

∫

D−

q3 dx
′. (3.5)

Thus, J can be decomposed into J(ψ, q) = J1(ψ)− J2(q) with

J1(ψ) =

∫

U

∣∣∣∇ψ(x)
∣∣∣
2

dx and J2(q) = 2

∫

D+

q3(x) dx
′ −
∫

U

|q(x)|2 dx. (3.6)

The Kelvin and Dirichlet principles are based on performing this decomposition and
considering the dual expressions for the energy J1(ψ) and J2(q).
Obviously, as p is the solution to system (3.1), it belongs to H1/2(U), ∇p belongs to W(U)
and J(p,∇p) = 0. Moreover, equations (3.2) and (3.5) show easily that J1(p) = KR, which
directly leads to KR = J1(p) = J2(∇p). It can then be established (see Laurens et al.

2012) that J1 reaches its unique minimum at p and J2 its unique maximum at ∇p, which
leads to the following lemma.

Lemma 1. The Rayleigh conductivity KR can be obtained equivalently in one of the

following forms:




Dirichlet principle: KR = minψ∈H1/2
J1(ψ)

with J1(ψ) =

∫

U

∣∣∣∇ψ(x)
∣∣∣
2

dx

Kelvin principle: KR = maxq∈W J2(q)

with J2(q) = 2

∫

D+

q3(x) dx
′ −
∫

U

|q(x)|2 dx.

(3.7)

This lemma shows that lower and upper bounds for the Rayleigh conductivity can be
obtained for any arbitrary geometry of the perforation, provided that the spaces H1/2

and W can be expressed accurately enough and the functionals J1(ψ) and J2(q) explicitly
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(a) Cylindrical aperture of radius R

R+R− R(x3)

x3 = h/2x3 = −h/2

ϕ

x3
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(b) Conical aperture of radius R(x3), with
0 6 ϕ < π/2

a or b

x3 = h/2x3 = −h/2

x3

x1

x2

(c) Elliptical aperture with major radius a
and minor radius b

Figure 3: Geometries of untilted perforations

evaluated. In Laurens et al. (2012), the Rayleigh conductivity is calculated for the case of
untilted cylindrical and conical apertures, as well as for a tilted cylindrical perforation. In
what follows, results for the Rayleigh conductivity bounds are reviewed without giving all
the mathematical steps, and are expressed in terms of end corrections. Additional cases
of untilted and tilted apertures with an elliptical section are also addressed. Detailed
expressions of functions ψ and q used to obtain bounds for the Rayleigh conductivity for
each geometry are given in appendix A.

3.2. Untilted perforations

In this section, various geometries are considered. They are displayed in figure 3 and
denoted as untilted apertures since their axis of symmetry is perpendicular to the plate
surface.

3.2.1. Circular hole

The case of a circular hole (see figure 3a) was already addressed by Howe (1998). He
established the following bounds for the Rayleigh conductivity:

πR2

h+ 16R / 3π
6 KR,cyl 6

πR2

h+ πR/2
. (3.8)

Identical values to Howe’s ones are obtained using lemma 1. It is instructive to express
these relations in terms of the length l = s/KR, where s is the area of the aperture.
This length can be interpreted as the effective length of a slug of fluid of cross section
s involved in the motion through the aperture. The conductivity of the channel alone is
πR2/h, for which l would be h. Thus, equation (3.8) can be expressed in terms of an end
correction l′, defined by l = h+ l′, so that l′ is the amount by which h must be increased
to account for the contributions of the openings. The end correction for the cylindrical
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case is therefore:
πR

2
6 l′cyl 6

16R

3π
. (3.9)

It should be noted that this end correction can be directly linked to the specific acoustic
impedance of the perforation, defined in the notation of section 2 as:

z =
1

ρ0c0

P+ − P−

−v3
(3.10)

As proposed by Jing & Sun (2000), the impedance can indeed be decomposed into the
impedance induced by the end correction ze = −iκl′ and the added inertial term −iκh:

z = ze − iκh = −iκ(l′ + h) (3.11)

3.2.2. Conical hole

In industrial applications, perforated plates are often manufactured by laser drilling.
There may also be tapered holes see Yu et al. (1999), chapter 4, for instance, as holes on
the drilled entry side are larger than those on the drilled exit side. This kind of hole can
be characterized as a conical perforation defined by:

Ω =
{
x ∈ R

3 | (x1, x2) ∈ DR(x3) and − h/2 6 x3 6 h/2
}

(3.12)

where DR(x3) is the disc of radius R(x3) that varies linearly from R− to R+ (see figure
3b). Lemma 1 gives:

πR−R+

h+ 8
3π

(
R+ +R−

)
+ 1

2h

(
R+ −R−

)2 6 KR,con 6
πR−R+

h+ π
4

(
R+ +R−

) . (3.13)

The bounds (3.13) have to be compared with Howe’s estimates (Howe 1998, p.359). There
is a missed factor 2 in the last term in the denominator of the lower bound for Howe’s
estimate, apparently a typing error.
These expressions for the Rayleigh conductivity show that, as in the cylindrical case, the
plate thickness h can be corrected. Bounds for the end correction corresponding to an
effective section s = πR−R+ can be stated as follows:

π

4

(
R+ +R−

)
6 l′con 6

8

3π

(
R+ +R−

)
+

1

2h

(
R+ −R−

)2
. (3.14)

3.2.3. Hole with an elliptical aperture

The semi-major and semi-minor axes of the elliptical aperture are respectively a and
b while the thickness of the plate is once again assumed to be h (see figure 3c):

Ω =

{
x ∈ R

3

∣∣∣∣
x21
a2

+
x22
b2

< 1 with a > b and − h

2
< x3 <

h

2

}
. (3.15)

Applying lemma 1 leads to:

πab

h+ 16b
3π

K(ε)
K(0)

6 KR,ell 6
πab

h+ πb
2
K(ε)
K(0)

, (3.16)

with ε =
√

1− b2/a2 the eccentricity of the ellipse andK(ε) the complete elliptic integral
of the first kind defined by:

K(ε) =

∫ π/2

0

(
1− ε2 sin2 φ

)−1/2
dφ. (3.17)
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x3 = s+

R

x3 = s−

θ
x3

x1

x2

Figure 4: Aperture tilted at an angle θ to the x3 axis. The cross section can be either a
disc of radius R or an ellipse of major and minor axis (a, b) and −π/2 < θ < π/2.

