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Heat flow on Alexandrov spaces

We prove that on compact Alexandrov spaces with curvature bounded below the gradient flow of the Dirichlet energy in the L 2 -space produces the same evolution as the gradient flow of the relative entropy in the L 2 -Wasserstein space. This means that the heat flow is well defined by either one of the two gradient flows. Combining properties of these flows, we are able to deduce the Lipschitz continuity of the heat kernel as well as Bakry-Émery gradient estimates and the Γ 2 -condition. Our identification is established by purely metric means, unlike preceding results relying on PDE techniques. Our approach generalizes to the case of heat flow with drift.

Introduction

The heat equation is one of the most important evolutionary PDEs. It is a well known fact in modern analysis that such an equation, say in R n , can be seen as the gradient flow of the Dirichlet energy

(1.1) 1 2 R n |∇ f | 2 dx
in the space L 2 (R n , L n ). This viewpoint has been extended to the concept of Dirichlet form (see e.g. [START_REF] Bouleau | Dirichlet forms and analysis on Wiener space[END_REF][START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF]) and it has grown up into a huge research field in potential analysis and probability theory. More recently, Jordan, Kinderlehrer and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] understood that the same equation can be seen as the gradient flow of the relative entropy (1.2)

R n ρ log ρ dx in the L 2 -Wasserstein space (P 2 (R n ),W 2 ), where P 2 (R n ) stands for the space of Borel probability measures on R n with finite second moment. This intuition, with the further studies of Otto [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF], has been one of the fundamental ingredients that drove the research in the field of gradient flows in relation with optimal transportation problems in the past decade (see, e.g., [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Villani | Optimal Transport, old and new[END_REF]). The aim of this paper is to carry on the study of the heat flow as gradient flow of the two very different functionals, (1.1) and (1.2) in the two metric spaces L 2 (R n , L n ) and (P 2 (R n ),W 2 ), in a non-smooth setting. The point is the following. On the one hand, it is known that these two gradient flows produce the same evolution 'in all the smooth settings', i.e., it has been proved that in R n , in Riemannian manifolds with Ricci curvature bounded below and in compact Finsler manifolds (for the latter see the work of Sturm and the third author [START_REF] Ohta | Heat flow on Finsler manifolds[END_REF]), the gradient flow of the Dirichlet energy with respect to the L 2 -distance coincides with the gradient flow of the relative entropy with respect to the Wasserstein distance W 2 (see also [START_REF] Fang | Wasserstein space over the Wiener space[END_REF][START_REF] Juillet | Diffusion by optimal transport in Heisenberg groups[END_REF] for related work on different kinds of spaces). On the other hand, these flows are studied well also in some non-smooth settings. These raise the natural question: do these two notions always coincide?

We remark that a natural abstract setting where one could try to give an answer to this question is the one of metric measure spaces with Ricci curvature bounded below (defined by Sturm [START_REF] Sturm | On the geometry of metric measure spaces[END_REF] and Lott and Villani [START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF], see Definition 2.4). Indeed, in order to define either one of the two gradient flows, one usually needs both a metric and a measure on the space considered. Furthermore, it is known that in the Riemannian setting the fact that the heat flow does not lose mass is strictly related to the bound from below on the Ricci curvature, so that one has to assume some kind of lower Ricci curvature bound also in the non-smooth setting.

In this paper, we restrict our attention to the case of finite dimensional, compact Alexandrov spaces (X, d, H n ) of curvature bounded below without boundary, equipped with the Hausdorff measure H n . An Alexandrov space of curvature bounded from below by k with k ∈ R is a metric space of sectional curvature bounded from below by k in the sense of the triangle comparison property (see Definition 2.1). As naturally expected and recently shown in [34,[START_REF] Zhang | Ricci curvature on Alexandrov spaces and rigidity theorems[END_REF], such spaces actually have Ricci curvature bounded below in the sense of Lott-Sturm-Villani (see Remark 2.5). Our following main result is the first one establishing the equivalence of the two gradient flows in a genuinely non-smooth setting (see Theorem 3.1 for the slightly more general statement): Theorem 1.1. Let (X, d, H n ) be a finite-dimensional compact Alexandrov space without boundary. Then for any f 0 ∈ L 2 (X, H n ) with f 0 H n ∈ P(X), the gradient flow ( f t ) t∈[0,∞) of the Dirichlet energy with respect to the L 2 -distance gives the gradient flow ( f t H n ) t∈[0,∞) of the relative entropy with respect to the L 2 -Wasserstein distance W 2 , and vice versa.

On Alexandrov spaces, the structure of the heat flow as gradient flow has already been studied in [START_REF] Kuwae | Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces[END_REF] for the Dirichlet energy approach and in [START_REF] Ohta | Gradient flows on Wasserstein spaces over compact Alexandrov spaces[END_REF] by the third author (see also [START_REF] Gigli | First variation formula in Wasserstein spaces over compact Alexandrov spaces[END_REF][START_REF] Savaré | Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds[END_REF]) for the relative entropy approach. However, up to now it was not clear that these two notions coincide.

We observe that the idea behind our proof of the theorem is completely different from the ones used in the aforementioned smooth settings. Indeed, all the proofs available in the smooth setting had the following structure:

• one studies the gradient flow of the Dirichlet energy with respect to L 2 and writes down the equation that it satisfies; • one studies the gradient flow of the relative entropy with respect to W 2 and writes down the equation that it satisfies; • one realizes that the two equations are actually the same and calls into play the uniqueness of the solution of the equation to conclude that the two gradient flows coincide.

Our approach, instead, is completely different and in particular does not pass from the study of the heat equation in the Alexandrov setting. Read back in R n our proof gives a new and purely metric way to prove the coincidence of these two gradient flows.

After having proved the identification, we can combine them: their interaction gives fruitful applications. Among them, the Lipschitz continuity (Theorem 4.4) of the heat kernel is derived as a corollary of a Bakry-Émery type gradient estimate (Theorem 4.3), which follows with the aid of a result of the second author [START_REF] Kuwada | Duality on gradient estimates and Wasserstein controls[END_REF]. The Lipschitz regularity improves the Hölder regularity established in [START_REF] Kuwae | Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces[END_REF]. We believe that it is curious and worth to be underlined that such Lipschitz property immediately follows when one knows the equivalence of the two gradient flows, but is not at all trivial if one sticks to either one of the two approaches alone. Our Lipschitz regularity enables us to deduce the Γ 2 -condition (Theorem 4.6) from a Lott-Sturm-Villani Ricci curvature bound. The Γ 2 -condition as well as the Wasserstein contraction of heat flow and the Bakry-Émery gradient estimate for heat semigroup are known to be analytic characterizations of a lower Ricci curvature bound (see [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF][START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF][START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF]). We show the equivalence of those three analytic conditions even on Alexandrov spaces (with sharp constants, Theorem 4.8).

It should be remarked that our approach easily generalizes to the case of heat flow with drift, where the drift is given by the gradient of a semiconvex potential V . In other words, the current approach can be used to study the heat flow on weighted Alexandrov spaces of the kind (X, d, e -V H n ) (see the end of Section 4).

