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Abstract. We provide yet another proof of the Otto-Villani theorem from the

log Sobolev inequality to the Talagrand transportation cost inequality valid in

arbitrary metric measure spaces. The argument relies on the recent develop-
ment [2] identifying gradient flows in Hilbert space and in Wassertein space,

emphasizing one key step as precisely the root of the Otto-Villani theorem.

The approach does not require the doubling property or the validity of the
local Poincaré inequality.

1. Introduction. The Otto-Villani theorem [13] indicates that, on a Riemannian
manifold, the validity of the log Sobolev inequality implies the Talagrand trans-
portation cost inequality (preserving moreover optimal constant). The original
proof is inspired by the Riemannian formalism on the space of probability measures
established by Otto in [12]. An alternate more direct proof relying on infimum
convolutions and Hamilton-Jacobi equations was presented later in [4]. Since then,
the relation between the two families of inequalities, and its extension to abstract
metric measure spaces, has been investigated by a number of authors, e.g. [11],
[7] and the recent [9] (see also [15], [8]). In particular, the latter authors address
the implication in a rather general metric space context by means of dimension
free measure concentration tools [7], further investigated in the recent [9] which de-
velops the use of Hamilton-Jacobi equations and the Herbst argument (and covers
extended versions for modified log Sobolev inequalities and general transportation
costs). In [11], the Otto-Villani theorem is established in metric spaces satisfying
doubling property and local Poincaré inequality assumptions. These conditions ac-
tually allow the authors to rely on the existence of a weak differentiable structure on
the metric measure space (built by Cheeger in [5]) which in turn gives the possibility
to mimic the arguments valid in a Riemannian context.

By the dimension free nature of both the log Sobolev and the Talagrand inequal-
ities, it is quite unnatural to impose either the doubling condition on the measure
or the validity of a local Poincaré inequality, as these assumptions are finite di-
mensional in nature. Recent investigations [2] (see also [3], and [1] for a simplified
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exposition in the compact case) achieved to develop a differential calculus in metric
measure spaces, without the doubling property and the local Poincaré inequality
conditions, towards the equivalence of the heat flow generated by a suitable Dirich-
let energy and the Wasserstein gradient flow of the relative entropy functional in
the space of probability measures. As one key step in this identification process, the
heat flow is shown to have a metric speed in the Wasserstein space controlled by
the Fisher information, which is precisely the root of the Otto-Villani theorem as
emphasized in the formalism of [13]. This key argument has been put forward first
in [6] in the context of Alexandrov spaces, and its proof is presented below as 6 and
7 in the smooth case. It has been then extended in [2] to general metric measure
spaces.

It is the purpose of this short note to use this observation to provide a simple
and direct proof of the Otto-Villani theorem in a general metric measure theoretic
context. While the result itself does not necessarily go strictly beyond the framework
of [7] and [9], the emphasis is perhaps more on methodology, the differentiable
structure on metric measure space of [2] providing the suitable and coherent circle
of ideas leading to the Otto-Villani theorem as already expected by the formalism
of [13].

We deal below with standard Polish metric measure spaces. Actually, the most
natural setting would be that of extended Polish spaces as developed in [2], because
this framework covers the Wiener space, which is the standard infinite dimensional
space where log Sobolev inequalities hold. The approach we propose, based on
the calculus tools developed in [2], covers also this general framework: proofs are
verbatim the same. We however preferred to state everything in the more familiar
context of complete and separable metric spaces just to avoid dealing with the
uncommon technology presented in [2].

The new argument towards the Otto-Villani theorem put forward in this note is
already of interest in the smooth case so that we briefly present it below in Section
3. The rest of the paper will be devoted to recall and organize the main conclusions
of the recent investigation [2] linking the gradient flows in Hilbert space and in the
Wasserstein space in metric measure spaces relevant to the Otto-Villani theorem.
In particular, it is of importance to suitably describe the family of log Sobolev
inequalities under consideration. The main result is contained in the last section.
We start by collecting standard notions in metric (measure) spaces.