As explained by Morfey (1969), the upper bound of equation (3.16) was found by Lord
Rayleigh (Rayleigh 1945, chapter 1, section 304) for an infinitely thin plate (h = 0).
The lower bound expression is, to the best of the authors’ knowledge, entirely new. The
results of the present study can once again be expressed in terms of an end correction.
With an effective section s = πab, the bounds for this end correction are:

πb

2

K(ε)

K(0)
6 l′ell 6

16b

3π

K(ε)

K(0)
. (3.18)

3.3. Tilted perforations

In cooling liners used in combustion chambers, apertures are not perpendicular to the
plate, but are tilted at an angle to the x3 axis that is often around 60°(see Eldredge et al.
2007; Andreini et al. 2011). A diagram of this kind of geometry is shown in figure 4. Kelvin
and Dirichlet principles are now used to derive bounds for the Rayleigh conductivity of
these configurations, and in particular, an estimate for the end correction for such tilted
geometries.

3.3.1. Tilted perforation with a circular section

A cylindrical perforation with a θ tilting angle can be described as follows:

Ω =
{
x ∈ R

3 | (x̂1(x), x2) ∈ DR and − h/2 < x3 < h/2
}
, (3.19)

with

x̂1(x) = x1 − (x3 + h/2) tan θ, (3.20)

and −π/2 < θ < π/2. The perforation is chosen so that it cuts any plane parallel to
the plate along a circle of radius R. Lemma 1 directly yields the following bounds of the
Rayleigh conductivity.

πR2

h
cos2 θ +

16R
3π

6 KR,tilted 6
πR2

h
cos2 θ

/(
1 + 16R

3πh sin2 θ
)
+ πR

2

. (3.21)

As expected, the untilted cylinder bounds (3.8) are recovered when θ = 0. Moreover,
equation (3.21) shows that the tilting angle has a non-intuitive influence on the Rayleigh
conductivity of the perforation. Indeed, the bounds for the effective length of fluid motion
associated with section s = πR2 are given by:

h

cos2 θ

/(
1 +

16R

3πh
sin2 θ

)
+
πR

2
6 lR,tilted 6

h

cos2 θ
+

16R

3π
. (3.22)
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This length can be decomposed into an end correction l′ and an effective height h̃ such
that:

l = h̃+ l′ =
h

cos2 θ
+ l′. (3.23)

The effective height h̃ is hence quite different from the intuitive effective thickness of the
perforation h/ cos θ that has been found until now in the literature (Andreini et al. 2011;
Mendez & Eldredge 2009; Eldredge et al. 2007). Applying Kelvin and Dirichlet principles
in a rigorous way has thus led to a result that could not be obtained heuristically. Finally
equation (3.21) gives the following bounds for the end correction:

f(h) +
πR

2
6 l′R,inc 6

16R

3π
, (3.24)

with f(h) = − 16R
3π tan2 θ

/(
1 + 16R

3πh sin2 θ
)
6 0.

3.3.2. Tilted perforation with an elliptical section

The general case of a tilted perforation with an elliptical cross-section is now addressed.
This case is more realistic, since it is representative of genuine perforations. Indeed, when
a drill bit of radius R is used for boring holes tilted by θ degrees from the vertical, it
results in a perforation which cuts any parallel plane to the plate along an ellipse of major
axis (in the tilt direction) 2a = 2R/ cos θ and minor axis (in the transversal direction)
2b = 2R. We then get:

Ω =

{
x ∈ R

3

∣∣∣∣
x̂21
a2

+
x22
b2

< 1 with a > b and − h

2
< x3 <

h

2

}
, (3.25)

with x̂21 defined as in (3.20). Kelvin and Dirichlet principles then give the following bounds
for the Rayleigh conductivity:

πab
h

cos2 θ +
16b
3π

K(ε)
K(0)

6 KR,ell,inc 6
πab

πb
2
K(ε)
K(0) +

h
cos2 θ

/(
1 + 16a2

3πbh
D(0)
D(ε) sin

2 θ
) , (3.26)

with D(0) = π/4 and

D(ε) =

∫ π/2

0

sin2 φ√
1− ε2 sin2 φ

dφ =
K(ε)− E(ε)

ε2
, (3.27)

where E(ε) is the complete elliptic integral of the second kind:

E(ε) =

∫ π/2

0

(
1− ε2 sin2 φ

)1/2
dφ. (3.28)

For a = b/ cos θ, expression (3.26) becomes simpler

πab
h

cos2 θ +
16b
3π

K(ε)
K(0)

6 KR,ell,inc 6
πab

πb
2
K(ε)
K(0) +

h
cos2 θ

/(
1 + 16b

3πh
D(0)
D(ε) tan

2 θ
) . (3.29)

Once again, these results show that the modified effective height h̃ = h/ cos2 θ is the
most relevant parameter. The end correction, defined by considering the effective section
s = πab can be bounded as follows:

πb

2

K(ε)

K(0)
+ g(h) 6 l′ell,inc 6

16b

3π

K(ε)

K(0)
, (3.30)
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with g(h) = − 16b
3π

D(0)
D(ε)

/(
sin2 θ + 16b

3π
D(0)
D(ε)

cos2 θ
h

)
6 0. As expected, setting θ = 0 yields

the untilted elliptical aperture case (3.18) if the eccentricity ε is kept constant, or the
untilted cylindrical case (3.9) if the perforation remains circular.
However, since for this specific geometry we have πab = πR2/ cos θ, the bounds (3.26)

for the Rayleigh conductivity can also be expressed as follows:

πR2

h
cos θ +

16R
3π

K(ε)
K(0) cos θ

6 KR,ell,inc 6
πR2

πR
2
K(ε)
K(0) cos θ +

h
cos θ

/(
1 + 16R

3πh
D(0)
D(ε) tan

2 θ
) ,

(3.31)
Then, if we consider the section along the tilted axis x3 cos θ (which is circular with

an area πR2), as the reference section instead of the effective section πab = πR2/ cos θ,
Eq. (3.31) shows that the effective height, which then has to be considered, is h/ cos θ
instead of h/ cos2 θ as in (3.26). Other pairs (section, height) can be considered, but the
previous two, i.e., (πab,h/ cos2 θ) and (πR2,h/ cos θ), are the most natural ones.

3.4. Numerical results

In this section, the influence of the geometry on the Rayleigh conductivities and end
corrections is numerically investigated for some generic configurations.