After having completed the work on this paper, we got aware of a paper [START_REF] Zhang | On a new definition of Ricci curvature on Alexandrov spaces[END_REF] by Zhang and Zhu where the Lipschitz continuity of the heat kernel has been studied, via a completely different argument. In particular, their proof relies on the Lipschitz continuity of harmonic functions due to Petrunin [START_REF] Petrunin | Harmonic functions on Alexandrov spaces and their applications[END_REF]. They even proceeded their study to [START_REF] Zhang | s gradient estimate on Alexandrov spaces[END_REF][START_REF] Qian | Sharp spectral gap and Li-Yau's estimate on Alexandrov spaces[END_REF], where they showed a Bochner type formula and Li-Yau estimates under their own notion of lower Ricci curvature bound which is stronger than the one of Lott-Sturm-Villani. It is not discussed in [START_REF] Zhang | On a new definition of Ricci curvature on Alexandrov spaces[END_REF][START_REF] Zhang | s gradient estimate on Alexandrov spaces[END_REF][START_REF] Qian | Sharp spectral gap and Li-Yau's estimate on Alexandrov spaces[END_REF] whether their approach generalizes to the case of weighted Alexandrov spaces.

The organization of the article is as follows. Section 2 is devoted to preliminaries for Alexandrov geometry and known results on the gradient flow of the Dirichlet energy as well as the gradient flow of the relative entropy on compact Alexandrov spaces. We prove our main theorem in Section 3, and discuss its applications in Section 4.

Preliminaries and notations

Alexandrov spaces

We first review the basics of Alexandrov geometry, see [START_REF] Burago | Alexandrov spaces with curvatures bounded below (Russian)[END_REF][START_REF] Otsu | The Riemannian structure of Alexandrov spaces[END_REF][START_REF] Burago | A course in metric geometry[END_REF] for details. Let (X, d) be a metric space. A rectifiable curve γ : [0, l] → X is called a geodesic if it is locally length minimizing and parametrized with constant speed. (Precisely, for any

t 0 ∈ [0, l], there is ε > 0 such that d(γ(s), γ(t))/|s -t| is constant for all s,t ∈ [t 0 -ε,t 0 + ε] ∩ [0, l].
) If γ is minimizing between endpoints, then we call it a minimal geodesic. We say that (X, d) is a geodesic space if any pair of points in X are connected by a minimal geodesic.

For k ∈ R, we denote by M 2 (k) the simply-connected, two-dimensional space form of constant sectional curvature k. Given three points x, y, z ∈ X, with d(x, y)

+ d(y, z) + d(z, x) < 2π/ √ k if k > 0,
we can take a comparison triangle x ỹz ⊂ M 2 (k) such that d( x, ỹ) = d(x, y), d( ỹ, z) = d(y, z) and d(z, x) = d(z, x). Such a triangle is unique up to a difference of isometry. Definition 2.1 (Alexandrov spaces). For k ∈ R, a complete geodesic space (X, d) is called an Alexandrov space of curvature bounded from below by k if, for any three points x, y, z ∈ X (with d(x, y)+d(y, z)+d(z, x) < 2π/ √ k if k > 0) and any minimal geodesic γ : [0, 1] → X from y to z, we have d(x, γ(t)) ≥ d( x, γ(t)) for all t ∈ [0, 1], where x ỹz ⊂ M 2 (k) is a comparison triangle of xyz and γ : [0, 1] → M 2 (k) is the unique minimal geodesic from ỹ to z.

Example 2.2. (a) A complete Riemannian manifold is an Alexandrov space of curvature bounded from below by k if and only if its sectional curvature is greater than or equal to k everywhere.

(b) If (X, d) is an Alexandrov space of curvature bounded from below by k, then the scaled metric space (X, c • d) with c > 0 is an Alexandrov space of curvature bounded from below by k/c 2 .

(c) For a convex domain D in the Euclidean space R n , the boundary ∂ D equipped with the length distance is an Alexandrov space of nonnegative curvature.

(d) Let (M, g) be a Riemannian manifold of nonnegative sectional curvature and G be a compact group acting on M by isometries. Then the quotient space M/G equipped with the quotient metric is an Alexandrov space of nonnegative curvature.

(e) If a sequence of Alexandrov spaces of curvature bounded from below by k is convergent with respect to the Gromov-Hausdorff distance, then its limit space is again an Alexandrov space of curvature bounded from below by k.

Fix x ∈ X and let Σx be the set of all unit speed geodesics γ : [0, l] → X with γ(0) = x. For γ, η ∈ Σx , thanks to the curvature bound, the joint limit

∠ x (γ, η) := arccos lim s,t→0 s 2 + t 2 -d(γ(s), η(t)) 2 2st
exists and is a distance on Σx /∼ where γ ∼ η holds if ∠ x (γ, η) = 0. We define the space of directions (Σ x , ∠ x ) at x as the completion of Σx /∼ with respect to ∠ x . The tangent cone (K x , d) is the Euclidean cone over (Σ x , ∠ x ), i.e.,

K x := Σ x × [0, ∞)/Σ x × {0}, d (γ, s), (η,t) := s 2 + t 2 -2st cos ∠ x (γ, η).
The inner product on K x is defined by (γ, s), (η,t) x := st cos ∠ x (γ, η). In Riemannian manifolds, spaces of directions and tangent cones correspond to unit tangent spheres and tangent spaces, respectively. The Hausdorff dimension of X is an integer or infinity. From here on, we consider a compact n-dimensional Alexandrov space of curvature bounded from below by k without boundary equipped with the n-dimensional Hausdorff measure H n (see [START_REF] Burago | Alexandrov spaces with curvatures bounded below (Russian)[END_REF] for the definition of boundary of Alexandrov spaces). We say that x ∈ X is a singular point if K x is not isometric to the Euclidean space R n , and denote the set of singular points by S X . We remark that H n (S X ) = 0 holds whereas S X can be dense in X (see [START_REF] Burago | Alexandrov spaces with curvatures bounded below (Russian)[END_REF][START_REF] Otsu | The Riemannian structure of Alexandrov spaces[END_REF]).

Dirichlet energy and the associated gradient flow

We introduce the Sobolev space and the Dirichlet energy following [START_REF] Kuwae | Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces[END_REF], and will see that it coincides with other notions of Sobolev spaces. We begin by discussing a C 1 -differentiable structure of the set of regular points X \ S X established in [START_REF] Burago | Alexandrov spaces with curvatures bounded below (Russian)[END_REF][START_REF] Otsu | The Riemannian structure of Alexandrov spaces[END_REF]. We remark that Perelman extends this to DC 1 -structure (via 'difference of concave functions', see [START_REF] Perelman | DC structure on Alexandrov space with curvature bounded below[END_REF]), but the C 1 -structure is enough for considering the Sobolev space. There is a weak

C 1 -atlas {(U φ ,V φ , φ )} φ ∈Φ in the sense that U φ ⊂ X is an open set, φ : U φ → R n is a bi-Lipschitz embedding, V φ ⊂ U φ with φ ∈Φ V φ ⊃ X \ S X , and that the coordinate change φ 2 • φ -1 1 is C 1 on φ 1 (V φ 1 ∩ V φ 2 ∩ (X \ S X )) if V φ 1 ∩ V φ 2 = / 0 ([30, Theorem 4.2(1)]
). Such charts are constructed through the distance function. Precisely, φ is introduced as φ (x) := (d(x, p 1 ), d(x, p 2 ), . . . , d(x, p n )) for suitable p 1 , p 2 , . . . , p n ∈ X, and then V φ is chosen as the set of regular points x such that a minimal geodesic between x and p i is unique for all i ([30, Section 3]). It is worth mentioning that, for any ε > 0, φ can be (1 + ε)-bi-Lipschitz by taking smaller U φ (cf. [START_REF] Burago | A course in metric geometry[END_REF]Theorem 10.9.16]). We also remark that it is possible to modify φ by taking an average so as to satisfy V φ = U φ ([30, Section 5]), but it is unnecessary for our discussion (just like [5, Remark 2.9]).

