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ON SPECTRAL DISJOINTNESS OF POWERS FOR RANK-ONE

TRANSFORMATIONS AND MÖBIUS ORTHOGONALITY

EL HOUCEIN EL ABDALAOUI, MARIUSZ LEMAŃCZYK, AND THIERRY DE LA RUE

Abstract. We study the spectral disjointness of the powers of a rank-one
transformation. For a large class of rank-one constructions, including those for
which the cutting and stacking parameters are bounded, and other examples
such as rigid generalized Chacon’s maps and Katok’s map, we prove that
different positive powers of the transformation are pairwise spectrally disjoint
on the continuous part of the spectrum. Our proof involves the existence, in
the weak closure of {Uk

T : k ∈ Z}, of “sufficiently many” analytic functions of
the operator UT .

Then we apply these disjointness results to prove Sarnak’s conjecture for
the (possibly non-uniquely ergodic) symbolic models associated to these rank-
one constructions: All sequences realized in these models are orthogonal to
the Möbius function.

Résumé. Nous étudions la disjonction spectrale des puissances d’une trans-
formation de rang un. Pour une large classe de constructions de rang un, in-
cluant celles dont les paramètres de découpage et empilage sont bornés, ainsi
que d’autes exemples commes les transformations de Chacon généralisées et
la transformation de Katok, nous prouvons que les puissances positives de la
transformation sont deux-à-deux spectralement disjointes sur la partie continue
du spectre. Notre preuve s’appuie sur l’existence, dans la fermeture faible de
{Uk

T : k ∈ Z}, de suffisamment de fonctions analytiques de l’opérateur UT .
Nous appliquons ensuite ces résultats de disjonction pour prouver la con-

jecture de Sarnak dans les modèles symboliques associés à ces constructions
de rang un (qui peuvent ne pas être uniquement ergodiques) : toutes les suites
réalisées dans ces modèles sont orthogonales à la fonction de Möbius.

1. Introduction

1.1. Rank-one automorphisms. The class of rank-one automorphisms has been
under intensive study in ergodic theory for many decades since the works of Bax-
ter [7], Chacon [11], Katok-Stepin [30, 29] and Ornstein [35], being both a source
of interesting examples and constructions, as well as developing its own methods.

Recall that an automorphism T of a given a standard Borel probability space
(X,B, µ) is said to be rank-one if there exists a sequence of (partial) partitions (Pn)
of X which are Rokhlin towers for the transformation T , that is to say of the form
{Fn, TFn, . . . , T

hn−1Fn}, such that for each A ∈ B

min{µ(A△An), An measurable with respect to Pn} −−−−→
n→∞

0.
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Moreover, we can always assume that the sequence (Pn) of Rokhlin towers is in-
creasing, which means that for each n, Fn+1 ⊂ Fn and the levels T iFn of Pn are
unions of levels of Pn+1. The construction of such a transformation can be realized
by the cutting and stacking method [21], [34] (Chapter 7), which visually can be
described as a series of refining constructions: At stage n ≥ 1 we have a Rokhlin
tower Pn = {Fn, TFn, . . . , T

hn−1Fn} whose base Fn, visualized as an interval, is
then divided into pn equal subintervals, giving rise to pn columns of Pn which are
numbered from 0 to pn− 1. For each i = 0, . . . , pn − 1, above column i, we add sn,i
spacers, then stack columns with added spacers one above another to obtain Pn+1,
where the dynamics is to jump by one level up. Assuming that the first tower is
reduced to a single level P1 = {F1}, as we can always do without loss of generality,
the construction of the rank-one automorphism is then completely described by
the sequences of parameters (pn)n≥1 and (sn,i)n≥1,0≤i≤pn−1. There are many other
ways to define rank-one transformations [18], [25], including symbolic models which
are described in details in Section 7 (see also Section 4).

Despite the fact that the spectral theory of rank-one automorphisms is rather
well developed (see e.g. [1], [2], [3], [4], [8], [14], [18], [30], [31], [34], [36], [37]), it
still possesses many important open problems1. In this paper we will be mostly
interested in the problem of spectral disjointness of positive2 different powers T n,
n ≥ 1, for a rank-one automorphism. Recall that two automorphisms T and S
are spectrally disjoint if the maximal spectral types σT and σS of their associated
Koopman unitary operators UT : f 7→ f ◦ T and US : g 7→ g ◦ S are mutually
singular. (We only consider the action of these operators on the subspace of L2

orthogonal to constant functions.) We write in this case T ⊥sp S. The spectral
disjointness question for different powers of T asks whether or not the images of σT
via the maps z 7→ zn, z 7→ zm are mutually singular whenever n 6= m. This question
is interesting for itself in the class of rank-one transformations, and even though
this disjointness property holds for a generic rank-one transformation [13, 26], there
exist weakly mixing rank-one automorphisms whose different positive powers can
be even isomorphic [5] (see also [15] and [39]).

Observe that if the automorphism T is not weakly mixing, then different powers
of T always share some non-trivial eigenvalues, hence are never spectrally disjoint.
In the non-weakly mixing case, the question of spectral disjointness of different
positive power should therefore be reformulated, and we rather ask whether the
continuous parts of their maximal spectral types are mutually singular.

When the present paper was under final redaction, we received the preprint by
V.V. Ryzhikov [40], in which he proves that all weakly mixing bounded rank-one
constructions have disjoint (in the Furstenberg sense) positive powers.

1.2. Orthogonality with Möbius function - Sarnak’s conjecture. Another
motivation to study spectral disjointness of different powers in the class of rank-one
transformations was recently taken up by Bourgain in [9] and deals with Sarnak’s
conjecture. Recall that the Möbius function µ : N → Z is defined by µ(1) = 1,
µ(n) = 0 for non-square-free positive integers, and µ(n) = ±1 depending on the
parity of the number of prime factors for the remaining positive integers. (We use

1The most famous open problem being whether there exists a rank-one automorphism with
Lebesgue spectrum. If this is so, it would give the positive answer to the long-standing Banach
problem of existence of automorphism with simple Lebesgue spectrum.

2Recall that any automorphism T is spectrally isomorphic to its inverse.
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here the bold version of the symbol µ to distinguish the Möbius function from the
probability measure µ.) Sarnak’s conjecture [41] states that for each homeomor-
phism T of a compact metric space X with zero topological entropy, any f ∈ C(X)
and any x ∈ X , the sequence

(
f(T nx)

)
n≥1

is orthogonal to the Möbius function,

i.e.

(1)
1

N

N∑

n=1

f(T nx)µ(n) −−−−→
N→∞

0.

Let (X,T ) be a uniquely ergodic topological system, and µ its invariant probability
measure. Following [10], we say that (X,T, µ) has Möbius orthogonal prime powers
if for each f ∈ C(X) with

∫
X f dµ = 0 and each x ∈ X , for each sufficiently large

different prime numbers p, q

(2)
1

N

N∑

n=1

f(T pnx)f(T qnx) −−−−→
N→∞

0.

Compared to the classical notion of disjointness in ergodic theory [22], and follow-
ing [10], we have the following chain of implications:

(3)
Spectral disjointness of different primes powers ⇒
Disjointness of different primes powers ⇒
Möbius orthogonality of prime powers ⇒ Sarnak’s conjecture for (X,T ).

In fact, it is proved in [10] that Möbius orthogonality of prime powers implies
the validity of a generalized version of (1) in which µ(n) can be replaced by any
bounded multiplicative function of the positive integer n (that is, any function ν(n)
satisfying ν(nm) = ν(n)ν(m) whenever n and m are coprime).

By considering consecutively an ergodic rotation on finitely many points, and
an irrational rotation on the circle, we see that we cannot reverse the last two of
the three implications in (3). To see that the first implication cannot be reversed
either, consider first S with the MSJ property [27] acting on a space (Y, C, ν) (and
having singular spectrum3). Then Sp ⊥ Sq for 1 ≤ p < q by [27]. Consider now a
2-point extension T (acting on (X,B, µ)) of S with the property that the spectrum
L2(X,B, µ)⊖L2(Y, C, ν) is Lebesgue; this can be done using [23]. Now, by [27], T is
simple, and T p and T q remain disjoint for 1 ≤ p < q still (because of weak mixing
of all transformations considered here, and by the lifting disjointness property by
group extensions [22]). On the other hand, T p is not spectrally disjoint with T q

because both have a Lebesgue component in their spectrum.
When all different positive (prime) powers of an automorphism T are disjoint,

Sarnak’s conjecture holds for every uniquely ergodic topological model of T . How-
ever, it seems unclear whether, if in one uniquely ergodic topological model of an
automorphism T Sarnak’s conjecture holds, then it holds in all uniquely ergodic
topological models of T .