3.4.1. Generic perforated plate

The multiperforated plate under consideration is among those typically involved in
combustion chambers. Such plates have quite a low porosity (≈ 2%). Consequently the
individual apertures can be assumed to be coupled only through long range interactions
which means that the results of sections 3.2 and 3.3 apply. The plate thickness is h = 2mm
and the characteristic size of the perforations is r = 0.225mm. This length will be the
radius R of the section of a circular perforation, the small radius R− of the conical
perforations, and the semi-minor axis b of the section of the elliptical perforations.
The reference values for the Rayleigh conductivity and the end correction will be

respectively the upper and lower bounds of these parameters, corresponding to a untilted
cylindrical hole:

Kref
R =

πr2

h+ πr/2
, lref = πr/2 (3.32)

In particular, we have h = 5.66 lref .
The results for the untilted perforations are plotted in figures 5 and 6, for the end

corrections and Rayleigh conductivities respectively. Figure 5 shows that significant de-
viations from the cylindrical case are obtained for the end correction, even for small
angles of the conical aperture or a small elongation of the elliptical section.

These variations are large enough to imply a significant change on the Rayleigh con-
ductivity (see figure 6), even when the plate thickness h is much larger than the size of
the apertures.
For tilted circular or elliptical apertures, it has been previously shown that the plate

thickness has to be taken into account in a non-intuitive way, by considering an effec-
tive thickness of h/ cos2 θ rather than the length of the centerline of the tilted aperture
h/ cos θ. Differences between these two expressions are shown in figure 7 for a tilting an-
gle varying from 0 to the conventional 60° value. It is worth noting that for large tilting
angles the inertial contribution h̃ is much greater than for the untilted case.
End corrections and Rayleigh conductivities are plotted in figures 8 and 9, respectively.

Major variations occur when the tilting angle is increased. A divergence between lower
and upper bounds of the end corrections is observed for large values of these angles.
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(a) Scaled end correction versus the angle of
the conical aperture in degrees

(b) Scaled end correction versus the ratio of
the semi-major to the semi-minor axis of the
ellipse

Figure 5: Scaled end corrections for the conical and elliptical untilted apertures.

(a) Scaled Rayleigh conductivity versus the
angle of the conical aperture, in degrees

(b) Scaled Rayleigh conductivity versus the
ratio between the major and minor radii of
the ellipse

Figure 6: Scaled Rayleigh conductivities for the conical and elliptical untilted apertures.

Figure 7: Scaled effective thickness h̃. Correct expression h̃ = h/ cos2 θ in solid line,
intuitive expression h̃ = h/ cos θ in dashed line. The tilting angle θ is in degrees.
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(a) Cylindrical aperture (b) Elliptical aperture

Figure 8: Scaled end corrections for the cylindrical and elliptical tilted apertures. The
tilting angle θ is in degrees.

(a) Cylindrical aperture (b) Elliptical aperture

Figure 9: Scaled Rayleigh conductivities for the cylindrical and elliptical tilted apertures.
The tilting angle θ is in degrees.

However, this is mostly due to the fast increase of h̃ which plays a prominent role in this
case. Indeed, figure 9 shows that the lower and upper bounds of the Rayleigh conductivitiy
do not differ significantly.
All these results show that geometrical features greatly affect the Rayleigh conduc-

tivities or end corrections of apertures, and thus cannot be discarded if the effects of
this parameter on the acoustic properties of the plate are to be taken into account accu-
rately. Of course, this is only true if the potential component of the plate impedance is
significant, which is not the case for liners in grazing flow ducts, for instance. However,
the potential form of the Rayleigh conductivity is the basis for models used in bias flow
configurations, and an accurate description of it can be of great help, as will be shown
in the next section.

3.4.2. Eldredge et al. numerical simulations

The influence of the geometrical features can also be illustrated from the numerical
simulations of Eldredge et al. (2007) who performed incompressible large-eddy simula-
tions of the acoustic response of a turbulent flow through a multiperforated liner. The
apertures had a circular bore of diameter 2R = 5mm, a tilting angle θ = 60o, and a
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Tilted cylinder Tilted ellipse
Eldredge et al. expression Eldredge et al. expression

with l = h/ cos θ with l = 0.75h/ cos θ

K−

R
4.44 10−4 8.57 10−4

8.21 10−4 10.00 10−4

K+

R
5.73 10−4 14.18 10−4

Table 1: Bounds of the Rayleigh conductivity obtained from expressions established in
section 3.3, compared with the values used in the paper by Eldredge et al. .

thickness h = 10mm. Thus, at the bottom and top of the plate, the holes were elliptical
with a major axis of 10mm and a minor axis of 5mm. However, the cross section along
the tilted axis was circular with a cross-section of πR2. This case corresponds exactly to
the configuration studied in section 3.3.2.
We recall that, for this configuration, if the reference section is chosen to be πR2, the

effective length to be considered is h/ cos θ. This is the value used by Eldredge et al. for
calculating the Rayleigh conductivity of the hole, but they applied it with a modified
version of Howe’s model in which the no-flow Rayleigh conductivity was in fact the
upper bound of the untilted cylinder bounds (3.8). The model is somewhat close to the
simulation results, but the authors obtained a better agreement by taking the effective
height to be l = 0.75h/ cos θ. They explained that this decrease of the effective l may be
due to the fact that the radius of the aperture is effectively larger than R because of the
elliptical intersection of the aperture with the top and bottom of the plate.

Table 1 summarizes the values of the no-flow Rayleigh conductivity proposed by El-
dredge et al. and the analytical bounds obtained using the expressions established in
section 3.3. The Eldredge et al. value obtained with l = 0.75h/ cos θ fits perfectly be-
tween the bounds for the tilted ellipse given by (3.31), and is quite close to the mean
value of the bounds KR = (K−

R+K+
R )/2 = 11, 375.10−4. On the contrary, their first value

obtained with l = h/ cos θ, is lower than the lower bound for a tilted ellipse and greater
than the upper bound for a tilted cylinder of radius R given by (3.21). This points out
the importance of the tilted angle in the computation of the Rayleigh conductivity. The
coefficient 0.75 introduced by Eldredge et al. corrects empirically the difference between
the bounds for a untilted cylinder (3.8) and for a tilted aperture with elliptical section
(3.31). The bounds (in 3.31) therefore yield an increased accuracy of the Rayleigh con-
ductivity approximation, by taking into account the dependency on the parameters a
and b of the ellipse, as well as on the tilted angle θ.
These results confirm that taking the geometry of the aperture into account correctly

is advantageous. Of course, the question of the modification of the no-flow Rayleigh
conductivity in the presence of a bias flow is still open. Strategies used until now, which
consist in modifying this value by a flow dependent function (either as did by Jing &
Sun (2000) or in a slightly different way by Luong et al. (2005)) may still be relevant.