We say that a function f on X is differentiable at a regular point x ∈ X \ S X if x ∈ V φ and f • φ -1 is differentiable at φ (x) for some φ ∈ Φ. Then we can define the gradient vector ∇ f (x) ∈ K x by identifying K x and R n through φ . (To be precise, by virtue of the first variation formula ([30, Theorem 3.5]), each d i := d(•, p i ) is differentiable at x with ∇d i (x) = -v i , where v i ∈ K x is the tangent vector of the unique, minimal, unit speed geodesic from x to p i . Then K x is linearly identified with R n as ∑ i a i v i = (-a i ).) Moreover, again due to the first variation formula, we obtain the Taylor expansion

(2.1) f γ(t) = f (x) + t ∇ f (x), γ(0) x + o x (t),
where γ : [0, δ ] → X is a minimal geodesic emanating from x and o x (t) is independent of the choice of γ (see [START_REF] Bertrand | Existence and uniqueness of optimal maps on Alexandrov spaces[END_REF]Lemma 3.4], and note that the remainder term in the first variation formula for d(•, p i ) at x indeed depends only on x and p i ).

Another important fact we will use is the Rademacher theorem, namely a Lipschitz function f on X is differentiable H n -a.e.. This easily follows from the usual Rademacher theorem for f

• φ -1 (see [5, Corollary 2.14]). It follows from (2.1) that ∇ f (x), ∇ f (x) coincides with the local Lipschitz constant |∇ L f |(x) given by |∇ L f |(x) := lim y→x | f (x) -f (y)| d(x, y) .
Based on the notion of gradient vector, we define the Sobolev space and the Dirichlet energy as follows (see [START_REF] Kuwae | Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces[END_REF][START_REF] Kuwae | Sobolev spaces and Dirichlet spaces over maps between metric spaces[END_REF] for details). For a function f :

X → R such that f • φ -1 ∈ W 1,2 (φ (U φ )
) for all φ ∈ Φ, we introduce the weak gradient vector ∇ f (x) ∈ K x for a.e. x ∈ V φ as the element corresponding to the weak gradient vector ∇( f • φ -1 )(φ (x)). We define the Sobolev space W 1,2 (X) and the Dirichlet energy

E by W 1,2 (X) := f ∈ L 2 (X, H n ) X ∇ f , ∇ f dH n < ∞ , E ( f , g) := X ∇ f , ∇g dH n for f , g ∈ W 1,2 (X).
We do not divide E by 2 for notational simplicity. Note that E coincides with the energy functional introduced by Korevaar and Schoen [START_REF] Korevaar | Sobolev spaces and harmonic maps for metric space targets[END_REF] (We can reduce the argument to the Euclidean case by using a (1 + ε)-bi-Lipschitz chart; see [22, Theorem 6.2]). We also remark that the set of Lipschitz functions

C Lip (X) is dense in W 1,2 (X) with respect to the Sobolev norm f 2 W 1,2 = f 2 L 2 + E ( f , f ) ([20, Theo- rem 1.1]).
Furthermore, if f is a Lipschitz function, then the weak gradient vector ∇ f (x) coincides with the gradient vector as in (2.1) a.e. x, and hence

∇ f (x), ∇ f (x) = |∇ L f |(x) holds a.e.
x. Therefore E also coincides with Cheeger's energy functional ( [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF]), because the local Lipschitz constant is the minimal generalized upper gradient ([9, Theorem 6.1]) and Lipschitz functions are dense in both Sobolev spaces (thanks to the weak Poincaré inequality for upper gradients and the volume doubling condition, [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF]Theorem 4.24]). Indeed, in our framework, the volume doubling condition directly follows from the Bishop-Gromov volume comparison theorem and the Poincaré inequality is a consequence of [START_REF] Kuwae | On generalized measure contraction property and energy functionals over Lipschitz maps[END_REF][START_REF] Ranjbar-Motlagh | Poincaré inequality for abstract spaces[END_REF], for instance.

By following the general theory of bilinear forms, there exists a nonpositive selfadjoint operator (∆, D(∆)) on L 2 (X, H n ) associated with (E ,W 1,2 (X)). It is characterized by the following identity:

(2.2) E (g, f ) = - X g∆ f dH n , f ∈ D(∆), g ∈ W 1,2 (X).
We call ∆ the Laplacian as in the classical case. Based on a general theory of functional analysis, the one-parameter semigroup of contractive symmetric linear operators

T t = e t∆ on L 2 (X, H n ) is defined associated with ∆. For any f ∈ L 2 (X, H n ), T t f solves the (linear) heat equation ∂ t u = ∆u with u(0, •) = f in the sense that T t f ∈ D(∆) for t > 0 and lim t↓0 T t f -f t = ∆ f in L 2 (X, H n ) for f ∈ D(∆), lim t↓0 T t f = f in L 2 (X, H n ) for f ∈ L 2 (X, H n ).
Note that T t is Markovian in the sense that 0 ≤ T t f ≤ 1 holds whenever 0 ≤ f ≤ 1. As shown in [20, Theorem 1.5], there exists a continuous function (t, x, y) → p t (x, y) on (0, ∞) × X × X satisfying the following properties:

(i) For any f ∈ L 2 (X, H n ), t > 0 and H n -a.e. x ∈ X,

(2.3) T t f (x) = X p t (x, y) f (y) H n (dy).
(ii) For any s,t > 0 and x, y ∈ X, p t (x, y) = p t (y, x), (2.4)

p s+t (x, y) = X p s (x, z)p t (z, y) H n (dz), (2.5) X p t (x, z) H n (dz) = 1, (2.6) p t (x, y) > 0.
See [20, Theorems 1.4, 1.5(3)] for the continuity of p t (x, y). The equality (2.6) follows from the fact that 1 ∈ W 1,2 (X) and E (1, 1) = 0, because X is assumed to be compact. As in the classical case, we call p t (x, y) the heat kernel. The existence and these properties of p t (x, y) are deduced from the Poincaré inequality for E and the volume doubling condition, together with results in [START_REF] Sturm | Analysis on local Dirichlet spaces.III. The parabolic Harnack inequality[END_REF].

Remark 2.3. The bilinear form (E ,W 1,2 (X)) is a symmetric strongly local regular Dirichlet form (see [START_REF] Kuwae | Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces[END_REF] for it and further details; see [START_REF] Bouleau | Dirichlet forms and analysis on Wiener space[END_REF][START_REF] Fukushima | Dirichlet forms and symmetric Markov processes[END_REF] for basics on Dirichlet forms). Moreover, T t enjoys the strong Feller property. As a result, there exists a diffusion process ((X t ) t≥0 , (P x ) x∈X ) on the whole space X associated with

(E ,W 1,2 (X)) in the sense that E x [ f (X t )] = T t f (x) for f ∈ C(X), x ∈ X and t > 0.
Denote by P(X) the set of all Borel probability measures on X. Let us define a positive Borel measure T t ν for ν ∈ P(X) and t ≥ 0 by

T t ν(dy) :=    X p t (x, y) ν(dx) H n (dy) t > 0, ν(dy) t = 0.
Thanks to (2.6), T t ν ∈ P(X) holds. By definition, T t ν is absolutely continuous with respect to H n for t > 0. When dν = f dH n , it holds dT t ν = T t f dH n . In this paper, we call the evolution (t, ν) → T t ν the gradient flow of the Dirichlet energy (since the Dirichlet energy is a functional on the L 2 -space of functions, this terminology should be interpreted in an extended sense). Indeed, it is easy to see from