2. Metric notions. This section recalls the necessary metric notions towards the
subsequent investigation. We refer to [15], [2] for complete details. The metric
spaces (X, d) will always be complete and separable. Dealing with metric measure
space (X, d,m), the measure m will always be a Borel probability measure. A curve
γ : [0, 1] → X is said to be absolutely continuous if there exists g ∈ L1(0, 1) such
that

d(γt, γs) ≤
∫ s

t

g(r) dr, ∀t < s ∈ [0, 1]. (1)

In this case, the metric speed of γ is well-defined for a.e. t by

|γ̇t| := lim
h→0

d(γt+h, γt)

|h|
.

It turns out that |γ̇| ∈ L1(0, 1) and this is the minimal L1 function for which 1
holds.
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Given f : X → R, the local Lipschitz constant |∇f | : X → [0,∞] is defined by

|∇f |(x) := lim
y→x

|f(x)− f(y)|
d(x, y)

,

and the ascending/descending slopes |∇+f |, |∇−f | : X → [0,∞] by

|∇+f |(x) := lim
y→x

(f(y)− f(x))+

d(x, y)
, |∇−f |(x) := lim

y→x

(f(y)− f(x))−

d(x, y)
,

where (·)+, (·)− are the positive and negative part, respectively. One says that
G : X → [0,∞] is an upper gradient of f : X → R provided for any absolutely
continuous curve γ : [0, 1]→ X it holds∣∣f(γ1)− f(γ0)

∣∣ ≤ ∫ 1

0

G(γt)|γ̇t|dt. (2)

It is not difficult to check (see for instance Proposition 2.5 of [2] for the simple
proof) that if f is Lipschitz, then |∇f |, |∇+f | and |∇−f | are all upper gradients.

Denote by P(X) the space of Borel probability measures on X and by P2(X) ⊂
P(X) the space of probability measures with finite second moment. The Wasser-
stein distance W2(µ, ν) between two measures µ, ν ∈P(X) is defined by

W 2
2 (µ, ν) := inf

γ

∫
X×X

d2(x, y) dγ(x, y)

where the infimum is taken among all plans γ ∈P(X ×X) such that π1
]γ = µ and

π2
]γ = ν. Notice that we are defining W2 between arbitrary measures in P(X), so

that it is possible that the value +∞ is attained. The Wasserstein distance W2 is a
metric on P2(X), and (P2(X),W2) is again complete and separable.

The relative entropy functional Entm : P(X) → [0,∞] with respect to a given
m ∈P(X) is defined by

Entm(µ) :=


∫
X

ρ log ρdm, if µ = ρm,

+∞, otherwise.

Recall that sublevels of the entropy are tight. Indeed, using first the bound z log(z) ≥
− 1
e and then Jensen’s inequality we get that for any µ = ρm such that Entm(µ) ≤ C

and for any Borel set E, it holds

1

e
+ C ≥ m(X \ E)

e
+ Entm(µ) ≥

∫
E

ρ log ρdm ≥ µ(E) log

(
µ(E)

m(E)

)
so that the claim follows from the tightness of m. We will denote by D(Entm) ⊂
P(X) the domain of the entropy, i.e. the set of measures µ ∈ P(X) such that
Entm(µ) <∞.

Under these notations, the Talagrand transportation cost inequality (proved in
[14] in Euclidean space for m the Gaussian measure) states that for some constant
C > 0 and every µ ∈P(X),

W 2
2 (µ,m) ≤ C Entm(µ). (3)

The Otto-Villani theorem expresses that this inequality holds under a log Sobolev
inequality (to be recalled below), preserving the constants.
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3. The smooth case. In this short section, we present the argument of [6] and
the principle of proof of the Otto-Villani theorem which we would like to emphasize
in the case of a smooth Riemannian manifold (X, g) with the standard differential
calculus (as presented e.g. in [15]).