4. Effective acoustic compliance of a low-porosity perforated plate

In this section, we introduce a method for determining the reflection and transmission
coefficients of a low-porosity perforated plate.
It is an adaptation of an approach previously used by Leppington & Levine (1973)

for dealing with thin perforated plates. Actually, the method devised by Leppington and
Levine is extended here in several directions. The plate is no longer assumed to be thin
and the perforations can be of a rather arbitrary shape. Since the procedure is in fact a
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method for approximating the reflected and transmitted waves, the order of the approxi-
mation is specified thus making it possible to derive second-order asymptotic expansions
of the acoustic wave. As mentioned above, it is worth recalling that the perforated plates
under consideration in this study are of low-porosity so that a characteristic size d of a
perforation can be assumed to be negligible when compared with the spacing L between
two neighboring perforations as well as the acoustic wavelength.
The analytical expressions obtained rely upon the Rayleigh conductivity as a key

parameter. The main mathematical tools are asymptotic expansions, integral equations,
and the lattice sum theory for the Helmholtz equation (Linton 2010). The reflection and
transmission coefficients are moreover used to derive an effective compliance for the plate.

4.1. Scattering problem and Floquet’s modes

Consider the configuration shown in figure 1a of an acoustic plane wave incident upon a
perforated plate. As is well-known in lattice theory (see, e.g., Nedelec & Starling (1991),
Linton (2010)), the total wave satisfies the following quasi-periodic conditions resulting
from the periodicity properties of the array and the fact that translating the incident
wave by a vector ξm, linked to the periodicity properties of the lattice (see (2.5)), simply
shifts the phase according to the following formula

p(x+ ξm) = eiβ·ξmp(x), (4.1)

where β · ξm is the scalar product of the Bloch vector β = κτ ′ and ξm. In the following,
when saying that p satisfies periodic boundary conditions, we mean that p, as well as any
of its derivatives, satisfies (4.1). It is therefore sufficient to restrict the determination of
the wave p to the unit cell displayed in figure 2.
This determination requires a radiation condition on the reflected wave

(
p − pi

)
|U+

and the transmitted one p|U−, which can be set in terms of a series of Floquet modes
(see Bendali et al. 2012; Linton 2010; Nedelec & Starling 1991, for instance).
As a result, the wave reflected and transmitted by the multiperforated plate can be

specified in the unit cell by solving the following boundary-value problem:
{

∇2p+ κ2p = 0 in U

∂np = 0 on the plate,
(4.2)

together with outgoing radiation conditions and periodicity properties (4.1) on the ficti-
tious boundaries ∂U±, for p and its derivatives.

4.2. A domain decomposition approach

A boundary integral equation formulation is used on U±. In the following, for the sake
of clarity, the plate is assumed to be located between x3 = −h/2 and x3 = h/2.
In Leppington & Levine (1973), the main tool for dealing with the wave outside the

perforations is the quasi-periodic Green’s kernel for the Helmholtz equation GΛ:

GΛ(x,y) =
∑

m

eiβ·ξmG((x′ − y′, |x3|) , ξm), (4.3)

with x = (x′, x3), y = (y′, 0). The underlying kernel

G(x, ξ) =
eiκ|x−ξ|

4π|x− ξ| , (4.4)

is the standard Green one yielding the outgoing solution to the Helmholtz equation. The
solution of the scattering problem when the plate is considered as perfectly reflecting can



17

be explicitely written as:
{
p0(x) = pi (x

′, x3) + pi (x
′,−x3) for x3 > h/2

p0(x) = 0 for x3 6 −h/2. (4.5)

Then, the solution to the boundary-value problem posed in the previous section can be
expressed, outside the perforation, in terms of a single integral equation written in local
coordinates:

p±(x±) = p0(x±)∓
∫

D±

2GΛ(x±,y)∂x3
p+(y

′, 0)dy′ (4.6)

Indeed, the quasi-periodic Green kernel GΛ takes into account all the following features:
the Helmholtz equation, the quasi-periodic conditions and the outgoing radiation con-
ditions. The acoustic pressure within the hole can hence be obtained by solving the
following system:





∇2p+ κ2p = 0 on Ω
∂np = 0 on Σ

p±(x±) = p0(x±)∓
∫

D±

2GΛ(x±,y)∂x3
p+(y

′, 0)dy′.
(4.7)

combined with transmission conditions between the hole and the integral formulation
within the upper and lower cells:

{
p = p+ on D+,
p = p− on D−,

and

{
∂x3

p = ∂x3
p+ on D+,

∂x3
p = ∂x3

p− on D−.
(4.8)

It is worth noting that the above transmission conditions are expressed in terms of
functions defined on the same sets instead of functions depending on the same variables.
It is in this context that the domain decomposition approach can handle efficiently the
incident and reflected waves on one hand and the transmitted wave on the other hand.

4.3. Second-order asymptotic expansions

As mentionned previously (see (2.6)), the wavelength λ is always assumed to satisfy L <
λ/2. As a result, the condition that the characteristic size of the perforation d is negligible
relative to the space between two successive perforations and to the wavelength λ can be
more conveniently expressed by means of the dimensionless parameter δ = d/L ≪ 1. It
should be noted that this is simply a consequence of assuming that the plate has a low
porosity. Dual, or spectral, representations of the Green’s kernel GΛ for |x3| ≫ 1 (see, e.g.
Linton 2010, formula (2.9)) make it possible to obtain the reflection and the transmission
coefficients, respectively denoted Rδ and Tδ to underline their dependence on δ, through
the following decomposition of the wave in a propagative and an evanescent part:

p(x′
+, x

+
3 ) = eiκτ

′
·x′

+

(
e−iκ cosΦx+

3 +Rδe
iκ cosΦx+

3

)
+ evan. modes for x+3 > 0,

p(x′
−, x

−
3 ) = eiκτ

′
·x′

− Tδe
−iκ cosΦx−

3 + evan. modes for x−3 < 0,
(4.9)

with 



Rδ = 1−
∫

D+

2GΛ(x+,y)∂x3
p+(y

′, 0)dy′

Tδ =

∫

D−

2GΛ(x−,y)∂x3
p−(y

′, 0)dy′
(4.10)
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A Poisson summation formula is used to express the quasi-periodic Green’s kernel in
terms of propagative and evanescent modes (Linton 2010):