In [9], Bourgain considers all rank-one constructions in which the cutting and
stacking parameters, pn and sn,i, are uniformly bounded and sn,pn−1 = 0 (that is,
with no spacer on the last column), and deals with the uniquely ergodic topological

3It is an open question whether there exists an MSJ automorphism with Lebesgue spectrum. If
it exists this would give us an example for which we have disjointness of different positive powers,
while all of them are spectrally isomorphic.
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symbolic models of such transformations. He proves some kind of spectral disjoint-
ness for different prime numbers rescalings of generalized Riesz products describing
the maximal spectral type of a rank-one transformation. This kind of spectral dis-
jointness turns out to be sufficient to obtain a basic Möbius orthogonality lemma
proved in [10]. As indicated in [9], the positive answer to Sarnak’s conjecture in the
class of all rank-one transformations would give automatically the positive answer
to Sarnak’s conjecture for almost every interval exchange transformations (see [42]
for rank-one property of almost every IET). In [9] the 3-IET case is considered.

1.3. Outline of the paper. We first develop in Section 2 the purely spectral part
of our argument. Spectral disjointness of powers of a unitary operator U with
continuous maximal spectral type is derived from the existence, in the weak closure
of {Uk : k ∈ Z}, of “sufficiently many” analytic functions of the operator U , with
a suitable control of their coefficients (see in particular Corollary 1).

Then we prove that for a large class of rank-one constructions, we can find appro-
priate weak limits in the weak closure of {Uk

T : k ∈ Z} to get spectral disjointness
(on the continuous part of the spectrum) of different positive powers. In particular,
we consider so-called bounded rank-one constructions, which simply means that all
parameters (pn) and (sn,i) are uniformly bounded (but here we impose no special
restriction on the last column, so that the number of consecutive spacers is not
necessarily bounded, as spacers coming from different steps of the construction can
accumulate). More generally, we deal with the following generalization of the class
of bounded rank-one transformations: The cutting and stacking parameters (pn)
and (sn,i) being given, we say that the rank-one construction is recurrent if we can
find an increasing subsequence (nk) and bi-infinite sequences (πm)m∈Z of positive
integers and (ηm)m∈Z = (ηm,0, . . . , ηm,πm−1)m∈Z such that, for all m ∈ Z and all
0 ≤ j ≤ πm − 1,

pnk+m −−−−→
k→∞

πm, and snk+m,j −−−−→
k→∞

ηm,j .

Such a subsequence (nk) will henceforth be called a stabilizing subsequence. The
rank-one construction is said to be bounded-recurrent if we can find a stabilizing
subsequence for which the limit parameters ηn,j are uniformly bounded (we do not
require in this definition the boundedness of the parameters (πm)).

To obtain appropriate weak limits in the bounded-recurrent case, we use the in-
tegral representation over odometer model introduced in [24] for rank-one automor-
phisms, and a general theorem describing weak limits in this setting (Theorem 1).
This, together with a “non-flatness” condition gives the spectral disjointness on the
continuous part of the spectrum for different positive powers of a bounded-recurrent
rank-one construction (Theorem 2).

We also prove in Section 6 that our method for proving the spectral disjointness
of the powers can also work in classical rank-one examples where pn −−−−→

n→∞
∞,

which of course prohibits the existence of stabilizing subsequences. We consider
here the family of rigid generalized Chacon’s maps, and Katok’s map.

In Section 7, we are concerned with the application of our spectral disjointness
results to Sarnak’s conjecture in the symbolic model associated to a given rank-one
construction. Here two kinds of difficulties appear: First, these symbolic models
are not in general uniquely ergodic, and we will need an extra combinatorial ar-
gument (Proposition 5) to deal with the other possible ergodic invariant measure
(the Dirac mass on a fixed point). Theorem 4 shows that, at the cost of an extra
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hypothesis on the control of the parameters (sn,i) (which is automatically fulfilled
in the bounded case), we can prove Sarnak’s conjecture in spite of the lack of unique
ergodicity. Second, since we only get spectral disjointness on the continuous part
of the spectrum, we have to take into account the possible eigenvalues. We treat
the case of a finite cyclic group of eigenvalues, which can arise in bounded rank-
one constructions. We finally get Sarnak’s conjecture for the symbolic model of
any bounded rank-one contruction (Theorem 6), provided this symbolic model is
well defined (that is to say, provided the automorphism is not isomorphic to an
odometer).

Acknowledgments. The authors would like to thank J.-P. Thouvenot for discus-
sions on the subject of the paper.

2. Weak limits of unitary operators and disjointness of powers

Let U be a unitary operator of a separable Hilbert space H . We denote by σU
the maximal spectral type of U , and we assume throughout that σU is continuous.

Assume that for some increasing sequence (hn)n≥1 of natural numbers we have

Uhn −−−−→
n→∞

∞∑

m=−∞

amU
m

weakly in H , for some complex numbers am, m ∈ Z, such that

(4)

∞∑

m=−∞

|am| < +∞.

Then

(5) zhn −−−−→
n→∞

∞∑

m=−∞

amz
m

weakly in L2(S1, σU ), and the formula

(6) ξ(z) :=

∞∑

m=−∞

amz
m

defines a continuous function ξ on the whole circle S1. We can interpret the coeffi-
cients am, m ∈ Z, as the Fourier coefficients of the function ξ.

Proposition 1. If am, m ∈ Z, in (5) decreases to zero exponentially fast as |m| →
∞, then the RHS function defined σU -a.e. in (5) has a (unique) extension to the
function ξ (in (6)) which is an analytic function on the circle S1.

Let p ≥ 2 be an integer, and let σ be a positive, finite, Borel measure on S1. We
have the following observation:

(7)
If σ ≡ σ1 + . . .+ σp then there exist σ̃i ≪ σi, i = 1, . . . , p,
σ̃i ⊥ σ̃j whenever i 6= j and σ ≡ σ̃1 + . . .+ σ̃p.

We denote by σ(p) the image of σ via the map z 7→ zp. Then, we claim that there
exists νp ≪ σ such that

(8) (νp)
(p) ≡ σ(p),
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and

(9) the map z 7→ zp is 1-1 νp-a.e.

To see the claim, first write σ ≡ σ1 + . . .+ σp with σi := σ|[(i−1)/p,i/p), i = 1, . . . , p
(by abuse of notation, we identify a subinterval of [0, 1) with the corresponding arc
in S1). Then, we have

σ(p) ≡ (σ1)
(p) + . . .+ (σp)

(p).

Apply (7) to the latter decomposition to obtain mutually singular (̃σi)(p) ≪ (σi)
(p)

for i = 0, . . . , p − 1 satisfying the assertion of (7). Then pull back the measures

(̃σi)(p) on [(i− 1)/p, i/p) via the inverse of z 7→ zp which is 1-1 to obtain a measure
ηi and finally set νp := η1 + . . .+ ηp.

Lemma 1. Let 1 ≤ p < q be two integers such that Up 6⊥sp Up. Then there
exist U -invariant non-zero subspaces Hp ⊂ H and Hq ⊂ H, cyclic for Up and U q

respectively, such that Up|Hp
is spectrally isomorphic to U q|Hq

.

Proof. By our non-disjointness assumption, there exists 0 6= ν ≪ (σU )
(p) ∧ (σU )

(q).
Apply the above claim to find νp ≪ σU satisfying (8) (with σU in place of σ)
and (9). Let Gp be a cyclic space for U of spectral type νp. Then this space is

also Up-invariant. By (8), the spectral type of Up on Gp is equal to (σU )
(p), while

by (9), the spectrum of Up on Gp is simple.
In this way we have found a U -invariant (cyclic) space which is also cyclic for

Up. Take Hp ⊂ Gp to be the Up-invariant (necessarily cyclic) subspace Hp ⊂ Gp of
type ν. Since Up has simple spectrum on Gp, Hp is also U -invariant. Do the same
with q in place of p, and find a U q-cyclic space Hq of spectral type ν which is also
U -invariant. Clearly, Up|Hp

is isomorphic to U q|Hq
. �

Assume now that for each k ≥ 1

(10) Ukhn −−−−→
n→∞

Fk(U) :=

∞∑

m=−∞

a(k)m Um

weakly in H . Set εk := e2πi/k. Given z = e2πiθ ∈ S1 with θ ∈ [0, 1), we also write

r
(k)
j (z) := e2πi((θ+j)/k), j = 0, . . . , k − 1.