The log Sobolev inequality for a probability measure m on the Borel sets of
X indicates that there is a constant α > 0 such that for every smooth function
f : X → [0,∞) with

∫
X
fdm = 1,

2α

∫
X

f log f dm ≤
∫
{f>0}

|∇f |2

f
dm. (4)

The task is thus to establish, under the log Sobolev inequality 4, the transportation
cost inequality 3 (with constant C = 2

α ; for the standard Gaussian measure in
Euclidean space, α = 1 is optimal for both the log Sobolev and the Talagrand
inequalities).

Given µ ∈ P(X) with (smooth) density f with respect to m, denote by (ft)
the heat flow with respect to the Dirichlet form

∫
X
〈∇u,∇v〉dm starting from f .

Set ϕ(t) = Entm(µt), t ≥ 0, where µt = ftm. The standard calculus (Boltzmann
formula) yields

d

dt
Entm(µt) = −

∫
{ft>0}

|∇ft|2

ft
dm, (5)

so that the log Sobolev inequality 4 expresses equivalently that ϕ′ ≤ −2αϕ.
Following the strategy of [13] through the formal Riemannian structure on (P2(X),W2),

the aim is to show that the curve t 7→ µt = ftm in (P2(X),W2) has a metric speed
satisfying

|µ̇t|2 ≤
∫
{ft>0}

|∇ft|2

ft
dm (a.e. t). (6)

Once this holds, the conclusion easily follows. Namely, by 5, the latter amounts to
|µ̇t| ≤

√
−ϕ′(t). Since by the log Sobolev inequality ϕ′ ≤ −2αϕ and thus√

−ϕ′ ≤ −
√

2

α
(
√
ϕ)′,

it follows by integration (according to 1 in (P2(X),W2)) that, for all T > 0,

W2(µ, µT ) ≤
∫ T

0

|µ̇t|dt ≤ −
√

2

α

∫ T

0

(√
ϕ(t)

)′
dt =

√
2

α

(√
ϕ(0)−

√
ϕ(T )

)
.

Since Entm(µT )→ 0 as T → +∞,

W2(µ,m) ≤ lim
T→+∞

W2(µ, µT ) ≤ lim
T→∞

√
2

α

(
ϕ(0)−ϕ(T )

)
=

√
2

α
ϕ(0) =

√
2

α
Entm(µ),

which amounts to the transportation cost inequality 3 with constant C = 2
α .

The central point of the approach is thus to establish 6. The following simple
and direct proof has been thus put forward in [6] and shown in [2] to be flexible
enough to extend to the case of general metric measure spaces. The argument relies
on a suitable interlacing of the heat flow and the Hamilton-Jacobi equation.

For a continuous Lipschitz and bounded function g on X, and t, s > 0, write∫
X

(Q1g)ft+s dm−
∫
X

gft dm =

∫ 1

0

d

dr

[ ∫
X

(Qrg)ft+rs dm

]
dr
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where

Qrg(x) = inf
y∈X

[
g(y)− d(x, y)2

2r

]
is the infimum convolution of g with the quadratic cost. The semigroup (Qr)r>0

represents the Hopf-Lax solution of the Hamilton-Jacobi equation

d

dr
Qrf(x) +

|∇Qrf |2(x)

2
= 0

(for almost every t, x). Hence,∫
X

(Q1g)ft+s dm−
∫
X

gft dm =

∫ 1

0

∫
X

(
−|∇Qrg|

2

2
ft+rs−s〈∇Qrg,∇ft+rs〉

)
dmdr.

By the Cauchy-Schwarz inequality

−〈∇Qrg,∇ft+rs〉 ≤
1

2s
|∇Qrg|2ft+rs +

s

2

|∇ft+rs|2

ft+rs

so that ∫
X

(Q1g)ft+s dm−
∫
X

gft dm ≤ s2

2

∫ 1

0

∫
X

|∇ft+rs|2

ft+rs
dmdr.