GΛ(x,y) =
i

2A

∑

m

1

γm
e±iγmx3 eiβm·x′

, (4.11)

where γm =

√
κ2 − β2

m and βm = β + 2π (m1ξ
∗
1 +m2ξ

∗
2), where (ξ∗1, ξ

∗
2) is the dual

basis of (ξ1, ξ2). With the condition on the lattice (2.6), only the fundamental mode is
propagating, so that

GΛ(x,y) =
i

2κA cosΦ
e−iκτ ′

·y′

+ evanescent modes. (4.12)

The reflection and transmission coefficients are hence

Rδ = 1− iQ+
δ

κA cosΦ
and Tδ =

iQ−
δ

κA cosΦ
, (4.13)

where Q±
δ are the following fluxes :

Q±
δ =

∫

D+

e−iκτ ′
·y′

∂x3
p±(y

′, 0) dy′ (4.14)

The objective in this section is to adapt the approach in Leppington & Levine (1973)
to get a second-order asymptotic expansion for Rδ and Tδ in powers of δ for generic
perforations and plates, including thick ones.

Equations (4.7) and (4.8) make it clear that the determination of p, p+ and p− only
requires solving a problem set solely on the hole Ω. To suppress the dependence of the
geometry on δ, it is convenient to introduce the scaled variable

X = x/δ, (4.15)

also called a fast (or inner) variable in asymptotic expansions theory. In this way, Ω, Σ

and D̂ are parametrized by fixed sets respectively denoted Ω̂, Σ̂ and D̂±, meaning that

they are independent of δ. Domain Ω̂ can hence be viewed as an isolated perforation
in a plate extending to infinity (see Tuck (1975); Howe (1998)) where this feature is
introduced in a quite implicit way and Bendali et al. (2012) where it is dealt with by
means of a matched asymptotic expansion technique.
The expansion of Rδ and Tδ will be obtained through the second-order asymptotic

expansion of the function Πδ defined on Ω̂ through the scaling (4.15)

p(δX) = Πδ(X) = Π(0)(X) + δΠ(1)(X) + o (δ) . (4.16)

Clearly, introducing expansion (4.16) into the Helmholtz equation and the boundary
condition on Σ yields {

∇2
XΠ(j) = 0 in Ω̂

∂nΠ
(j) = 0 on Σ̂,

(4.17)

for j = 0, 1, with n the unit normal to Σ̂ directed outwards Ω̂. The expansion of the
integral equations set on respectively D+ and D− requires using the theory of lattice
sums for the Helmholtz equation, which gives (Linton 2010, page 653)

GΛ(δX, δY ) =
1

4πδ|X ′ − Y ′| + s0 + o (δ) , (4.18)
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where s0 has an explicit expression in terms of a Schlömilch series, see Linton & Thomp-
son (2009). As a result, expanding

p0(δX
′
+, 0) = 2eiκτ

′
·X′

+ = 2 + 2δiκτ ′
·X ′

+ + o(δ), (4.19)

and expressing the integral equations of (4.7) in terms of the fast variables, gives





Π
(0)
+ (X ′

+) +

∫

D̂+

∂X3
Π

(0)
+ (Y ′)

2π|X ′
+ − Y ′| dY

′ = 2

Π
(0)
− (X ′

−)−
∫

D̂−

∂X3
Π

(0)
− (Y ′)

2π|X ′
− − Y ′| dY

′ = 0

(4.20)





Π
(1)
+ (X ′

+) +

∫

D̂+

∂X3
Π

(1)
+ (Y ′)

2π|X ′
+ − Y ′| dY

′ = −2s0

∫

D̂±

∂X3
Π(0)dY ′ + 2iκτ ′

·X ′
+

Π
(1)
− (X ′

−)−
∫

D̂−

∂X3
Π

(1)
− (Y ′)

2π|X ′
− − Y ′| dY

′ = 2s0

∫

D̂±

∂X3
Π(0)dY ′

(4.21)

where Π
(j)
± stand for the respective expressions of Π(j) on D̂± in terms of the variables

X ′
± = x′

±/δ. Define Π(0) in Ω̂ so that it can be extended by

Π
(0)
+ (X ′

+) = 2−
∫

D̂+

∂X3
Π

(0)
+ (Y ′)

2π|X ′
+ − Y ′| dY

′ and Π
(0)
− (X ′

−) =

∫

D̂−

∂X3
Π

(0)
− (Y ′)

2π|X ′
− − Y ′| dY

′, (4.22)

for ±X3 > 0, respectively. Actually, equations (4.17) and (4.20) mean that Π(0) is the
solution of the following boundary-value problem





∇2
XΠ(0) = 0 in Ω̂

∂nΠ
(0) = 0 on Σ̂,

lim
X3→+∞

Π
(0)
+ = 2, lim

X3→−∞
Π

(0)
− = 0.

(4.23)

This shows that

K̂R =
1

2

∫

D̂±

∂X3
Π(0)dY ′. (4.24)

is nothing else than the Rayleigh conductivity of the isolated perforation in the scaled
variables (4.15). Coming back to the initial variables, we can express K̂R by means of
the usual Rayleigh conductivity defined in (3.2)

K̂R = KR/δ. (4.25)

In a similar way, Π(1) can be expressed from the solution of the following problem




∇2
XΠX

l = 0 in Ω̂

∂nΠ
X
l = 0 on Σ̂,

lim
X3→+∞

(
ΠX
l (X)−X ′

l

)
= 2, lim

X3→−∞
ΠX
l (X) = 0,

(4.26)

for l = 1, 2 and the previous function Π(0) through

Π(1)(X) = −4s0 K̂R Π(0)(X) + 2iκτ ′
·ΠX(X), (4.27)

where ΠX is the vector function whose components are respectively ΠX
1 , ΠX

2 and 0.
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The fluxes Q±
δ defined in equation (4.14) now become, up to some o(δ2) terms,