Note that for 1 ≤ p < q, 0 ≤ j ≤ p− 1, and for each z ∈ S1,

(11)
(
r
(pq)
0 (z)

)q

= r
(p)
j (z)ε−j

p .

We obtain a symmetric formula for q.

Proposition 2. Fix 1 ≤ p < q and assume that Fp and Fq are analytic on S1

(that is, the coefficients a
(p)
m , a

(q)
m , m ∈ Z, decrease exponentially fast). If, for each

j = 0, . . . , p− 1, k = 0, . . . , q − 1, the analytic functions

z 7→ Fp(ε
j
pz

q) and z 7→ Fq(ε
k
qz

p)

are different, then Up and U q are spectrally disjoint. If p and q are coprime then
we only need to check that Fp(z

q) 6= Fq(z
p).

Proof. Suppose that Up 6⊥sp U
q. Then, by Lemma 1, we can find a Up-invariant

cyclic subspace Hp ⊂ H and a U q-invariant cyclic subspace Hq ⊂ H such that
(Hp, U

p) and (Hq, U
q) are isomorphic, and both Hp and Hq are U -invariant. Let

σ′ be the common maximal spectral type of Up|Hp
and U q|Hq

. By passing to
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the spectral model, the action of Up on Hp and the action of U q on Hq are both
represented in L2(S1, σ′) by multiplication by z. The action of U onHp (respectively
Hq) is represented in L2(S1, σ′) by multiplication by some function ϕp (respectively
ϕq) of modulus one. Moreover, in view of (10) in Hp (with k = p), zhn converges
weakly in L2(S1, σ′) to Fp(ϕp(z)), while by (10) in Hq (with k = q), it also converges
weakly in L2(S1, σ′) to Fq(ϕq(z)). Therefore, we have

(12) Fp(ϕp(z)) = Fq(ϕq(z)) for σ′-a.e z ∈ S1.

Moreover

ϕp(z)
p = z = ϕq(z)

q (σ′-a.e.).

It follows that

ϕp(z) ∈ {r
(p)
0 (z), . . . , r

(p)
p−1(z)} (σ′-a.e.)

and

ϕq(z) ∈ {r
(q)
0 (z), . . . , r

(q)
q−1(z)} (σ′-a.e.)

Thus, there exist j ∈ {0, . . . , p− 1}, k ∈ {0, . . . , q− 1} and A ⊂ S1, σ′(A) > 0, such
that

(13) ϕp(z) = r
(p)
j (z), ϕq(z) = r

(q)
k (z) for each z ∈ A.

Set Θ : A→ S1, Θ(z) := r
(pq)
0 (z). In view of (11) and (13)

Θ(z)qεjp = ϕp(z), Θ(z)pεkq = ϕq(z), z ∈ A.

Now, defining ν as the image of the measure σ′|A via the map A ∋ z 7→ Θ(z) ∈ S1,
we obtain by (12) that Fp(ε

j
pw

q) = Fq(ε
k
qw

p) for ν-a.e. w ∈ S1. Since Fp, Fq are
analytic, and ν is a non-zero continuous measure, the two analytic functions

z 7→ Fp(ε
j
pz

q) and z 7→ Fq(ε
k
qz

p)

coincide. This proves the first part of the lemma.
If additionally, p and q are coprime, there is a unique m ∈ {0, . . . , pq − 1} such

that for the map Θ : A→ S1 defined by Θ(z) := r
(pq)
m (z) we have

Θ(z)q = r
(p)
j (z), Θ(z)p = r

(q)
k (z), z ∈ A.

(Indeed, m satisfies m = j mod p and m = k mod q, so the assertion follows
by the Chinese remainder theorem.) We conclude, as in the general case, that
Fp(w

q) = Fq(w
p). �

Set Σ(Fk) := {n ∈ Z : a
(k)
n 6= 0} and notice that

Σ
(
Fp(ε

j
p( · )

q)
)
= qΣ(Fp).

Corollary 1. Assuming that Fp and Fq are analytic, if qΣ(Fp) 6= pΣ(Fq), then
Up ⊥sp U

q. In particular, if 1 ∈
(
Σ(Fp)−Σ(Fp)

)
∩
(
Σ(Fq)−Σ(Fq)

)
, then Up ⊥sp

U q.

Remark 1. In order to prove Sarnak’s conjecture for some automorphisms, we are
interested in spectral disjointness Up ⊥sp U

q only for prime powers. In particular, p
and q are coprime. Under the latter assumption, the equality qΣ(Fp) = pΣ(Fq) (see
Proposition 2) yields Σ(Fp) ⊂ pZ and Σ(Fq) ⊂ qZ. Moreover, Fp

(
( · )q

)
= Fq

(
( · )p

)

implies

a(p)ps = a(q)qs for each s ∈ Z.



8 EL HOUCEIN EL ABDALAOUI, MARIUSZ LEMAŃCZYK, AND THIERRY DE LA RUE

It follows that, for p 6= q prime numbers and assuming the analyticity of Fp and
Fq, U

p 6⊥sp U
q implies the existence of a sequence (bs)s∈Z such that Fp and Fq are

of the form

(14) Fp(z) =

∞∑

s=−∞

bsz
ps, Fq(z) =

∞∑

s=−∞

bsz
qs.

3. A weak convergence theorem for integral automorphisms

Let S be an ergodic automorphism of a standard Borel probability space (Y, C, ν).
Let f : Y → Z∗

+ = {1, 2, . . .} be integrable. Set

Y f := {(y, i) : y ∈ Y, 0 ≤ i < f(y)},

with the natural product structure, the Borel σ-algebra Bf and the probability
measure νf defined by

νf (A) :=
1∫

Y f dν

∑

i≥0

ν
(
{y ∈ Y : (y, i) ∈ A}

)
.

We consider on Y f the vertical action Sf : (y, i) 7→ (y, i + 1), where we identify
(y, f(y)) with (Sy, 0). Then Sf is an ergodic automorphism of (Y f ,Bf , νf ) called
integral automorphism over S.

Let g : Y → Z. For each q ≥ 1, we set

g(q,S) := g + g ◦ S + · · ·+ g ◦ Sq−1.

(If it is clear which underlying transformation S we refer to, we will only write g(q)

instead of g(q,S).) Let P(Z) be the space of all probability distributions on Z. We
denote by g∗ ∈ P(Z) the probability distribution of g (that is, the image of ν under
the map g).

Now we also assume that (Y, d) is a compact metric space, and that f is square
integrable. Suppose that S is uniformly rigid along an increasing sequence (qn),
i.e. d(Sqny, y) → 0 uniformly, when n → ∞. Then by Theorem 6 in [20] (with
Cn = Y ) combined with Lemma 3, Lemma 31 and the proof of Proposition 32
in [17] we obtain the following result.

Theorem 1. Under the above assumptions on S and f , assume that there exist
M > 0, P ∈ P(Z), and a sequence (hn) ⊂ Z such that ‖f (qn) − hn‖L2 ≤M , n ≥ 1,
and

(15)
(
f (qn) − hn

)
∗
−−−−→
n→∞

P weakly in P(Z).

Then

(16) (Sf )−hn −−−−→
n→∞

∑

k∈Z

P ({k})(Sf )k

weakly in the space of Markov operators.

Remark 2. Note that when ‖(f (qn)(·)− hn‖L2 ≤M , we also have

‖(f (jqn) − jhn‖L2 ≤ jM for all j ≥ 1

(indeed, we have f (jqn) = f (qn)+ f (qn) ◦Sqn + . . .+ f (qn) ◦S(j−1)qn). Therefore, by
passing to a subsequence if necessary, the sequence

(
(f (jqn) − jhn)∗

)
n≥1

converges

weakly to some probability measure Pj ∈ P(Z) and the assertion of Theorem 1 holds
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with hn replaced by jhn and P replaced by Pj . In general, there is no connection
between P and Pj .

4. Rank-one transformations as integral automorphisms and weak
convergences

For the representation of a rank-one transformation as an integral automorphism
over an odometer, we follow [34] (see also e.g. [24], [36]).

Assume that pj ≥ 2 are integers for j ≥ 1. Set qn := p1p2 · · · pn, n ≥ 1. Let (Y, S)
be the corresponding (qn)-odometer. That is, we define Y as the compact metric
space Y := Π∞

n=1{0, . . . , pn − 1}. We endow it with the topological group structure
by adding the coordinates modulo pn and transferring the carry to the right. We
also consider on Y the Haar probability measure ν, under which all coordinates are
uniformly distributed (in their respective integer intervals) and independent. This

measure is preserved by the odometer transformation S, defined by S(y) := y + 1̂

with 1̂ := (1, 0, 0, . . .). It is a rank-one transformation itself, where no spacers

are added. We have a refining sequence of towers Dn = {D
(n)
0 , . . . , D

(n)
qn−1}, n ≥

1, fulfilling the whole space and tending to the partition into points, defined by

D
(n)
0 := {y ∈ Y : y1 = . . . = yn = 0} and D

(n)
i := SiD

(n)
0 for i = 0, . . . , qn − 14.