1 2 E ( f + εg, f + εg) = 1 2 E ( f , f ) -ε X g∆ f dH n + O(ε 2 )
that the Radon-Nikodym derivative dT t ν/dH n is the gradient flow of E /2 with respect to the L 2 -norm. Before closing this subsection, we review the derivation property of W 1,2 (X). It is formulated as follows: For

f 1 , . . . , f k , g ∈ W 1,2 (X) ∩ L ∞ (X, H n ) and Φ : R k → R which is C 1 on the range of ( f 1 , . . . , f k ), Φ( f 1 , . . . , f k ) belongs to W 1,2 (X) and (2.7) ∇Φ( f 1 , . . . , f k ), ∇g = k ∑ j=1 ∂ Φ ∂ x j ( f 1 , . . . , f k ) ∇ f j , ∇g H n -a.e..
This identity directly follows from the definition of W 1,2 (X) or from the strong locality of the Dirichlet form (E ,W 

Gradient flows in the Wasserstein space

We next introduce the Wasserstein space and a purely metric notion of gradient flows in it. We refer to [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Villani | Optimal Transport, old and new[END_REF] for the basic theory as well as the recent diverse developments.

Given µ, ν ∈ P(X), a probability measure

π ∈ P(X × X) is called a coupling of µ and ν if π(A × X) = µ(A) and π(X × A) = ν(A) hold for all Borel sets A ⊂ X.
Then, for 1 ≤ p < ∞, we define the L p -Wasserstein distance as

W p (µ, ν) := inf π X×X d(x, y) p π(dxdy) 1/p
, where π runs over all couplings of µ and ν. In most parts, we work in the quadratic case p = 2. The L 2 -Wasserstein space (P(X),W 2 ) becomes a metric space and inherits the compactness from (X, d). Moreover, (P(X),W 2 ) is a geodesic space. If µ is absolutely continuous with respect to H n , then a minimal geodesic (µ t ) t∈[0,1] from µ to any ν is unique and µ t is also absolutely continuous for all t ∈ (0, 1) (see [START_REF] Bertrand | Existence and uniqueness of optimal maps on Alexandrov spaces[END_REF] for a more detailed characterization of µ t , and [START_REF] Figalli | Absolute continuity of Wasserstein geodesics in the Heisenberg group[END_REF] for the absolute continuity). For µ ∈ P(X), we define the relative entropy by Ent(µ) := X ρ log ρ dH n when µ = ρH n with ρ ∈ L 1 (X, H n ), and Ent(µ) := ∞ otherwise. Set P * (X) := {µ ∈ P(X) | Ent(µ) < ∞}. Note that Ent is lower semi-continuous with respect to W 2 and satisfies Ent(µ) ≥log H n (X) by Jensen's inequality.

Definition 2.4 (The curvature-dimension condition). For K ∈ R, we say that (X, d, H n ) satisfies the curvature-dimension condition CD(K, ∞) if Ent is K-geodesically convex in the sense that any pair µ, ν ∈ P(X) admits a minimal geodesic

(µ t ) t∈[0,1] from µ to ν such that Ent(µ t ) ≤ (1 -t) Ent(µ) + t Ent(ν) - K 2 (1 -t)tW 2 (µ, ν) 2
holds for all t ∈ [0, 1].

We remark that the above inequality is obvious if µ ∈ P * (X) or ν ∈ P * (X). Therefore it is sufficient to consider µ, ν ∈ P * (X), and then a minimal geodesic between them is unique.

Remark 2.5. (i) The curvature-dimension condition CD(K, ∞) for general metric measure spaces is introduced and studied independently in [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF], and known to be equivalent to the lower Ricci curvature bound Ric ≥ K for complete Riemannian manifolds equipped with the Riemannian distance and the volume measure ( [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF]).

(ii) The condition CD(K, N) for N ∈ (1, ∞) is also introduced in [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Lott | Weak curvature conditions and functional inequalities[END_REF]. In general, CD(K, N) implies CD(K, ∞). In the Riemannian case, CD(K, N) is equivalent to Ric ≥ K and dim ≤ N.

(iii) It is recently demonstrated in [34,[START_REF] Zhang | Ricci curvature on Alexandrov spaces and rigidity theorems[END_REF] that n-dimensional Alexandrov spaces of curvature bounded from below by k satisfy CD((n -1)k, n) (and hence CD((n -1)k, ∞)), as is naturally expected from the relation between the sectional and the Ricci curvatures.

There is a well established theory on the gradient flow of geodesically convex functions as comprehensively discussed in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. For later convenience, we recall a couple of notions in a general form. We say that a curve (µ t ) t∈I ⊂ P(X) on an interval Definition 2.6 (Gradient flows). Let E : P(X) → R ∪ {+∞} be a K-geodesically convex functional. We say that an absolutely continuous curve

I ⊂ R is absolutely continuous if there is f ∈ L 1 (I) such that (2.8) W 2 (µ t , µ s ) ≤ s t f ( 
(µ t ) t∈[0,∞) in P(X) is a gradient flow of E provided E(µ t ) < ∞ for t ≥ 0 and
(2.12)

E(µ t ) = E(µ s ) + 1 2 s t | μr | 2 dr + 1 2 s t |∇ -E| 2 (µ r ) dr
for all 0 ≤ t < s. The equation (2.12) is called the energy dissipation identity.

The existence of such a gradient flow comes from the general theory presented in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Corollary 2.4.11]. Furthermore, as shown in [27, Theorem 6.2] (see also [START_REF] Gigli | First variation formula in Wasserstein spaces over compact Alexandrov spaces[END_REF]Theorem 4.2]), the gradient flow produces a contraction semigroup in the sense that for any µ, ν ∈ P(X) with E(µ) < ∞ and E(ν) < ∞, the gradient flows

(µ t ) t∈[0,∞) , (ν t ) t∈[0,∞) starting from µ, ν satisfy (2.13) W 2 (µ t , ν t ) ≤ e -Kt W 2 (µ, ν) for all t ≥ 0,
where K is the modulus of convexity of E. In particular, the uniqueness follows from considering µ = ν. (Though the strategy of the construction in [START_REF] Ohta | Gradient flows on Wasserstein spaces over compact Alexandrov spaces[END_REF] is different from [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], the resulting flow is the same by uniqueness, see [ (ii) The first author [START_REF] Gigli | On the heat flow on metric measure spaces: existence, uniqueness and stability[END_REF]Theorem 15] proved the uniqueness of the gradient flow of the relative entropy on general metric measure spaces satisfying CD(K, ∞), without relying on the contractivity. In this generality, the contractivity fails. More precisely, the heat flow on a finite-dimensional (Minkowski) normed space is not contractive (except for inner product spaces; see [START_REF] Ohta | Non-contraction of heat flow on Minkowski spaces[END_REF]).

In the sequel, we mainly study the gradient flow of the relative entropy. Then (2.13) allows us to continuously and uniquely extend the gradient flow semigroup to the full P(X) (since the closure of P * (X) is P(X)). Such an extension also satisfies (2.13).

Identification of the two gradient flows

This section contains our main result: Theorem 3.1 (Identification of the two gradient flows). Let (X, d) be a compact n-dimensional Alexandrov space without boundary. For any ν ∈ P(X), the gradient flow of the Dirichlet energy starting from ν is the gradient flow of the relative entropy, and vice versa.