Q±
δ = δ

∫

D̂±

exp
(
−iκδτ ′

· Y ′
) (
∂X3

Π
(0)
± + δ∂X3

Π
(1)
±

)
(Y ′

±, 0) dY
′ + o(δ2)

= 2δK̂R + δ2
∫

D̂±

(
∂X3

Π
(1)
± − iκτ ′

· Y ′∂X3
Π

(0)
±

)
dY ′

(4.28)

which, thanks to (4.27), gives

Q±
δ = 2δK̂R + δ2

(
2iκτ ′ ·

∫

D̂±

(
∂X3

ΠX
± − 1

2
Y ′∂X3

Π
(0)
±

)
dY ′ − 8s0K̂R

2

)
(4.29)

A reciprocity property (see Bendali et al. 2012, page 16) yields




∫

D̂+

(
∂X3

ΠX
+ − 1

2
Y ′

+∂X3
Π

(0)
+

)
dY ′

+ = 0
∫

D̂−

(
∂X3

ΠX
− − 1

2
Y ′

−∂X3
Π

(0)
−

)
dY ′

− = −µ̂n,
(4.30)

with

µ̂n = (c+ − c−)K̂R − 1

2

∫

Σ̂

Π(0)n′ ds, (4.31)

where c± = X −X± take into account the difference of the centres of phases chosen for

the reflected and transmitted waves and n′ is the projection of the unit normal n to Σ̂
on the plane of the plate. For an axisymmetric perforation, µ̂n reduces to

µ̂n =
h

δ
K̂Re3 =

h KR

δ2
e3, (4.32)

where e3 is the unit vector along the x3-axis.

As a result, the reflection and the transmission coefficients have the following asymp-
totic expansions, as obtained in (Bendali et al. 2012) through a more involved procedure
based on the method of matched asymptotic expansions




Rδ = 1 +
δ K̂R

A

2

iκ cosΦ
− δ2 4 K̂R

2
s0

A

2

iκ cosΦ
+ o(δ2)

Tδ = − δ K̂R

A

2

iκ cosΦ
+
δ2
(
4 K̂R

2
s0 + iκτ ′ · µ̂n

)

A

2

iκ cosΦ
+ o(δ2).

(4.33)

It is worth mentioning that the term τ ′
· µ̂n is equal to zero for an axisymmetric

perforation since then τ ′ has no component along the x3-axis.
Finally, in terms of the Rayleigh conductivity in the initial variables, we get





Rδ = 1− 2i

κA cosΦ
KR +

8is0
κA cosΦ

K2
R + o(δ2)

Tδ =
2i

κA cosΦ
KR − 2is0

κA cosΦ

(
4K2

R + iκτ ′ · µn
)
+ o(δ2).

(4.34)

4.4. Effective compliance of the perforated plate

The effective compliance K of the plate can hence be defined through the following
relationships

∂x3
p+ = ∂x3

p− = K(p+ − p−). (4.35)
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The reflection and transmission coefficients and the compliance are then linked by

R+ T = 1, K =
iκ cosΦ

2

(
1− 1

R

)
, R = 1/

(
1− 2K

iκ cosΦ

)
(4.36)

Moreover, if, as here, the governing equations are those of linear acoustics, which means
that no damping mechanism is involved and that there is no acoustic absorption by the
perforated plate, the imaginary part Im(K) of the effective compliance is zero and the
conservation of energy is expressed through the following relation

1− |R|2 − |T |2 = 0. (4.37)

Clearly, if Rδ and Tδ are approximated at first order from equation (4.33) or (4.34)





R
(1)
δ = 1 +

δ K̂R

A

2

iκ cosΦ
= 1− 2i

κA cosΦ
KR

T
(1)
δ = − δ K̂R

A

2

iκ cosΦ
= − 2i

κA cosΦ
KR

(4.38)

then equation (4.37) is not satisfied. Even worse, the reflected wave is amplified

|R(1)
δ | =

√
1 +

(
KR

A

2

κ cosΦ

)2

(4.39)

and the imaginary part of the effective compliance associated with these coefficients

K
(1)
δ =

δ K̂R/A

1 +
δ K̂R

A

2

iκ cosΦ

(4.40)

is not zero. However, it is possible to write this compliance slightly differently, so that
the compliance is both consistent with the approximation of the effective reflection and
transmission coefficients at leading order O(δ), and ensures the conservation of acoustic
energy:

K
(1)
δ =

δ K̂R

A
=
KR

A
(4.41)

We thus obtain the classical expression of the effective compliance of the perforated
plate (Eldredge & Dowling 2003; Hughes & Dowling 1990). The reflection coefficient
corresponding to this compliance condition

R
(1)
δ =

1

1− 2

iκ cosΦ

KR

A

. (4.42)

does not lead to an amplified reflected wave while approximating the actual reflection
coefficient up to a term in o(δ).

In general, the same procedure cannot be repeated to get a second-order compliance
condition since the term τ ′ · µ̂n in equations (4.33) or (4.34) prevents the condition
R+T = 1 from being satisfied. However, this can be done when τ ′ · µ̂n = 0, for instance
when the perforation is axisymmetric or when the thickness of the plate can be neglected.
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Then, equations (4.33) or (4.34) read at second order in δ:




R
(2)
δ = 1 +

2

iAκ cosΦ

(
δ K̂R − δ24s0 K̂R

2
)
= 1− 2iKR (1− 4s0 KR)

Aκ cosΦ

T
(2)
δ = − 2

iAκ cosΦ

(
δ K̂R − δ24s0K̂R

2
)
=

2iKR (1− 4s0 KR)

Aκ cosΦ
.

(4.43)

Therefore, the associated compliance is:

K
(2)
δ =

δK̂R

A

(
1− 4s0δ K̂R

)

1 +
2

iκ cosΦ

δK̂R

A

(
1− 4s0δ K̂R

) =
KR (1− 4s0 KR) /A

1 +
2KR (1− 4s0 KR)

iAκ cosΦ

. (4.44)

As for (4.40), this compliance does not conserve energy. However, consistently with the
order in O(δ2) of the approximation of Rδ and Tδ, equation (4.44) is equivalent to:

K
(2)
δ =

δK̂R

A

(
1− 4s0δ K̂R

)(
1− 2

iκ cosΦ

δK̂R

A

(
1− 4s0δ K̂R

))

=
δK̂R

A

(
1− 2δ K̂R

(
2s0 −

i

κ cosΦ

))
.