Note that Dn is the partition generated by the n first coordinates of y ∈ Y , and
that

SqnD
(n)
i = D

(n)
i (0 ≤ i ≤ qn − 1).

Moreover,

(17) D
(n)
qn−1 = D

(n+1)
qn−1 ∪D

(n+1)
2qn−1 ∪ . . . ∪D

(n+1)
pn+1qn−1

and

SqnD
(n+1)
jqn−1 = D

(n+1)
(j+1)qn−1, j = 1, . . . , pn+1 − 1,(18)

SqnD
(n+1)
pn+1qn−1 = D

(n+1)
qn−1 .

Assume that f : Y → Z+
∗ is an L1-function. We call it of Morse type if it can be

represented as

(19) f = 1 +

∞∑

n=1

sn

where sn : Y → Z+ = {0, 1, 2, . . .} is Dn-measurable, n ≥ 1, and

(20) supp sn ⊂ D
(n−1)
qn−1−1 for n ≥ 2.

By (17), the function sn is completely defined by the values it takes on D
(n)
qn−1−1,

D
(n)
2qn−1−1, . . . , D

(n)
pnqn−1−1, which we respectively denote by sn,0, sn,1, . . ., sn,pn−1.

Set h1 := 1, and for n ≥ 1 set

(21) hn+1 := pnhn +

pn−1∑

j=0

sn,j .

When f is a Morse type function, it is not hard to see that the integral au-
tomorphism Sf is rank-one. Indeed, the sequence of towers for Sf is obtained

4Yet, another partition of Y at stage n ≥ 1 can be considered: It is given by n-columns

C
(n)
i :=

⋃qn−1
r=0 SrD

(n)
iqn

, i = 0, 1, . . . , pn+1 − 1; notice that y ∈ C
(n)
i if and only if yn+1 = i.
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consecutively by taking the towers with base D
(n)
0 ×{0}. These towers have heights

given by hn above.
As a matter of fact, each rank-one transformation is of the form Sf for some

odometer S and f of Morse type [24], [34]: pn are given by the number of columns
in the construction, while the functions sn are given by the number of spacers
over a column, the sequence (hn) of heights of the towers is obtained from the
recursive formula (21) relating the heights of the towers with the parameters giving
the number of divisions and the spacers.

Lemma 2. For each n ≥ 1 the function s
(qn)
n (·) is constant on Y and

(22) s(qn)n (y) =

pn−1∑

j=0

sn,j.

Moreover,

(23) s(jqn)n (y) = js(qn)n for each j ≥ 1.

We also have

(24) hn+1 = pnhn + s(qn)n .

Proof. The orbit {y, Sy, . . . , Sqn−1y} of each point y ∈ Y meets every set D
(n)
iqn−1−1

exactly once for each i = 1, . . . , pn. Hence (22) follows. Also (23) follows as

s
(jqn)
n (y) =

∑j−1
m=0 s

(qn)
n (Smqny). Finally, (24) follows from (22) and (21). �

Lemma 3. We have

(1 + s1 + s2 + . . .+ sn)
(qn)(y) = hn+1

for each y ∈ Y .

Proof. Indeed, by Lemma 2 and the fact that q1 = p1,

(1 + s1)
(q1) = q1 + s

(q1)
1 = p1 +

p1−1∑

j=0

s1,j = h2.

Assume now the lemma has been proved for some n ≥ 1. Then, by Lemma 2, it
follows that

(1 + s1 + s2 + . . .+ sn + sn+1)
(qn+1)(y)

= (1 + s1 + s2 + . . .+ sn)
(pn+1qn)(y) + s

(qn+1)
n+1 (y)

=

pn+1−1∑

m=0

(1 + s1 + s2 + . . .+ sn)
(qn)(Smqny) +

pn+1−1∑

j=0

sn+1,j

= pn+1hn+1 +

pn+1−1∑

j=0

sn+1,j = hn+2.

�

Set fn+1 :=
∑

m≥n+1 sm. Then supp fn+1 ⊂ D
(n)
qn−1. Define also gn+1(y) :=

fn+1(S
iy), where 0 ≤ i < qn is unique to satisfy Siy ∈ D

(n)
qn−1, that is, we spread

the values of fn+1 along the columns C
(n)
i , see footnote 4: for z ∈ D

(n)
iqn

we set

gn+1(z) = gn+1(Sz) = . . . = gn+1(S
qn−1z) = fn+1(S

qn−1z).
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Lemma 4. For each j ≥ 1 we have

f
(jqn)
n+1 = g

(j,Sqn)
n+1 .

Proof. Since by (20), supp fn+1 ⊂ D
(n)
qn−1, for each y ∈ Y the orbit {y, . . . , Sqn−1y}

meets the support exactly once, so the result holds for j = 1.

In the general case, let 0 ≤ i < qn be such that Siy ∈ D
(n)
qn−1. Then the only

points in the orbit {y, . . . , Sjqn−1y} that meet D
(n)
qn−1 are of the form Si+kqny and,

by (18), we have
j−1∑

k=0

fn+1(S
i+kqny) =

j−1∑

r=0

gn+1(S
rqny)

which completes the proof. �

Using the above and the proof 5 of Theorem 1 we obtain the following result.

Proposition 3. For each j ≥ 1 and n ≥ 1 we have

f (jqn) − jhn+1 = g
(j,Sqn )
n+1 .

If, moreover,
(
f (jqnk

) − jhnk+1

)
∗
−−−−→
k→∞

Pj weakly in P(Z) then Pj({. . . ,−2,−1}) =

0,

(Sf )−jhnk −−−−→
k→∞

∞∑

r=0

Pj({r})(S
f )r,

and the function
∑∞

r=0 Pj({r})z
r is analytic in D. If the sequence Pj({r}), r ≥ 0

decreases exponentially fast, then
∑∞

r=0 Pj({r})z
r is analytic in D.

Proof. For the first part of the proposition, notice that by Lemmas 3 and 4, we
have

f (jqn) = (1 + s1 + . . .+ sn)
(jqn) + f

(jqn)
n+1 = jhn+1 + g

(j,Sqn )
n+1 .

Moreover, since gn+1 takes only non-negative values, Pj({. . . ,−2,−1}) = 0.
For the second part, we consider only j = 1 (the proof is the same for all j ≥ 1).

If the sequence ‖f (qnk
) − hnk+1‖L2 = ‖gnk+1‖L2, k ≥ 1, is bounded in L2(Y, C, ν),

the result follows directly from Theorem 1. If not, we take ε > 0 and find M > 0
so that P1([0,M ] ∩ Z) > 1− ε, that is

ν(Ck) > 1− ε, where Ck = {y ∈ Y : gnk+1 ≤M}

for all k large enough, say k ≥ K. Notice that the function gnk+1 is “almost”
S-invariant, because for each k ≥ 1, for all of the points y except those belonging

to the top level D
(nk)
qnk

−1, y and Sy are in the same column in C
(nk)
r (see footnote 4),

whence, by its definition, gnk+1(y) = gnk+1(Sy). It follows that ν(Ck△SCk) → 0

when k → ∞. Since now the functions (f (qnk
) − hnk+1)|Ck

, k ≥ K, are commonly
bounded, it follows that (by passing to a further subsequence if necessary) by
Theorem 6 in [20] (and using the arguments from [17])

(Sf )−hnk+1 → (1− ε)
∞∑

r=0

P ′
ε({r})(S

f )r + εJ,

5One can apply Theorem 1 directly to all rank-one transformations for which in their construc-
tions there are no spacers put over the the last column, and the number of spacers is bounded;
indeed, in this case the functions gn are commonly bounded.
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where P ′
ε ∈ P(Z) and J is a Markov operator. Moreover, P ′

ε → P , when ε→ 0. By
passing to a further subsequence if necessary, we obtain the result. �

5. Recurrent rank-one constructions and spectral disjointness of
powers

We now assume the existence of a stabilizing subsequence for our parameters (pn)
and (sn,j). Recall from Section 1 that it means we can find bi-infinite sequences
(πm)m∈Z and (ηm)m∈Z = (ηm,0, . . . , ηm,πm−1), and a subsequence (nk)k≥1 such
that, for all m ∈ Z and all 1 ≤ j ≤ πm,

pnk+m −−−−→
k→∞

πm, snk+m,j −−−−→
k→∞

ηm,j .