Recall that CD(K, ∞) holds with K = (n -1)k, and we use this, e.g., in the proof of Proposition 3.2 below. The main technical obstacle in the proof of this theorem is to let the L 2 and the W 2 structures 'interact'. Our strategy consists in picking a gradient flow of the Dirichlet energy and in proving that it obeys the energy dissipation identity (2.12) for the relative entropy. We start with a bound on the local slope (2.9) by the Fisher information.

Proposition 3.2 (Bound on the local slope)

. Let µ = f H n ∈ P * (X) with f ∈ W 1,2 (X). Then it holds |∇ -Ent | 2 (µ) ≤ X ∇ f , ∇ f f dH n .
Proof. We first assume that f is Lipschitz and bounded away from 0. Then we know that ∇ f , ∇ f = |∇ L f | 2 H n -a.e., so that the conclusion follows from [42, Theorem 20.1] together with CD(K, ∞). Thus all we need to do is to proceed by approximation. Suppose that 0 < c ≤ f H n -a.e. for some c ∈ R. Since C Lip (X) is dense in W 1,2 (X) and √ f ∈ W 1,2 (X), we can find a sequence {g i } i∈N of Lipschitz functions such that g i converges to √ f as i → ∞ with respect to the Sobolev norm. Substituting C i max{g i , √ c} for some C i > 0 if necessary, we can assume that √ c i ≤ g i for some c i > 0 H n -a.e. as well as g i L 2 = 1 for all i. Set f i := g 2 i . As f i is Lipschitz and bounded away from 0, we have

|∇ -Ent | 2 ( f i H n ) ≤ X ∇ f i , ∇ f i f i dH n .
On the one hand, the right-hand side is equal to 4E (g i , g i ) and converges to 4E 

( √ f , √ f ) = X ∇ f , ∇ f / f
|∇ -Ent |( f H n ) ≤ lim i→∞ |∇ -Ent |( f i H n ).
Combining these, we prove the claim for f . It remains to remove the assumption that f is bounded away from 0. To do this we just consider f i := (1 + i -1 ) -1 ( f + i -1 ) and apply (3.1) again.

Let us turn to considering the gradient flow of the Dirichlet energy (T t ν) t∈[0,∞) . For simplicity of notations, we write f t = dT t ν/dH n in the remainder of the section. By (2.3), f t ∈ C(X) ⊂ L 2 (X, H n ) holds for t > 0. Then (2.5), (2.4) and (2.3) imply f t ∈ D(∆). For any t > 0, there is ε t > 0 such that f t ≥ ε t holds since p t (x, y) is positive and continuous. As a well-known fact, the following bound also holds.

Lemma 3.3 (Maximum principle). Let f 0 ∈ L 2 (X, H n ). If f 0 ≥ c a.
e., then T t f 0 ≥ c a.e. for every t ≥ 0. The same holds for bounds from above.

Proof. Take A ⊂ X measurable. Since T t is Markovian, T t 1 A ≥ 0 H n -a.e.. Thus

A (T t f 0 -c) dH n = A T t ( f 0 -c) dH n = X T t 1 A • ( f 0 -c) dH n ≥ 0.
Since A is arbitrary, the assertion holds. Bounds from above follow by applying the same argument tof 0 .

By virtue of Lemma 3.3 with the remark before it, for any ε > 0, there are c,C > 0 such that

(3.2) c ≤ f t ≤ C for all t ≥ ε.
Proposition 3.4 (Entropy dissipation). Let ν ∈ P(X) and f t = dT t ν/dH n . Then the function t → Ent( f t H n ) is locally Lipschitz in (0, ∞) and, moreover, it holds 

d dt Ent( f t H n ) = - X ∇ f t ,
X ∆ f t dH n = 0, we obtain d dt Ent( f t H n ) = X e ( f t )∆ f t dH n = X log( f t ) + 1 ∆ f t dH n = - X ∇ log( f t ), ∇ f t dH n = - X ∇ f t , ∇ f t f t dH n .
For the next argument, we briefly recall some properties of the Hamilton-Jacobi semigroup in our context. For f ∈ C Lip (X) and t > 0, we define

Q t f : X → R by (3.3) Q t f (x) := inf y∈X f (y) + d 2 (x, y) 2t .
Also, set Q 0 f := f . The following is shown in [START_REF] Balogh | Functional inequalities and Hamilton-Jacobi equations in geodesic spaces[END_REF]Theorem 2.5(iv)] and [25, Theorem 2.5(viii)] in the framework of general metric measure spaces supporting the volume doubling condition and the Poincaré inequality for upper gradients.

Proposition 3.5 (Hamilton-Jacobi semigroup). It holds Q t f ∈ C Lip (X) for every t ≥ 0, the map [0, ∞) t → Q t f ∈ C(X)
is Lipschitz in the uniform norm, and

(3.4) d dt Q t f (x) + |∇ L Q t f | 2 (x) 2 = 0,
for almost every t, x.

Remark 3.6. The equation (3.3) has been called the Hopf-Lax formula or the Moreau-Yosida approximation also in the literature. The former name is mainly used in the PDE context to a special solution to the Hamilton-Jacobi equation (3.4). The latter one is typically used for an approximation of an (unbounded) operator in functional analysis.

Proposition 3.7 (Absolute continuity with respect to W 2 ). For ν ∈ P(X), the curve t → T t ν is absolutely continuous in the space (P(X),W 2 ) and its metric speed | Ṫ t ν| satisfies

(3.5) | Ṫ t ν| 2 ≤ X ∇ f t , ∇ f t f t dH n , for a.e. t.
Proof. Fix t, s > 0. By the Kantorovich duality (cf., e.g., [1, Theorem 6.1.1] and [42, Theorem 5.10]) together with (3.3), we obtain

(3.6) 1 2 W 2 2 T t ν, T t+s ν = sup ϕ∈C Lip (X) X (Q 1 ϕ) f t+s dH n - X ϕ f t dH n .
By Proposition 3.5, the map r → Q r ϕ from [0, 1] to L 2 (X, H n ) is Lipschitz. Moreover, it is differentiable in L 2 (X, H n ) and the derivative is determined by (3.4).

The curve

[0, 1] r → f t+rs ∈ L 2 (X, H n ) is Lipschitz as well. Thus [0, 1] r → (Q r ϕ) f t+rs ∈ L 1 (X, H n )
is Lipschitz and its derivative can be calculated with the Leibniz rule. Thus we have

X (Q 1 ϕ) f t+s dH n - X ϕ f t dH n (3.7) = 1 0 d dr X (Q r ϕ) f t+rs dH n dr = 1 0 X - |∇ L Q r ϕ| 2 2 f t+rs + s(Q r ϕ)∆ f t+rs dH n dr.
Using formulas (2.2), (3.2) and the trivial inequality

-∇g, ∇ g ≤ 1 2s ∇g, ∇g + s 2 ∇ g, ∇ g , H n -a.e. for s > 0,
we have

X (Q r ϕ)∆ f t+rs dH n = - X ∇Q r ϕ, ∇ f t+rs dH n = - X ∇Q r ϕ, ∇ f t+rs f t+rs f t+rs dH n ≤ 1 2s X ∇Q r ϕ, ∇Q r ϕ f t+rs dH n + s 2 X ∇ f t+rs , ∇ f t+rs f t+rs dH n .
Plugging this inequality in (3.7) and recalling that ∇Q r ϕ,

∇Q r ϕ = |∇ L Q r ϕ| 2 H n -a.e. (since Q r ϕ is Lipschitz), we obtain X (Q 1 ϕ) f t+s dH n - X ϕ f t dH n ≤ s 2 2 1 0 X ∇ f t+rs , ∇ f t+rs f t+rs dH n dr.
This bound does not depend on ϕ, thus from (3.6) we deduce

(3.8) W 2 2 T t ν, T t+s ν ≤ s 2 1 0 X ∇ f t+rs , ∇ f t+rs f t+rs dH n dr.
Since we have (3.2) and the Dirichlet energy decreases along the flow t → f t , we obtain

W 2 2 T t ν, T t+s ν ≤ s 2 c 1 0 X ∇ f t+rs , ∇ f t+rs dH n dr ≤ s 2 c X ∇ f t , ∇ f t dH n ,
which gives that the map t → T t ν ∈ P(X) is locally Lipschitz. The bound (3.5) follows directly from (3.8) (by recalling the definition of the absolutely continuous curves (2.8)).