By the dual Kantorovich representation of the Wasserstein distance W2 (cf. e.g.
[15]), taking the supremum on g on the left-hand side of the preceding inequality
yields, for all t, s > 0,

W 2
2 (µt+s, µt) ≤ s2

∫ 1

0

∫
X

|∇ft+rs|2

ft+rs
dmdr, (7)

from which 6 follows. The Otto-Villani theorem is thus established in this way.

4. The general metric measure space case. To address the preceding proof
of the Otto-Villani theorem in the context of a general metric space, we first recall
the necessary differential calculus in non-smooth spaces developed in the recent [2]
(and to which we refer for further details) which provides the key step 6. We repeat
that metric measure spaces (X, d,m) studied in this paper consist of a complete and
separable metric space (X, d) equipped with a Borel probability measure m.

4.1. The Sobolev space W 1,2(X, d,m). There are several equivalent definitions
of the Sobolev space W 1,2(X, d,m), here we follow the approach - and use the results
- of [2]. Define the functional Ch : L2(X,m)→ [0,∞] by

Ch(f) := inf lim
n→∞

1

2

∫
X

|∇fn|2 dm,

where the infimum is taken among all sequences (fn) of Lipschitz functions con-
verging to f in L2(X,m). Then the space W 1,2(X, d,m) is defined as the set of f ’s
such that Ch(f) <∞ endowed with the norm

‖f‖2W 1,2 := ‖f‖2L2 + 2Ch(f).

It turns out that for f ∈W 1,2(X, d,m) there exists a map |∇f |∗ ∈ L2(X,m) - which
plays the role of the modulus of distributional gradient for Sobolev functions on Rd
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- which is characterized by the following two properties:

Ch(f) =
1

2

∫
X

|∇f |2∗ dm,

|∇f |∗ ≤ G, m− a.e. ∀G such that there exists a sequence (fn) of Lipschitz

functions converging to f in L2 such that

|∇fn|⇀ G in L2(X,m).

Two theorems are worth to mention.

Theorem 4.1 (Relation with upper gradients). Let f ∈ L2(X,m) and G an upper
gradient for it as defined in 2. Assume that G ∈ L2(X,m). Then f ∈W 1,2(X, d,m)
and

|∇f |∗ ≤ G, m− a.e. (8)

Theorem 4.2. For any f ∈ W 1,2(X, d,m), there exists a sequence of Lipschitz
functions (fn) converging to f in L2(X,m) such that |∇fn| converges to |∇f |∗ in
L2(X,m).

For the proof of the first theorem, see Theorem 6.2 of [2] (or [1] for the compact
case). The second is obvious.

Let us briefly explain the importance of these results. The typical definition of
W 1,2(X, d,m), see for instance [5], is to proceed by relaxing upper gradients of L2

functions, rather than the local Lipschitz constant of Lipschitz functions. With
this approach, Theorem 4.2 is totally non trivial, while Theorem 4.1 is straight-
forward (we refer to the survey [10] for an overview of the standard approach to
Sobolev spaces over metric measure spaces). A step forward made in [2] has been
to show that to relax the local Lipschitz constant produces the same space given by
the relaxation of upper gradients, which therefore yields to both Theorem 4.1 and
Theorem 4.2,

4.2. Properties of the gradient flow of Ch. Notice that the functional Ch :
L2(X,m)→ [0,∞] is convex, lower semicontinuous and with dense domain, so that
the standard theory of gradient flows on Hilbert space applies. This means that
for any f ∈ L2(X,m) there exists a unique locally absolutely continuous curve
(ft) ⊂ L2(X,m) on [0,∞) such that f0 = f and it holds

d

dt
ft ∈ −∂Ch(ft), a.e. t.