We also interpret ηm as a function mapping j ∈ {0, . . . , πm − 1} to ηm,j, and sn as
a function mapping j ∈ {0, . . . , pn − 1} to sn,j.

Let j ≥ 1 be a fixed integer. We are interested in the limit distribution, as
k → ∞, of

f (jqnk
) − jhnk+1 = g

(j,Sqnk )
nk+1

(cf. Proposition 3).
Observe (see footnote 4) that for each y = (y1, y2, . . .) ∈ Y ,

(25) gnk+1(y) =

t∑

m=1

snk+m(ynk+m),

where t = t(nk, y) is the smallest positive integer such that ynk+t < pnk+t−1. Note
also that, for each r ≥ 1 the probability that t(nk, y) > r is uniformly bounded
by 2−r.

Let Y :=
∏

m≥1{0, . . . , πm − 1}, and define γ : Y → Z+ by

(26) γ(y) :=

t∑

m=1

ηm(ym),

where t = t(y) is the smallest positive integer such that yt < πt − 1. We can
also view ηm as a function defined on Y , supported on the set of y with y1 =
π1 − 1, . . . , ym−1 = πm−1 − 1, defined by

ηm(π1 − 1, . . . , πm−1 − 1, ym, ym+1, . . .) := ηm(ym),

so that (26) becomes

(27) γ(y) =
∑

m≥1

ηm(y).

We also introduce the odometer transformation S : Y → Y . For all j ≥ 1, we

denote by Pj the distribution of γ(j) = γ+γ ◦S+ · · ·+γ ◦S
j−1

, when Y is endowed
with its Haar measure ν.

Lemma 5. For each j ≥ 1, the distribution of

f (jqnk
) − jhnk+1 = g

(j,Sqnk )
nk+1

converges weakly in P(Z) to Pj as k → ∞.
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Proof. Fix a large integer r. Then choose k large enough, so that for each 0 ≤ m ≤
r + 1, pnk+m and snk+m coincide respectively with πm and ηm. Comparing (25)
and (26), we see that the distribution of gnk+1 on the set

B(nk, r) := {y ∈ Y : t(nk, y) ≤ r}

coincide with the distribution of γ on the set

B(r) :=
{
y ∈ Y : t(y) ≤ r

}
.

Moreover, these two sets have the same measure which is at least 1 − 2−r. This
proves the lemma for j = 1. For the general case, note that Sqnk acts on y =
(y1, y2, . . .) ∈ Y by adding 1 on the coordinate ynk+1 and transferring the carry to

the right. Then the distribution of g
(j,Sqnk )
nk+1 on

⋂j−1
ℓ=0 S

−ℓqnkB(nk, r) coincides with

the distribution of γ on
⋂j−1

ℓ=0 S
−ℓ
B(r). Since the common measure of these two

sets is at least 1− j2−r, which can be made arbitrarily close to 1 by fixing r large
enough, this proves the lemma. �

For each m ∈ Z, we introduce the following sets:

Sm := ηm
(
{0, . . . , πm − 2}

)
∪
(
ηm,πm−1 + ηm+1

(
{0, . . . , πm+1 − 2}

))

and

Em := Sm − Sm.

The set Sm can be interpreted as the set of values of
∑

r≥m ηr over the set of

all y ∈ Y satisfying y1 = π1 − 1, . . . , ym−1 = πm−1 − 1, ym+1 < πm+1 − 1. As the
following lemmas show, the set Em of differences between elements of Sm is very
useful to describe some properties of the distribution Pj .

Lemma 6. Let j ≥ 1 and d ≥ 1 be fixed integers. Assume that there exists m with
2m−1 > j such that d ∈ Em. Then there exist α, β ∈ Z with α − β = d, Pj(α) > 0
and Pj(β) > 0.

Proof. By the definition of Sm, there exist y = (y1, y2, . . .) and z = (z1, z2, . . .) in
Y with yr = zr = πr − 1 (1 ≤ r ≤ m− 1), ym+1 < πm+1 − 1 and zm+1 < πm+1 − 1,
such that ∑

r≥m

ηr(z)−
∑

r≥m

ηr(y) = d.

Since j < 2m−1 ≤ π1 · · ·πm−1, for any ℓ ∈ {1, . . . , j − 1} we have
∑

r≥m

ηr(S
ℓ
y) =

∑

r≥m

ηr(S
ℓ
z) = 0.

Moreover, observe that the first (m− 1) coordinates of S
ℓ
y coincide with the first

(m− 1) coordinates of S
ℓ
z. Hence, for any 0 ≤ ℓ ≤ j − 1,
∑

1≤r≤m−1

ηr(S
ℓ
y) =

∑

1≤r≤m−1

ηr(S
ℓ
z).

It follows that

(28)
∑

0≤ℓ≤j−1

(
γ(S

ℓ
z)− γ(S

ℓ
y)
)
= d.
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Finally, note that changing the coordinates yr and zr for r > m+1 does not affect
the above equality, hence there is a positive measure set of y ∈ Y and a positive
measure set of z ∈ Y for which (28) holds. �

Lemma 7. Let d ≥ 1 be such that, for any m ∈ Z, Em ⊂ dZ. Let j ≥ 1 and
α, β ∈ Z with Pj(α) > 0 and Pj(β) > 0. Then α− β is a multiple of d.

Proof. It is enough to prove that γ(z) − γ(y) ∈ dZ for all y, z ∈ Y . Let t = t(y)
be the smallest positive integer such that yt < πt − 1 and t′ = t(z) be the smallest
positive integer such that zt′ < πt′ − 1. Suppose first that t = t′. Then by (26), we
get

γ(z)− γ(y) = ηt(zt)− ηt(yt) ∈ Et ⊂ dZ.

Suppose now that t < t′. Then, since the coordinates of y and z coincide up to
t− 1, (26) gives

γ(z)− γ(y) =




t′−1∑

m=t

ηm(πm − 1) + ηt′(zt′)


 − ηt(yt)

= ηt′(zt′) + ηt′−1(πt′−1 − 1)− ηt′−1(0)

+

t′−2∑

m=2

ηm+1(0) + ηm(πm − 1)− ηm(0)

+ηt(0)− ηt(yt).

Observing that each term of the above sum belongs to some Em for t ≤ m ≤ t′ − 1,
we conclude the proof. �

Now we make a further assumption: Suppose that we can choose the stabilizing
sequence such that, in the limit, the parameters ηm,j are uniformly bounded (we
require nothing on the limit parameters πm). Recall that, in Section 1, we defined
such a situation as the bounded-recurrent case.

Lemma 8. In the bounded-recurrent case, for each j ≥ 1 the sequence (Pj(r))r≥0

converges to 0 exponentially fast as r → ∞.

Proof. Suppose that all coefficients ηm,j are bounded by R. Then by (26), γ(j) ≥ r

implies the existence of ℓ ∈ {0, . . . , j − 1} such that t(S
ℓ
y) ≥ r/(jR), but this

happens with probability less than j 2−r/(jR). �

Finally, to get our spectral disjointness result, we need a last assumption ensuring
that the limit distribution Pj is not concentrated on a single point. We say that the
recurrent rank-one construction is non-flat if we can choose the stabilizing sequence
in such a way that there exists at least one m ∈ Z with Em 6= {0}.

Theorem 2. Assume that the construction of the rank-one transformation Sf is
bounded-recurrent and non-flat. Then for any 1 ≤ j1 < j2 the continuous parts of
the maximal spectral types of (Sf )j1 and (Sf )j2 are mutually singular.

Proof. Let j1, j2 ≥ 1 and assume that the continuous parts of the maximal spectral
types of (Sf )j1 and (Sf )j2 are not mutually singular. Let d∞ := gcd

(⋃
m∈Z

Em
)
.

We can find a finite family {d1, . . . , dℓ} ⊂
⋃

m∈Z
Em such that d∞ = gcd(d1, . . . , dℓ).

Let d ∈ {d1, . . . , dℓ}, and let m0 be such that d ∈ Em0
. Note that for any integer

L, the shifted subsequence (nk − L)k≥1 is also stabilizing, and that replacing (nk)
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by (nk − L) simply shifts by L the indices of (πm), (ηm) and (Em). Hence, taking
a shifted stabilizing subsequence (nk − L) if necessary, we can always assume that
2m0−1 > max(j1, j2).