Now we are ready to prove Theorem 3.1.

Proof. of Theorem 3.1. By Propositions 3.7, 3.2 and 3.4, we have

1 2 | ḟt H n | 2 + 1 2 |∇ -Ent | 2 ( f t H n ) ≤ X ∇ f t , ∇ f t f t dH n = - d dt Ent( f t H n )
a.e. t. As the reverse inequality (2.11) is always true, equality (2.12) holds for all 0 < t ≤ s. Since ( f t H n ) t∈[0,∞) is continuous also at t = 0, it is the gradient flow of the relative entropy. The converse immediately follows from the uniqueness of the gradient flow of the relative entropy.

Remark 3.8. (i) When ν = f 0 H n with f 0 ∈ L 2 (X, H n ),
we can give a proof of Theorem 3.1 without relying on the positivity improving property (3.2). Indeed, by virtue of the contraction property of both flows, it is possible to use Propositions 3.4, 3.7 only for 0 < c ≤ f 0 ≤ C and prove the theorem via approximation. It suggests that our argument possibly works in a more general framework where the existence of the density p t (x, y) does not follow from the theory of Dirichlet forms.

In such a case, we could 'construct' p t (x, •) as the gradient flow starting from the Dirac measure δ x ∈ P(X) (via the contraction property).

(ii) In the proof of Theorem 3.1, we heavily rely on the fact 

∇ f , ∇ f = |∇ L f | 2 for f ∈ C Lip (X)

Applications

In this section, we assume that (X, d) is a compact Alexandrov space without boundary satisfying CD(K, ∞), and prove some applications of Theorem 3.1. It should be stressed that the 'sectional curvature bound' k in the sense of drov appears nowhere in the sequel, and the 'Ricci curvature bound' K is essential instead (recall Remark 2.5). Indeed, those results involving K are natural extensions of the corresponding ones on a Riemannian manifold with Ric ≥ K. In this sense, the emergence of K instead of k is natural and gives sharper estimates.

Since the gradient flow of the Dirichlet energy T t ν is obviously linear and symmetric, we immediately obtain the following: Theorem 4.1 (Linearity and symmetry). For ν ∈ P(X), let (µ ν t ) t≥0 be the gradient flow of the relative entropy on P(X) with µ ν 0 = ν. Then the following hold true.

(i) For ν 0 , ν 1 ∈ P(X), λ ∈ [0, 1] and t ≥ 0, µ (1-λ )ν 0 +λ ν 1 t = (1 -λ )µ ν 0 t + λ µ ν 1 t . (ii) For f , g ∈ L 1 (X, H n ) with f , g ≥ 0 and f L 1 = g L 1 = 1, X f dµ gH n t = X g dµ f H n t .
We remark that the linearity, but not symmetry, also follows from the gradient flow approach under the local angle condition ( [START_REF] Savaré | Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds[END_REF]Theorem 8]). In general, these properties are completely nontrivial, and the linearity indeed fails in the Finsler setting ( [START_REF] Ohta | Heat flow on Finsler manifolds[END_REF]).

A new property for (T t ν) t≥0,ν∈P(X) coming from our identification with the gradient flow of the relative entropy is the L 2 -Wasserstein contraction (2.13). Together with [START_REF] Kuwada | Duality on gradient estimates and Wasserstein controls[END_REF]Corollary 3.4], we obtain the following:

Theorem 4.2 (Contraction for the heat flow). For 1 ≤ p ≤ 2, (4.1) W p (T t ν 0 , T t ν 1 ) ≤ e -Kt W p (ν 0 , ν 1 )
holds for every ν 0 , ν 1 ∈ P(X).

Furthermore, by the duality result [19, Theorem 2.2], Theorem 4.2 yields the following Bakry-Émery type L 2 -gradient estimate

(4.2) |∇ L T t f |(x) ≤ e -Kt T t (|∇ L f | 2 )(x) 1/2
for any f ∈ C Lip (X) and x ∈ X. By combining (4.2) with the regularity of the heat kernel, we can extend it to f ∈ W 1,2 (X) as follows:

Theorem 4.3 (Gradient estimate). Let f ∈ W 1,2 (X) and t > 0. Then T t f ∈ C Lip (X) and 
(4.3) |∇ L T t f |(x) ≤ e -Kt T t (|∇ f | 2 )(x) 1/2
holds for all x ∈ X. In particular,

(4.4) |∇T t f |(x) ≤ e -Kt T t (|∇ f | 2 )(x) 1/2 for a.e. x
and

|∇ L T t f | ≤ e -Kt T t L 1 →L ∞ E ( f , f ) hold. Proof. Take { f i } i∈N ⊂ C Lip (X) such that f i → f in W 1,2 (X) as i → ∞. Then (4.2) yields T t f i ∈ C Lip (X).
Let y ∈ X and γ : [0, l] → X a unit speed minimal geodesic from x to y. Since |∇ L T t f i | is an upper gradient of T t f i (see [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF]Proposition 1.11] for instance), we have

|T t f i (y) -T t f i (x)| ≤ l 0 |∇ L T t f i |(γ(s)) ds (4.5) ≤ e -Kt l 0 T t (|∇ L f i | 2 )(γ(s)) 1/2 ds,
where the second inequality follows from (4.2). Thanks to (2.3) and the boundedness of p t , T t f i converges pointwisely to

T t f as i → ∞. Since T t (|∇ L f i | 2 )(z) = T t (|∇ f i | 2 )(z) for z ∈ X, T t (|∇ L f i | 2 ) converges pointwisely to T t (|∇ f | 2
) in a similar manner. Thus, by letting i → ∞ in (4.5), we obtain

(4.6) |T t f (x) -T t f (y)| ≤ e -Kt l 0 T t (|∇ f | 2 )(γ(s)) 1/2 ds.
The boundedness of p t yields that there is C > 0 satisfying (4.7)

T t g(z) ≤ C g L 1 (X,H n )
for all g ∈ L 1 (X, H n ) and z ∈ X. Since l = d(x, y), the estimate (4.7) for g = |∇ f | 2 together with (4.6) implies T t f ∈ C Lip (X). In order to show (4.3), choose a sequence {y i } i∈N in X so that y i → x as i → ∞ and

lim i→∞ |T t f (x) -T t f (y i )| d(x, y i ) = |∇ L T t f |(x).
By the continuity of p t , T t (|∇ f | 2 ) ∈ C(X) holds. Thus, applying (4.6) for y = y i , dividing both sides of it by d(x, y i ) and letting i → ∞ yield (4.3).