In [2] (with an approach inspired by [6]) properties of this gradient flow have been
studied extensively, especially in connection with concepts coming from optimal
transport theory like Wasserstein distance and relative entropy. In particular, the
following main results of [2] are critical in the identification of the gradient flows for
the Cheeger energy in L2(X,m) and for the entropy functional in (P2(X),W2). As
announced and illustrated in Section 3, they actually contain the key step towards
the Otto-Villani theorem (described here in item (ii) corresponding to 6).

Theorem 4.3. Let (X, d,m) be a metric measure space, µ ∈ D(Entm) and let f be
its density with respect to m. Let (ft) be the gradient flow of Ch starting from f .
Then the following are true:

(i) ftm ∈P(X) for any t ≥ 0 ;
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(ii) the curve t 7→ µt := ftm is locally absolutely continuous on (0,∞) with respect
to the Wasserstein distance W2 and for its metric speed |µ̇t| it holds

|µ̇t|2 ≤
∫
{ft>0}

|∇ft|2∗
ft

dm, a.e. t;

(iii) the map t 7→ Entm(µt) =
∫
X
ft log ft dm is locally absolutely continuous and

it holds
d

dt
Entm(µt) = −

∫
{ft>0}

|∇ft|2∗
ft

dm, a.e. t.

Items (i) and (iii) are proved in (c), (d) of Theorem 4.16 in [2] while (ii) is the
content of Lemma 6.1 therein. For the simplified approach in the case of compact
spaces, we refer to [1].

5. The Otto-Villani theorem. On the basis of the previous differential calculus
and the main Theorem 4.3, we address in this section the Otto-Villani theorem in
the general context of a metric measure space with the scheme of proof put forward
in the smooth case (Section 3).

We start by noticing that various typical formulations of the log Sobolev inequal-
ity are all equivalent. The result of the following proposition is already well-known
if m is doubling and (X, d,m) supports a local Poincaré inequality (see [11]). How-
ever, as remarked in the introduction of [3], there is no need for these hypotheses,
and the statement below is just an exemplification of what is expressed in [3] for
the particular case of the log Sobolev inequality. Technically speaking, the proof is
based on the density of Lipschitz functions in W 1,2(X, d,m) proved in [2].

Proposition 1 (Equivalent formulations of the log Sobolev inequality). Let (X, d,m)
be a metric measure space and let α > 0. Then the following are equivalent:

(i) For any Lipschitz function f : X → [0,∞) with
∫
X
fdm = 1, it holds

2α

∫
X

f log f dm ≤
∫
{f>0}

|∇f |2

f
dm.

(ii) For any Lipschitz function f : X → [0,∞) with
∫
X
fdm = 1, it holds

2α

∫
X

f log f dm ≤
∫
{f>0}

|∇−f |2

f
dm.

(iii) For any continuous f : X → [0,∞) with
∫
X
fdm = 1 and any upper gradient

G of f it holds

2α

∫
X

f log f dm ≤
∫
{f>0}

G2

f
dm.

(iv) For any non-negative f ∈W 1,2(X, d,m) with
∫
X
fdm = 1, it holds

2α

∫
X

f log f dm ≤
∫
{f>0}

|∇f |2∗
f

dm.

Proof. (ii) ⇒ (i) is trivial, and given that for Lipschitz functions slopes are upper
gradients (iii) ⇒ (ii) is also trivial. The property of weak gradients expressed in
inequality 8 shows that also (iv)⇒ (iii) is true.

Thus everything boils down in proving that (i) implies (iv). For this we use
the density Theorem 4.2. Pick f ∈ W 1,2(X, d,m) and assume without loss of
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generality that
∫
{f>0}

|∇f |2∗
f dm < ∞. For c > 0, let fc := ac min{c−1,max{f, c}},

where ac is such that
∫
X
fc dm = 1. Notice that ac → 1 as c ↓ 0. Also, observe

that
∫
X
|∇fc|2∗
fc

= 4Ch(
√
fc) < ∞ and use Theorem 4.2 to find a sequence (gnc ) of

Lipschitz functions such that gnc →
√
fc and |∇gnc | → |∇

√
fc|∗ in L2(X,m). Up to

passing to a subsequence we can also assume that the convergence of (gnc ) to
√
fc is

also m-a.e.. Then the Lipschitz functions fnc := (gnc )2 converge to fc pointwise a.e.
and thus by dominated convergence it holds∫

X

fc log fc dm = lim
n→∞

∫
X

fnc log fnc dm.