We know that the distribution of f (jiqnk
) − jihnk+1 converges weakly to Pji

(i = 1, 2). Since the functions (ηm) are uniformly bounded, Lemma 8 ensures that
Pji(r) decreases exponentially fast. We can apply Proposition 3, which gives the
weak convergence of (Sf )jihn

to Fji(S
f ), where

Fji (z) =
∑

r≥0

Pji(r)z
r

is analytic in D. We can now apply Corollary 1: Since the continuous parts of the
maximal spectral types of (Sf )j1 and (Sf )j2 are not mutually singular, we have

(29) j1Σ(Fj2 ) = j2Σ(Fj1 ),

where Σ(Fji) = {r ∈ Z : Pji(r) 6= 0}. By Lemma 6, we know that Σ(Fj2) contains
two integers whose difference equals d. On the other hand, Lemma 7 ensures that
the difference between two elements of Σ(Fj1 ) is always a multiple of d∞. From (29),
we then get that j1d∞ divides j2d. But this holds for any d ∈ {d1, . . . , dℓ}, hence
j1 divides j2, and by symmetry j1 = j2. �

5.1. Bounded rank-one constructions.

Proposition 4. Assume the existence of the stabilizing subsequence (nk) and that
there exists at least one m ∈ Z such that Em 6= {0}. Then the only possible eigen-
values are rational and there are only finitely many of them.

Proof. Replacing if necessary the stabilizing subsequence (nk) by (nk +m), we can
assume that E0 6= {0}. Then S0 contains at least two different integers α < β,
and the function γ defined on Y by (26) takes the values α and β both with
probability at least 1/(π0π1). Recall that the integral automorphism Sf is a rank-
one transformation which is given with a refining sequence of towers. Consider the
distribution of the return time on the base of tower nk: For all large enough k, this
return time takes the values hnk

+ α and hnk
+ β both with probability at least

1/(π0π1). Approximating an eigenvector by a function which is constant on the
levels of tower nk, Chacon’s standard argument [12] yields that any eigenvalue λ of
Sf must satisfy

λhnk
+α −−−−→

k→∞
1, and λhnk

+β −−−−→
k→∞

1.

In particular, λβ−α = 1. �

Theorem 3. If in the construction of the rank-one transformation Sf all param-
eters pn and sn,j are uniformly bounded, then one of the three following properties
holds:

(1) Sf is weakly mixing;
(2) Sf has finitely many eigenvalues, and they are all rational;
(3) Sf is isomorphic to an odometer, hence has discrete spectrum and rational

eigenvalues.

In either case different (positive) powers are spectrally disjoint on the continuous
part of the spectrum. Moreover, in the cases where eigenvalues exist, the corre-
sponding eigenvectors are constant on levels of towers of sufficiently high order.
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Proof. Let us say that step n of the construction is a flat step if

(30) sn,0 = · · · = sn,pn−1 = sn,pn
+ sn+1,0 = · · · = sn,pn

+ sn+1,pn+1−1.

Suppose that there exists an increasing sequence of n’s for which (30) fails. Since
all parameters are bounded, we can extract from this sequence a stabilizing subse-
quence for which E0 6= {0}. Then, according to Proposition 4, either Sf is weakly
mixing or Sf has finitely many eigenvalues which are all rational. In this case the
spectral disjointness of the powers on the continuous part of the spectrum is given
by Theorem 2.

On the other hand, if there exists an integer N such that, for any n ≥ N , step n
is flat, then the return time on the base of tower N is constant, equal to hN + sN,0.
But then Sf is isomorphic to the odometer constructed on the product space

{0, 1, . . . , hN + sN,0 − 1} ×
∏

n≥N

{0, 1, . . . , pn − 1}.

In that case, Sf has purely point spectrum, so there is nothing to prove concerning
the spectral disjointness of the powers.

Now assume that λ is a rational eigenvalue. As the cutting parameters are
bounded, the adaptation of Chacon’s approximation argument used in the proof of
Proposition 4 yields in fact that

sup
0≤j≤pn−2

∣∣λhn+sn,j − 1
∣∣ −−−−→

n→∞
0.

But since λ is rational, we get that for all n large enough and all 0 ≤ j ≤ pn − 2,

(31) λhn+sn,j = 1.

Let k = min{ℓ ≥ 1 : λℓ = 1} be the order of λ. Let N be such that (31) is valid

for all n ≥ N . Consider the base BN := D
(N)
0 × {0} of tower N for T : Then all

return times to BN are divisible by k. Consider the function f defined by f = λj

on Sf
j BN \

⋃
0≤ℓ≤j−1 S

f
ℓ BN . It is straightforward to check that f is an eigenvector

associated to the eigenvalue λ, and that f is constant on the levels of tower N .
Since the eigenspace associated to λ has dimension 1, this concludes the proof. �

Remark 3. If we drop the assumption that the cutting parameters of the rank-one
construction are bounded, then eigenvectors associated to a rational eigenvalue may
never be constant on levels of towers.

Indeed, consider the following parameters: pn = 2n, sn,j = 1 if j = 2n−1 − 1 or
j = 2n−1, sn,j = 0 otherwise. Consider the function fn supported on the levels of
tower n, taking the value 1 on even levels and −1 on odd levels. It is easy to check
that fn+1 coincides with fn outside a set whose measure decreases exponentially
fast. An application of Borel-Cantelli lemma shows that the sequence (fn) converges
almost everywhere to a function f which is an eigenvector for the eigenvalue −1.
But this eigenvector is never constant on the levels of the towers since some return
times to these levels are odd.

6. Examples where the cutting parameter pn is unbounded

The purpose of this section is to show that our method for proving the spec-
tral disjointness of the powers can also work in classical rank-one examples where
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we have pn −−−−→
n→∞

∞, which of course prohibits the existence of stabilizing subse-

quences. The two classes of examples which we present here are known to be rigid,
and weakly mixing (see [18]).

6.1. Rigid Generalized Chacon’s maps. The parameters of this family of rank-
one constructions satisfy the following properties:

• pn −−−−→
n→∞

∞;

• there exist 0 ≤ rn < pn such that sn,rn = 1 and sn,j = 0 for j 6= rn.

The same cocycle-over-odometer approach can be used to show that for any fixed
0 < α < 1, we have the following weak convergence (where ⌊x⌋ stands for the
integer part of the real number x)

(32) T−⌊αpn⌋hn −−−−→
n→∞

αT + (1− α) Id .

Now let 1 ≤ j1 < j2, and choose α sufficiently small so that j2α < 1. We get

T−ji⌊αpn⌋hn −−−−→
n→∞

jiαT + (1− jiα) Id (i = 1, 2),

and by Proposition 2 we can conclude that T j1 ⊥sp T
j2 .

6.2. Katok’s map. For this rank-one construction, we require pn to be an even
number, growing sufficiently fast to infinity (to be precised below). The spacers are
defined by

sn,j =

{
0 if 0 ≤ j < pn/2,

1 if pn/2 ≤ j < pn.

Katok’s maps appears as a special case of a three-interval exchange maps [19]. We
point out that Bourgain in [9] proved that all three-exchange maps with Keane
condition are disjoint from Möbius function.

In this example, analytic functions of UT abound in the weak closure of {Uk
T :

k ∈ Z}. Indeed, Ryzhikov [38] has shown that we can find as a weak limit of
some subsequence Unk

T any convex combination of Θ and the Uk
T , k ∈ Z, where Θ

denotes the orthogonal projection on the constant subspace (which is zero if we only
consider the action of the Koopman operators on the subspace of L2 orthogonal to
constant functions). However, the limits described in [38] are all derived from the
following weak convergence:

U−jhn

T −−−−→
n→∞

Id+ U j
T

2
.

It follows that, if U ℓn
T −−−−→

n→∞
F (UT ) is a weak limit given by Ryzhikov’s argument,

then we also have U jℓn
T −−−−→

n→∞
F (U j

T ), which is precisely the situation where, in

spite of the existence of the weak limits, our method can not conclude that we have
spectral disjointness of different powers.

We therefore have to look for other weak limits. To simplify the argument, we
make the following assumption on the growth rate of pn:

(33)
pn
hn

−−−−→
n→∞

+∞.
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Let 0 < α < 1. By (33), we can find a sequence of integers (ℓn) such that for all n,

ℓn is a multiple of hn + 1,(34)

ℓn = αpn/2 + o(pn).(35)

Lemma 9. For ℓn as above, we have the following weak convergence.

(36) U−ℓnhn

T −−−−→
n→∞

αΘ+ (1− α) Id .