As an easy but important consequence of Theorem 4.3, we obtain the Lipschitz continuity of the heat kernel p t (x, y) as well as that of eigenfunctions. Recall that -∆ has discrete spectrum consisting of nonnegative eigenvalues with finite multiplicity ([20, Corollary 1.1]). (i) For ν ∈ P(X) and t > 0, let f t = dT t ν/dH n . Then f t ∈ C Lip (X) for t > 0. In particular, we have p t (x, •) ∈ C Lip (X) and T t f ∈ C Lip (X) for all x ∈ X and f ∈ L 1 (X, H n ). (ii) Let f be an L 2 -eigenfunction of ∆ corresponding to an eigenvalue -λ < 0.

Then f ∈ C Lip (X). Moreover,

|∇ L f | ≤ e (λ -K)t λ T t L 1 →L ∞ f L 2 (X,H n )
holds for each t > 0.

Proof. Since f t ∈ W 1,2 (X), Theorem 4.3 yields that f t = T t/2 f t/2 ∈ C Lip (X). For the second assertion, note that f = e λt T t f . Then the first assertion and E ( f , f ) = λ f 2 L 2 (X,H n ) yield the conclusion. Remark 4.5. (i) It has been known that the heat kernel p t (x, y) is (locally) Hölder continuous of some fractional exponent, that follows from the parabolic Harnack inequality shown in [START_REF] Kuwae | Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces[END_REF].

(ii) The existence and the continuity of p t are used in the proof of Theorems 4.3, 4.4 in an essential way (cf. Remark 3.8).

(iii) To obtain a useful estimate of |∇ L T t f | along our argument, we need a nice bound for T t L 1 →L ∞ . For instance, the parabolic Harnack inequality, or the Nash inequality, implies (4.8)

p t (x, y) ≤ C H n (B √ t (x)
) with some constant C > 0 being independent of t, x, y, for small t. It gives a bound for T t L 1 →L ∞ . By a general argument, (4.8) follows from the local Poincaré inequality and the volume doubling condition, both of which depend only on the dimension n of X and a lower curvature bound (see [START_REF] Kuwae | Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces[END_REF][START_REF] Kuwae | On generalized measure contraction property and energy functionals over Lipschitz maps[END_REF][START_REF] Ranjbar-Motlagh | Poincaré inequality for abstract spaces[END_REF][START_REF] Sturm | Analysis on local Dirichlet spaces.III. The parabolic Harnack inequality[END_REF] for instance). However, we should be careful if we want to know whether C in (4.8) depends on the diameter and/or the volume of X. Indeed, estimates of type (4.8) are mainly studied on non-compact state spaces and hence they did not seem to pay so much attentions on such a dependency in the literature.

In what follows, we consider two additional applications of the Bakry-Émery gradient estimate (4.4) by employing the Lipschitz continuity of T t f . The first one is the following inequality:

Theorem 4.6 (Γ 2 -condition). Let f ∈ D(∆) with ∆ f ∈ W 1,2 (X). Then, for g ∈ D(∆) ∩ L ∞ (X, H n ) with g ≥ 0 and ∆g ∈ L ∞ (X, H n ), we have (4.9) 1 2 X ∆g ∇ f , ∇ f dH n - X g ∇∆ f , ∇ f dH n ≥ K X g ∇ f , ∇ f dH n .
Remark 4.7. (i) By virtue of the analyticity of T t and Theorem 4.4, we have T t f ∈ D(∆ m+1 ) and ∆ m T t f ∈ C Lip (X) for any f ∈ L 2 (X, H n ), t > 0 and m ≥ 0. Thus there are fairly many f and g's satisfying the condition in Theorem 4.6.

(ii) The inequality (4.9) is nothing but a weak form of the Γ 2 -condition

(4.10) Γ 2 ( f , f ) := 1 2 ∆( ∇ f , ∇ f ) -2 ∇ f , ∇∆ f ≥ K ∇ f , ∇ f .
This inequality is known to be equivalent to (4.4) in an abstract framework (see [START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF][START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF] and references therein, for instance). However, the assumption involves the existence of a nice core A ⊂ D(∆) and it seems hopeless to verify it on Alexandrov spaces. When X is a complete Riemannian manifold, the inequality (4.10) is equivalent to Ric ≥ K. Indeed,

Γ 2 ( f , f ) = Ric(∇ f , ∇ f ) + | Hess f | 2 holds by the Bochner identity.
Proof. We first show the claim for f ∈ D(∆)∩C Lip (X) with ∆ f ∈ D(∆)∩L ∞ (X, H n ). By (4.4), we obtain (4.11)

X g ∇T t f , ∇T t f dH n ≤ e -2Kt X gT t ( ∇ f , ∇ f ) dH n .
The derivation property (2.7) yields that, for t ≥ 0,

X g ∇T t f , ∇T t f dH n (4.12) = X ∇(gT t f ), ∇T t f dH n - X T t f ∇g, ∇T t f dH n = - X gT t f ∆T t f dH n - 1 2 X ∇g, ∇(T t f ) 2 dH n = - X gT t f T t ∆ f dH n + 1 2 X ∆g(T t f ) 2 dH n . Hence we obtain d dt X g ∇T t f , ∇T t f dH n t=0 (4.13) = - X g(∆ f ) 2 dH n - X g f ∆ 2 f dH n + X ∆g f ∆ f dH n = X ∇(g∆ f ), ∇ f dH n + X ∇(g f ), ∇∆ f dH n - X ∇g, ∇( f ∆ f ) dH n = 2 X g ∇∆ f , ∇ f dH n by using the derivation property again. Since f ∈ C Lip (X), ∇ f , ∇ f = |∇ L f | 2 ∈ L ∞ (X, H n ) holds. Hence we have d dt e -2Kt X gT t ( ∇ f , ∇ f ) dH n t=0 (4.14) = d dt e -2Kt X (T t g) ∇ f , ∇ f dH n t=0 = X ∆g ∇ f , ∇ f dH n -2K X g ∇ f , ∇ f dH n . Since (4.11) implies (4.15) d dt X g ∇T t f , ∇T t f dH n t=0 ≤ d dt e -2Kt X gT t ( ∇ f , ∇ f ) dH n t=0 ,
we obtain (4.9) by combining (4.15) with (4.13) and (4.14).

Next we consider the case that f ∈ D(∆) with ∆ f ∈ W 1,2 (X). Then, by the above discussion, T δ f and g satisfy (4.9) for δ > 0 (cf. Remark 4.7(i)). Since g, ∆g ∈ L ∞ (X, H n ) and ∆T δ f = T δ ∆ f , it suffices to show the claim that lim δ →0 ∇T δ h, ∇T δ h = ∇h, ∇h weakly in L 1 (X, H n ) for h, h ∈ W 1,2 (X). By polarization, we may assume h = h . The spectral decomposition yields (4.16) lim

δ →0 E (T δ h -h, T δ h -h) = 0 (see [12, Lemma 1.3.3], for instance). Let ψ ∈ L ∞ (X, H n ). Then the Schwarz inequality yields X ψ ∇T δ h, ∇T δ h dH n - X ψ ∇h, ∇h dH n (4.17) ≤ X ψ 2 |∇T δ h| 2 dH n 1/2 + X ψ 2 |∇h| 2 dH n 1/2 × E (T δ h -h, T δ h -h) 1/2 ≤ 2 ψ L ∞ E (h, h) 1/2 E (T δ h -h, T δ h -h) 1/2 .
Hence the desired claim follows from (4.16) and (4.17).