Since fnc is Lipschitz for any n, c by hypothesis we know that

2α

∫
X

fnc log fnc dm ≤
∫
{fn

c >0}

|∇fnc |2

fnc
dm = 4

∫
X

|∇gnc |2 dm.

The right-hand side of this equality converges, by construction, to 4Ch(
√
fc) =∫

X
|∇fc|2∗
fc

dm. Hence we proved that

2α

∫
X

fc log fc dm ≤
∫
X

|∇fc|2∗
fc

dm,

for any c > 0. Letting c ↓ 0 we complete the proof.

As the proof shows it would be equivalent to state (ii) with the ascending slope
|∇+f | in place of |∇−f |. The formulation here is the way the log Sobolev inequality
is usually written (see e.g. Theorem 3.22 of [15]). Also, we point out that the
equivalence between (i) and (iv) relies only on Theorem 4.2 (and not on the delicate
Theorem 4.1), which in turn is a direct consequence of the way |∇f |∗ is defined.

We then say that (X, d,m) supports the log Sobolev inequality with constant α
provided any of the inequalities in the Proposition 1 is true.

Lemma 5.1. Assume that (X, d,m) supports the log Sobolev inequality with con-
stant α > 0 and let µ ∈ D(Entm). Let f be the density of µ with respect to m and
(ft) be the gradient flow of Ch starting from f . Set µt = ftm, t ≥ 0. Then as
t→ +∞, we have Entm(µt)→ 0 and µt ⇀ m in duality with Cb(X).

Proof. Let ϕ(t) := Entm(µt), t ≥ 0, and recall that (iii) of Theorem 4.3 yields

that ϕ is locally absolutely continuous with ϕ′(t) = −
∫
X
|∇ft|2∗
ft

dm. Then the fact

that (X, d,m) supports the log Sobolev inequality with constant α implies (see
formulation (iv) of Proposition 1) that ϕ′ ≤ −2αϕ, which by the Gronwall lemma
further gives

ϕ(t) ≤ e−2αtϕ(0) = e−2αt Entm(µ), (9)

so that the first claim is proved. To prove the second one, recall that the sublevels
of Entm are tight, and so for any sequence tn →∞ there exists a subsequence, not
relabeled, such that (µtn) weakly converges to some ν as n → ∞ in duality with
Cb(X). By 9 we then have

Entm(ν) ≤ lim
n→∞

Entm(µtn) = 0,

hence ν = m. Since this is independent on the chosen sequence (tn), the claim is
proved.
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Provided with these results, the Otto-Villani theorem is now established exactly
as in the smooth case (Section 3).

Theorem 5.2 (Otto-Villani theorem). Let (X, d,m) be a metric measure space
supporting the log Sobolev inequality with constant α > 0 (Proposition 1). Then it
also supports the Talagrand inequality with constant 2

α , i.e. it holds

W 2
2 (µ,m) ≤ 2

α
Entm(µ)

for all µ ∈P(X).

The theorem immediately leads to the following consequence.

Corollary 1. Let (X, d,m) be a metric measure space supporting the log Sobolev
inequality for some α > 0. Then m has finite second moment.

Proof. Thanks to the Talagrand inequality, it is sufficient to prove that D(Entm)∩
P2(X) is non empty. But this is obvious, as any measure of the form m(A)−1m|A,

with A ⊂ X Borel, bounded and with positive m-measure is in both D(Entm) and
P2(X).
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