Transformations admitting this kind of weak limits are said to be α-weakly mix-
ing. The α-weak mixing of Katok’s map for any α is of course not a new result (it
is a direct consequence of Ryzhikov’s theorem), but what is important for our pur-
poses is the appropriate control of the subsequence along which we get this α-weak
mixing.

Sketch of proof of Lemma 9. Unfortunately, the cocycle-over-odometer approach used
in the other examples does not work so well here. Indeed the corresponding limit
distributions put some mass at infinity, and this approach only allows to see the
(1− α) Id part of the limit. We thus need a more down-to-earth method.

Let B be a level of tower n in the construction. We consider the first half B1

of B, which has no spacer above in tower n (in light grey on Figure 1). In the
cutting process, B1 is cut into pn/2 pieces, which are successive images of the
first piece by the transformation T hn . Consider the image of B1 by T ℓnhn : The
leftmost (pn/2− ℓn) pieces of B1 are still in B1 after this transformation, while the
ℓn remaining pieces have moved to the rightmost half of tower n where the height
is now hn + 1 (this second half being coverd by a single spacer). Therefore these
pieces will uniformly spread over tower n, and by (35) they represent a proportion
approximately equal to α of B1. Consider now the second half B2 of B (in dark grey
on Figure 1). B2 is also cut into pn/2 pieces, but these pieces are now successive
images by the transformation T hn+1. A similar destiny is reserved to these pieces
when transformed by T ℓnhn : The (ℓnhn)/hn+1 rightmost pieces of B2 move into
the left half of tower n, where they uniformly spread over the levels of the tower,
while the remaining pieces which represent a proportion approximately equal to
(1− α) of B2 are still in B2 by (34).

Now, the method to end the proof is quite standard. If A and B are unions
of levels of some tower n0, then they are also unions of levels of any tower n for
n ≥ n0, and the above analysis proves that

µ
(
A ∩ T ℓnhnB

)
−−−−→
n→∞

αµ(A)µ(B) + (1− α)µ(A ∩B).

This convergence extends to arbitrary measurable sets A and B since any set can
be approximated by unions of levels of a tower in the construction. This proves the
announced weak convergence when the operators act on simple functions, and this
is enough to conclude by density of simple functions in L2. �

With this result, we can now proceed as in the preceding example: Let 1 ≤ j1 <
j2, choose α small enough so that j2α < 1 and define ℓn as above. Then, by (36)
we have for i = 1, 2

U−jiℓnhn

T −−−−→
n→∞

jiαΘ + (1− jiα) Id,

which by Proposition 2 is enough to state the spectral disjointness of T j1 and T j2 .
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pn/2 pn/2

B

T ℓnhnB

ℓnhn/(hn + 1) ∼ αpn/2ℓn ∼ αpn/2

Figure 1. α weak-mixing in Katok’s map. Top: A level B in
tower n. Bottom: Image of B by T ℓnhn . Note that the picture is
drawned as if there were no spacer above towers n + 1, n + 2. . . .
These spacers only affect the staircase on the left of the bottom
figure, but they do not change its uniform spreading over the levels
of the tower.
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Remark 4. We can observe that the same argument applies for a family of random
constructions described by Del Junco and the second author in [26].

7. Sarnak’s conjecture for the symbolic model associated to some
rank-one transformations

7.1. Symbolic model for a rank-one construction. We recall first the con-
struction of the symbolic model associated to a rank-one automorphism given by
the cutting and stacking method. In order to distinguish the different models, we
denote here by Tcs the rank-one automorphism of ([0, 1), λ) (where λ is Lebesque
measure) constructed by cutting and stacking from the parameters (pn)n≥1 and
(sn,i)n≥1,0≤i≤pn−1. We consider the partition P = {P0, P1} of [0, 1), where P0 is
the unique level of tower 1, and P1 := [0, 1) \P0 is the union of all spacers added in
the successive steps of the construction. With the same parameters, we inductively
define a sequence of finite words (Bn)n≥1 over the alphabet {0, 1}, which we call
building blocks :

B1 := 0; Bn+1 := Bn1
sn,0Bn1

sn,1 · · ·Bn1
sn,pn−1 .

The length |Bn| of the building block of order n is equal to hn, the height of tower
n, and we can view Bn as the P-name (of length hn) of a point in the basis of
tower n. The symbols 1 in the building blocks will also be called spacers.

Then we consider the subshift Ω ⊂ {0, 1}Z, which is the set of bi-infinite se-
quences (ωj)j∈Z satisfying

(37) ∀i < j, ω|ji := ωiωi+1 . . . ωj−1 is a subword of Bm for some m ≥ 1.

We consider on Ω the product topology, which turns Ω into a metrizable compact
space, and we denote by Tsymb the shift of coordinates, which is a homeomorphism
of Ω. We recall that, since our rank-one construction is supposed to live on a
probability space, we have

(38)
∑

n≥1

1

hn+1

pn−1∑

i=0

sn,i <∞.

From this, it follows that for any finite wordW , the frequency ofW in Bn converges
as n → ∞ to a limit µ(W ). The family µ(W ) when W ranges over the set of all
finite words defines a shift-invariant probability measure µ on Ω. The measure-
preserving dynamical system (Ω, Tsymb, µ) can now be viewed as a factor of the
rank-one automorphism Tcs, via the map ψ : [0, 1) → Ω defined by

ψ(x) :=
(
P(T jx)

)
j∈Z

.

As observed by Ferenczi in [18], the symbolic system (Ω, Tsymb) may in some
cases be degenerate (for example with the von Neumann-Kakutani construction:
Bn+1 = BnBn). However, it follows from the analysis developed by Kalikow in
the annex of [28] that the factor map ψ is one-to-one, hence an isomorphism of
the measure-preserving systems, whenever the limit sequence B∞ := limn→∞Bn is
aperiodic.

Lemma 10. Assume that B∞ is periodic. Then Tcs is isomorphic to an odometer,
in particular, it has infinitely many rational eigenvalues.
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Proof. Let p be a period of B∞, and n large enough so that hn > p. Let a be the
number of terminal spacers in Bn, so that Bn can be written B′

n01
a. Consider two

successive occurrences of Bn inside B∞, and let s be the number of spacers between
them. Then, since Bn starts with a 0, we can see inside B∞ the sequence B′

n01
a+s0.

By periodicity of B∞, the pattern 01a+s0 appears at a definite position (depending
only on p) inside B′n. It follows that s is determined by B′

n, therefore the number
of spacers between two successive occurrences of Bn is always the same. In other
words, the return-time to the basis of tower n is constant, and Tcs is isomorphic to
an odometer. �

As an immediate consequence, we get that the symbolic model is isomorphic
to Tcs provided that the latter has finitely many eigenvalues, which we henceforth
assume. To lighten the notations, we now write T for Tsymb.

Let us define a metric d associated to the topology of weak convergence on the
space of all probability measures on Ω: Let (Cn)n≥0 be the countable family of
cylinder sets in {0, 1}Z, and set

d(ν1, ν2) :=
∑

n≥0

1

2n
|ν1(Cn)− ν2(Cn)| .

For ω ∈ Ω and ℓ ≥ 1, let ηℓ(ω) be the empirical measure

ηℓ(ω) :=
1

ℓ

ℓ−1∑

j=0

δT jω.

It is easy to show from the definition of µ that

(39) sup
ω∈Ω: ω|hn

0
=Bn

d (ηhn
(ω), µ) −−−−→

n→∞
0.

The measure µ need not be the unique ergodic invariant probability on (Ω, T ).
Indeed, the sequence 1 := . . . 111 . . . which is fixed by T may belong to Ω. This
is of course the case if the parameters sn,i are unbounded, but this may also hold
in the case of bounded parameters, if spacers accumulate on the last subcolumn of
each tower (think of the historic construction of Chacon in which Bn+1 = BnBn1).
In any case, there are at most two ergodic invariant probability measures: µ and
δ1. The only nonatomic invariant probability measure is always µ.

If 1 6∈ Ω, the symbolic model is uniquely ergodic, hence Sarnak’s conjecture holds
for this model as soon as T p and T q are disjoint for any different prime numbers p
and q. But if 1 ∈ Ω, we have to work a little harder to see that Sarnak’s conjecture
is valid for the symbolic model. We will get the result at the cost of an additional
hypothesis on the construction.

7.2. A combinatorial result for “reasonable” rank-one constructions.

Definition 1. We say that the rank-one construction is reasonable if

(40) tn := sup
0≤i≤pn−1

sn,i = o(hn) as n→ ∞.