While we proved the implication from (4.1) with p = 2 to (4.4) and (4.9), these conditions are equivalent to each other on complete Riemannian manifolds (see [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy and Ricci curvature[END_REF]). Such an equivalence still holds in our framework with a sharp constant, which can be different from K in our hypothesis CD(K, ∞): Theorem 4.8 (Equivalence of "Ricci curvature bound" inequalities). Given K 0 ∈ R, the following are equivalent.

(i) (4.1) holds for ν 0 , ν 1 ∈ P(X) and t ≥ 0, with p = 2 and K = K 0 . (ii) (4.4) holds for f ∈ W 1,2 (X) and t ≥ 0 with K = K 0 . (iii) (4.9) holds with K

= K 0 for f ∈ D(∆) with ∆ f ∈ W 1,2 (X) and g ∈ D(∆) ∩ L ∞ (X, H n ) with g ≥ 0 and ∆g ∈ L ∞ (X, H n ).
Proof. "(i) ⇒ (ii) ⇒ (iii)" is already shown in Theorem 4.3 and Theorem 4.6.

For "(iii) ⇒ (ii)", it follows from a standard argument of the so-called Γ 2calculus (see [START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF][START_REF] Ledoux | The geometry of Markov diffusion generators[END_REF] for instance). For completeness, we give a sketch of the proof. Take g 0 ∈ C(X) with g 0 ≥ 0 arbitrary and let g = T δ g 0 . Then g

∈ D(∆)∩L ∞ (X, H n ) with g ≥ 0 and ∆g ∈ L ∞ (X, H n ). Let us define Ψ : [0,t] → R by Ψ(s) := X gT s (|∇T t-s f | 2 ) dH n .
By a similar calculation as in (4.12), we can easily prove that Ψ is continuous on [0,t) and C 1 on (0,t). A similar argument as in (4.17) yields that Ψ is continuous at t. Here we use the ultracontractivity T t L 1 →L ∞ < ∞. A similar calculation as in the proof of Theorem 4.3 together with the assumption in (iii) leads to the inequality Ψ (s) ≥ 2K 0 Ψ(s). Hence (4.4) follows by integrating it.

For "(ii) ⇒ (i)", we claim that (4.4) implies (4.3) for every x ∈ X. Indeed, by using a bi-Lipschitz chart, we can bring the problem locally on an open set in a Euclidean space. Then, by applying [2, Lemma 3.2.1] and by using the continuity of T t (|∇ f | 2 ), the claim follows. Then we can apply [START_REF] Kuwada | Duality on gradient estimates and Wasserstein controls[END_REF]Theorem 2.2] to conclude (i) from (4.3). Remark 4.9. By the same argument as in "(ii) ⇒ (i)" of the last proof, we can give a proof of T t f ∈ C Lip (X) for f ∈ W 1,2 (X) under the condition (4.4). In other word, a priori regularity T t f ∈ C Lip (X) by Theorem 4.3 is not used in the last proof.

As the second application of (4.4), we mention that (4.4) together with Theorem 4.4 implies some functional inequalities by means of [START_REF] Kawabi | The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces[END_REF]Theorem 1.3]. Since T t is Markovian, we can restrict T t to a contraction on L ∞ (X, H n ). Then we can further extend T t to a contraction on L p (X, H n ) for any 1 ≤ p ≤ ∞ by interpolation and the symmetry of T t . Let us denote the infinitesimal generator of T t in L p (X, H n ) by ∆ p . Let us define R (q) α f := |∇((α -∆ p ) -q/2 f )|. Corollary 4.10. Let 2 ≤ p < ∞, q > 1 and α > max{(-K), 0}. Then we have the following:

(i) There exists a constant C R > 0 which depends only on p, q and max{(α + K), α} such that R (q) α f L p ≤ C R f L p for f ∈ L p (X, H n ). (ii) Suppose q < 2. Then there exists C p,q > 0 such that |∇T t f | L p ≤ C p,q R (q) α L p →L p α q/2 + t -q/2 f L p for t > 0 and f ∈ L p (X, H n ).

Proof. It is sufficient to verify the assumption of [START_REF] Kawabi | The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces[END_REF]Theorem 1.3]. Set A := C Lip (X) ∩ D(∆ 2 ). Since we already know (4.4), we only need to show the following claim: A is dense in W 1,2 (X) and f 2 ∈ D(∆ 1 ) holds for any f ∈ A . By Theorem 4.4, T t f ∈ A holds. Thus A is dense in W 1,2 (X) since E (T t ff , T t ff ) → 0 as t → 0 (cf. (4.16)). By [START_REF] Bouleau | Dirichlet forms and analysis on Wiener space[END_REF]Proposition I.2.4.3], it is enough to prove f 2 ∈ D(∆ 2 ) for f ∈ A . Take g ∈ W 1,2 (X) arbitrary. Recall that

|∇ f | 2 = |∇ L f | 2 ∈ L ∞ (X, H n ).
The derivation property yields

|E ( f 2 , g)| = 2 X f ∇ f , ∇g dH n = 2 X ( ∇ f , ∇(g f ) -g ∇ f , ∇ f )dH n = 2 X ( f ∆ f -∇ f , ∇ f )g dH n ≤ 2 f L ∞ ∆ f L 2 + |∇ f | 2 L 2 g L 2 .
This estimate means f 2 ∈ D(∆ 2 ) and hence the proof is completed.

Finally, we observe that all of our results are generalized to the heat equation with drift, in other words, the Fokker-Planck equation. Given a potential function V ∈ C Lip (X), we modify the Dirichlet energy and the relative entropy into

E V ( f , g) = X ∇ f , ∇g e -V dH n f , g ∈ W 1,2 (X),
Ent V (µ) = Ent(µ) + X V dµ µ ∈ P(X).

We regard E V as a bilinear form on L 2 (X, e -V H n ). Observe that Ent V is nothing but the relative entropy with respect to e -V H n . Note that the semigroup T V t on L 2 (X, e -V H n ) associated with E V solves the following diffusion equation Since e -V is bounded and away from 0, e -V H n is equivalent to H n . Hence (X, d, e -V H n ) satisfies the volume doubling condition as well as the Poincaré inequality for upper gradients. Moreover, as E and E V are equivalent, the Poincaré inequality for E V is also valid. Therefore a continuous density p V t for T V t exists. Under the assumption that Ent V is K-geodesically convex, we can apply the general theory of the gradient flow on (P(X),W 2 ) to obtain the gradient flow µ t of Ent V . Furthermore, every argument in Sections 3, 4 works verbatim and gives similar results for the equation (4.18). Note that, under CD(K, ∞) for (X, d, H n ), the K -convexity of V implies the (K + K )-convexity of Ent V .
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  r) dr for all t, s ∈ I with t ≤ s. Note that absolutely continuous curves are continuous. For an absolutely continuous curve (µ t ) t∈I , the metric derivative| μt | := lim h→0 W 2 (µ t , µ t+h ) |h| is well-defined for a.e. t ∈ I ([1, Theorem 1.1.2]). Moreover, | μt | belongs to L 1 (I)and is the minimal function for which (2.8) holds. Given a functional E : P(X) → R ∪ {+∞}, we consider a gradient flow of E solving " μt = -∇E(µ t )" in the following sense. For µ ∈ P(X) with E(µ) < ∞, we define the local slope as E|(µ r ) dr for all t, s ∈ I with t < s along any absolutely continuous curve (µ t ) t∈I with values in P(X) with E(µ t ) < ∞. As a consequence, it holds
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s t |∇ -E| 2 (µ r ) dr for all t < s. From (2.10) and (2.11), it is natural to give the following definition.
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