(4.45)

A very far-reaching, by no means obvious, property of the lattice sums for the Helmholtz
equation (see Linton 2010, page 656) ensures that

Im (2s0) =
1

κ cosΦ
. (4.46)

As a result, the compliance at order 2 is given by

K
(2)
δ =

KR

A
(1− 4KRRe(s0)) . (4.47)

The coefficient Re(s0) adds a correction depending on the shape of the array of the perfo-
rations rather than just averaging by the area A of the lattice unit cell. The corresponding
reflection coefficient

R
(2)
δ =

(
1 +

2i

κ cosΦ

KR

A
(1− 4KRRe(s0))

)−1

(4.48)

does not exhibit any unrealistic behaviour. Leppington and Levine gave a similar expres-
sion for a rectangular lattice of elliptical holes (see Leppington & Levine 1973, equation
(2.27)). The approximation (4.48) of the reflection coefficient is an extension of this for-
mula to an arbitrary shape of the lattice and to any geometry of the perforations, if either
the plate is infinitely thin or the perforations are axisymmetric. Otherwise, second-order
terms in O(δ2) are missed.

4.5. Numerical results for a generic plate

Some numerical experiments can now be conducted to illustrate the influence of the
geometry of the perforations and the shape of the lattice for a realistic configuration of
the perforated plate. A 2mm-thick perforated plate of 1.96% porosity is considered, with
either a rectangular or staggered lattice of holes. As in section 3.4.1, the characteristic size
of the holes is r = 0.225mm. The incidence of the incoming acoustic wave is Φ = 45o.
The dimensions of the lattice are |ξ1| = 3mm and |ξ2| = 2.7mm in the rectangular
configuration, |ξ1| = 3mm and |ξ2| =

√
(1.5)2 + (2.7)2 ≈ 3.1mm in the staggered one.
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(a) Amplitude (b) Phase (in degrees)

Figure 10: Reflection coefficient of the perforated plate with a rectangular lattice of
untilted cylindrical perforations (red lines without symbols) or tilted perforations with
an elliptical section (blue lines with symbols). First order approximations are plotted in
solid lines, second order ones in dashed lines.

Thus, the surface of the lattice cell is the same in both configurations, i.e., A = 8.1mm2.
The assumption that δ = r/L is a small parameter is satisfied.
Here, we focus on two kinds of geometries for the holes: the untilted cylinder of radius

r and the tilted ellipse with circular bore of radius r and a 60o tilt angle. The mean value
of the bounds (3.8) and (3.31) are taken as the respective Rayleigh conductivities of these
perforations. As discussed in section 4.4, the reflection coefficient can be computed at
first and second order in δ by equations (4.42) and (4.48), respectively.

Results in the frequency range [500, 5000]Hz are plotted in figure 10, for the rectangular
lattice. The geometry of the perforations has a strong effect on the reflection coefficient,
which confirms the importance of using the expressions for the Rayleigh conductivity
obtained in section 3. On the contrary, first and second order approximations are almost
indistinguishable, which shows that the usual way of calculating the effective compliance
of the plate (i.e., by averaging the Rayleigh conductivity of the isolated hole by the area
of the lattice unit cell) is quite accurate in this case.
Consequently, it seems obvious that changing the shape of the lattice will not affect the

reflection coefficient significantly. This is shown in figure 11, which depicts the deviation
of the staggered array from the rectangular one expressed as a percentage of the latter.

For both geometries of the perforations and whatever the frequency, the reflection
coefficients differ from each other by less than 0.02%. This means that the shape of the
lattice can be neglected without reducing the quality of the models, and that considering
first-order usual approximations for the reflection and the transmission coefficients is
sufficient.

5. Conclusion

The acoustic properties of a low-porosity perforated plate in a compressible ideal in-
viscid fluid have been investigated in the absence of mean flow. This generalizes previous
work of Leppington & Levine (1973) to account for thick plates with perforations of
arbitrary arrangement and various geometries. The study was conducted in two stages.
As a first step, we developed a mathematical framework yielding accurate bounds of
the Rayleigh conductivity for realistic geometric configurations, including tilted perfora-
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(a) Amplitude (b) Phase

Figure 11: Difference between the second-order reflection coefficient in the staggered and
rectangular arrangement of the holes, normalized by the rectangular arrangement value.

tions. We then used a domain decomposition concept, coupled with an integral equation
method, the theory of lattice sums for the Helmholtz equation and the asymptotic ex-
pansions method to significantly extend previous approaches which were either intuitive
or rigorous in order to derive effective parameters for the acoustic properties of a multi-
perforated plate.
In section 3, we focused on the Rayleigh conductivity of a single perforation, which

can be related to the inertial end correction used in impedance models. Lord Rayleigh
(1945) gave two bounds for the conductivity of a circular aperture of zero-thickness,
and his work was extended to thick cylindrical perforations by Howe (1998). These ex-
pressions are nowadays widely used in impedance and conductivity models, even when
perforations of other geometries are considered. We have shown here that these lower
and upper bounds can be obtained by applying of the Dirichlet and Kelvin variational
principles. This rigorous mathematical framework allows computation of the lower and
upper bounds of the Rayleigh conductivity for various geometries of the perforation. We
investigated untilted perforations with either a conical shape or an elliptical section, as
well as tilted perforations of circular and elliptical sections. The latter case is of primary
interest for industrial applications, especially in the domain of engine combustors where
walls are perforated by sub-millimeter tilted apertures for cooling purposes. In related
theoretical or numerical studies, some researchers use the Rayleigh conductivity (or end
correction) of a untilted cylindrical aperture with a modified plate thickness which corre-
sponds to the length of the centerline of the tilted aperture. Our analysis has given exact
bounds for the Rayleigh conductivity and end correction in such geometrical configura-
tions and has shown that these quantities were quite sensitive to the tilt angle and that
the thickness effect requires a more precise calculation than just considering the intuitive
effective thickness. It should be noted that though we have only considered the Rayleigh
conductivity in the framework of the purely acoustic problem, i.e. without any flow or
non-linear effects, this solution can be used as the groundwork for deriving Rayleigh con-
ductivity in the presence of a bias flow through the aperture, as was done by Howe (1979)
from the Rayleigh conductivity of a thin circular aperture. We have thus shown that in
the study of a bias flow through a tilted perforation carried out by Eldredge et al. (2007),
a better match between the theoretical model and the numerical simulations could have
been obtained if the exact expression of the Rayleigh conductivity had been used.

Then, in section 4, we performed an asymptotic expansion on the scattering problem
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with respect to the small ratio δ between the characteristic sizes of the perforation and
of the lattice cell. We derived accurate first-order and second-order expansions of the
reflection and transmission coefficients, which are expressed in terms of the Rayleigh
conductivity of the perforation. These expressions extend those previously given by Lep-
pington & Levine (1973): they are valid for thick plates with an arbitrary grating of
perforations with various geometries. It should be noted that the only constraint re-
quired on the size of the lattice cell is that it has to be smaller than half of the acoustic
wavelength, contrary to the conventional long wavelength assumption. Moreover, we have
shown that it is necessary to modify the O(δ) and O(δ2) expansions of the reflection and
transmission coefficients to ensure the conservation of acoustic energy. Thus, the asymp-
totics provide a first-order and second-order expression of the effective compliance of the
perforated plate. The first-order-accurate compliance is the same as the classical expres-
sion, i.e. the averaging of the Rayleigh conductivity of a single peforation by the area
of the lattice unit cell. The accurate second-order compliance involves corrections by a
coefficient that depends on the shape of the lattice. Finally, numerical calculations on a
generic plate have shown that the second-order corrections, and therefore the effects of
the lattice shape, can be neglected without loss of accuracy.
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Appendix A. Functions involved in the Dirichlet and Kelvin

principles

This appendix is dedicated to the calculations described in sections 3.2 and 3.3. To
obtain bounds for the Rayleigh conductivity, suitable test functions ψ and q are required
to minimize (respectively maximize) the functional J1 (respectively J2) of (3.7). To do
so, auxiliary problems, depending on the geometry of the aperture, have to be solved.

Untilted apertures

For a cylindrical perforation of radius R, the problem is as follows:




∆wR(x) = 0, for x3 6= ±h/2,
∂x3

wR(x1, x2, 0) = 0, for x21 + x22 > R2,

wR(x1, x2, 0) = 1/2, for x21 + x22 < R2.

(A 1)

Its solution satisfies ∫

±x3>h/2

∣∣∇wR(x)
∣∣2dx = R. (A 2)

This integral is directly involved in the computation of the functional J1 (used to obtain
the sought upper bound). The explicit expression of wR is not required. The proof of
(A 2) is given in Laurens et al. (2012), as well as the explicit expression of wR under an
integral form. For α ∈ R, the correct test function ψ is defined as

ψ(x) =

{
±1/2∓ (1∓ 2α)wR(x1, x2, x3 ∓ h/2), for ± x3 > h/2,

α, for − h/2 < x3 < h/2.
(A 3)
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The lower bound is based on the following problem:




∆zR(x) = 0, for x3 6= ±h/2,
∂x3

zR(x1, x2, 0) = 0, for x21 + x22 > R2,

∂x3
zR(x1, x2, 0±) = ±1, for x21 + x22 < R2.

(A 4)

Its solution satisfies ∫

±x3>h/2

∣∣∇zR(x)
∣∣2 dx = 8R3/3. (A 5)

For β ∈ R, the suitable test function for J2 is

q(x) =

{
±β∇zR(x1, x2, x3 ∓ h/2) / πR2, for ± x3 > h/2,

β e3 / πR
2, for − h/2 < x3 < h/2.

(A 6)

In the case of a conical aperture with a radius linearly varying from R− to R+, the test
function ψ, which is adequate for this geometry, is given by

ψ(x) =





±1/2∓ (1∓ 2α±)wR±
(x1, x2, x3 ∓ h/2), for ± x3 > h/2,

α− +
(
α+ − α−

)∫ x3

−h/2
dx3

πR2(x3)∫ h/2
−h/2

dx3

πR2(x3)

, for − h/2 < x3 < h/2,
(A 7)

where wR±
is the function wR defined in equation (A 1) with R = R± and α± two real

constants.

The lower bound involves the following vector field q, with β ∈ R

q(x) =





± β

π R2
+

∇zR±
(x1, x2, x3 ∓ h/2) for ± x3 > h/2,

β

π R2(x3)

(
e3 +

r

R(x3)

R+ −R−

h
er

)
for − h/2 < x3 < h/2,

(A 8)

and zR±
defined as in equation (A 4) with R = R±.

For an elliptical section, problems (A 1) and (A 4) are posed on the ellipse A, instead
on the disc of radius R. The solution of these problems will be denoted by w̃R and z̃R
respectively. They are such that
∫

±x3>h/2

∣∣∇w̃R(x)
∣∣2dx = πa

K(0)

K(ε)
and

∫

±x3>h/2

∣∣∇z̃R(x)
∣∣2 dx =

8

3
ab2

K(ε)

K(0)
. (A 9)

More details can be found in Laurens & Tordeux (February 2013).

Tilted apertures

If the aperture is cylindrical and tilted with an angle θ, a new auxiliary problem has to
be considered 




∆tR(x) = 0, for x3 6= ±h/2,
∂x3

tR(x1, x2, 0) = 0, for x21 + x22 > R2,
tR(x1, x2, 0) = x1, for x21 + x22 < R2,

(A 10)

with ∫

±x3>h/2

∣∣∇tR(x)
∣∣2 dx = 8R3/3. (A 11)
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The test function ψ is therefore

ψ(x) =





±1/2∓ (1∓ 2α) wR(x̂1, x2, x3 ∓ h/2)

+
µα sin θ

h
tR(x̂1, x2, x3 ∓ h/2), for ± x3 > h/2,

−α+
µα
h

(
(x3 + h/2) cos θ + x1 sin θ

)
, for − h/2 < x3 < h/2,

(A 12)

with α real constant and µα = 2α cos θ and x̂1(x) = x1 − (x3 + h/2) tan θ.
The lower bound is established by chosing

q(x) =





± β

π R2
∇zR(x̂1, x2, x3 ∓ h/2) for ± x3 > h/2,

β

π R2

(
e3 + tan θ e1

)
for − h/2 < x3 < h/2,

(A 13)

with β a real constant.

For the elliptic case, problem (A10) is set on an ellipse A instead of the disc. Thus,
the solution of this problem, denoted t̃R, is different and such that

∫

±x3>h/2

∣∣∇t̃R(x)
∣∣2 dx =

8

3
a3
D(0)

D(ε)
, (A 14)

with D(ε) defined in (3.27). The test functions ψ and q are similar to (A 12) and (A 13).
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