We assume henceforth that the above assumption is satisfied. Using the fact
that, for all n ≥ 1, hn+1 ≥ 2hn, it easily follows that

(41)
t1 + · · ·+ tn

hn
−−−−→
n→∞

0.
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Inside the word Bm, we distinguish several orders of spacers (that is, of occur-
rences of the symbol 1). We say that a specific spacer inside Bm is of order n ≤ m
if this spacer lies inside a copy of Bn but not inside a copy of Bn−1. For example,
if we take the classical Chacon transformation, with Bn+1 = BnBn1Bn, we have

B3 = 0010 0010 1 0010,

where the third occurrence of the symbol 1 is of order 3, whereas all others are of
order 2.

The following lemma is an easy consequence of the structure of the building
blocks.

Lemma 11. Let 1 ≤ n < m. Every symbol 0 inside Bm lies in a copy of Bn

entirely contained in Bm.

Lemma 12. Let 1 ≤ n < m. If two spacers inside Bm are both of order ≥ n + 1,
and if there exists between them a symbol 0, then we can find between them at least
one occurrence of the building block Bn.

Proof. This is a direct consequence of Lemma 11. �

We will also need the following result to bound the number of consecutive spacers
inside a building block.

Lemma 13. Let n ≥ 1, and 1s a block of s consecutive spacers inside Bn+1. Then

s ≤ t1 + · · ·+ tn.

Proof. By the definition of tn, the length of a block of consecutive spacers of order
(n+ 1) is bounded by tn. Such a block may be adjacent to a block of consecutive
spacers at the end of Bn, and the proof follows by an easy induction on n. �

We are now ready to state and prove the following key proposition on the struc-
ture of words in the language of the subshift Ω.

Proposition 5. Fix a real number ε > 0 and an integer ℓ ≥ 1. Then there exists
N(ε, ℓ) such that, for all integer N ≥ N(ε, ℓ) and all ω ∈ Ω, the word ω|N1 can be
represented in the form

ω|N1 = ABC,

where the (possibly empty) words A, B, C satisfy the following:

• B = 1s for some s ≥ 0,
• we can cover a large part of A and C with disjoint building blocks of order
≥ ℓ, where “large” means that the total number of letters in A and C which
are not covered is bounded by εN .

Proof. Replacing if necessary ℓ by a larger integer, we may assume by (41) that

(42) sup
n≥ℓ

t1 + · · ·+ tn
hn

< ε/4.

Now, fix ω ∈ Ω, N ≥ 1, and consider the wordW := ω|N1 . We know by the definition
of Ω that W is a subword of the building block Bm for some m ≥ 0. In general, we
can see several copies of W inside Bm, but we consider one particular occurrence of
W in Bm. By the inductive construction of the building blocks, for any 1 ≤ n ≤ m,
Bm is canonically decomposed into building blocks Bn and spacers of order at least
n+1. When considering building blocks Bn insideW , we will implicitly assume that
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these building blocks come from this canonical decomposition. And since we have
fixed one particular instance of W in Bm, any spacer in W also has a well-defined
order n ≤ m, which is inherited from the corresponding spacer inside Bm.

It might happen that we cannot find inW any building block Bℓ. By Lemma 11,
this implies that any symbol 0 inside W is either in the first hℓ − 1 letters of W or
in the last hℓ − 1 letters of W . Hence, in this case we can write W in the form

W = A 1sC,

where |A| < hℓ, |C| < hℓ, and s ≥ 0. The proposition easily follows in this case, by
taking N large enough so that hℓ/N < ε/2.

Otherwise, let n0 ≥ ℓ be the largest order such that we can see at least one copy
of Bn0

inside W . Taking as many copies of Bn0
as we can inside W , we decompose

W in the form

W =WS
n0
Wn0

WP
n0
,

where Wn0
is covered by copies of Bn0

and spacers of order ≥ n0 + 1, WS
n0

is

a (possibly empty) suffix of Bn0
, and WP

n0
is a (possibly empty) prefix of Bn0

.

Then, we consider inside WS
n0

and WP
n0

all possible copies of Bn0−1. This yields a
decomposition of the form

W =WS
n0−1Wn0−1Wn0

W ′
n0−1W

P
n0−1,

where Wn0−1 and W ′
n0−1 are covered by copies of Bn0−1 and spacers of order n0,

and WS
n0−1 (respectively WP

n0−1) is a suffix (respectively prefix) of Bn0−1.
Going on in the same way and considering successively the building blocks Bn0−2,

Bn0−3, . . ., Bℓ, we finally get a decomposition of the form

W =WS
ℓ WℓWℓ+1 . . .Wn0−1Wn0

W ′
n0−1 . . .W

′
ℓ+1W

′
ℓ W

P
ℓ ,

where

• Wn0
is covered by copies of Bn0

and spacers of order ≥ n0 + 1,
• for each ℓ ≤ n ≤ n0 − 1, Wn and W ′

n are covered by copies of Bn and
spacers of order n+ 1,

• WS
ℓ is a suffix of Bℓ,

• WP
ℓ is a prefix of Bℓ.

Note that, in this decomposition, Wn (ℓ ≤ n ≤ n0 − 1) may be empty, and it may
also be reduced to a single block of spacers of order n + 1. In this latter case, its
length is bounded by tn. (The same holds for W ′

n.)
Putting aside WS

ℓ and WP
ℓ , whose lengths are always bounded by hℓ, the rest of

W can be viewed as a concatenation of building blocks of order ≥ ℓ, separated by
blocks of consecutive spacers. Let us say that a block of consecutive spacers is huge
if it contains a spacer of order ≥ n0 + 2. By Lemma 12, there can exist at most
one huge block of spacers (otherwise we could have found in W a building block of
order ≥ n0 + 1).

We claim that the sum of all lengths of blocks of spacers which are not huge
represents a small fraction of N .

Indeed, consider a copy of the building block Bn appearing in someWn, ℓ ≤ n ≤
n0−1. By the construction of the decomposition ofW , the wordWS

ℓ WℓWℓ+1 . . .Wn

is subword of Bn+1. We then get by Lemma 13 that the length of the block of spac-
ers immediately to the left of our copy of Bn is at most t1+ · · ·+ tn, which is small
with respect to hn = |Bn| by (42). In the same way, if Bn appears in some W ′

n,



24 EL HOUCEIN EL ABDALAOUI, MARIUSZ LEMAŃCZYK, AND THIERRY DE LA RUE

ℓ ≤ n ≤ n0 − 1, then the length of the block of spacers immediately to its right is
bounded by the same quantity. Now, consider a copy of Bn0

appearing in Wn0
. If

the block of spacers immediately to its left is not the huge one, then

• the part of this block of spacers contained insideWn0
has a length bounded

by tn0
,

• the possible part of this block of spacers contained inside WS
ℓ Wℓ . . .Wn0−1

has, again by Lemma 13, a length bounded by t1 + · · ·+ tn0−1.

The same applies to the block of spacers immediately to its right: If this block of
spacers is not the huge one, then its length is bounded by t1 + · · · + tn0

, which is
small compared to hn0

by (42). We finally get that the sum of the lengths of all
non-huge blocks of spacers separating the building blocks in the decomposition of
W is bounded by

2N sup
n≥ℓ

t1 + · · ·+ tn
hn

,

which is smaller than Nε/2 by (42). Therefore, the proposition follows by taking
N so large that hℓ/N < ε/4, and B as the possible huge block of spacers. �

7.3. Sarnak’s conjecture for symbolic models of rank-one automorphisms.

Theorem 4. Let (Ω, T ) be the symbolic model for a reasonable, weakly mixing,
rank-one construction. Let µ be the unique non-atomic T -invariant probability mea-
sure. Assume that for all different prime numbers p and q, (Ω, T p, µ) and (Ω, T q, µ)
are disjoint. Then Sarnak’s conjecture is valid for (Ω, T ).

Proof. Let f ∈ C(Ω) and ω0 ∈ Ω. We have to prove the orthogonality of the
sequence

(
f(T nω0)

)
n≥1

with the Möbius function. Since
∑

n≤N µ(n) = o(N), we

can assume without loss of generality that
∫
Ω
f dµ = 0.

As we have already noticed, if T is uniquely ergodic the result is a straightforward
consequence of Bourgain-Sarnak-Ziegler’s criterion. But if 1 ∈ Ω (which we assume
henceforth), there exists a second ergodic invariant measure δ1, and the criterion
does not apply directly. As it will appear more clearly in the further part of
the proof, the value of f at the fixed point 1 may play an important role in the
estimations, and the situation is easier if f(1) = 0. Unfortunately, substracting
the value f(1) from f kills the centering assumption on f , which is essential in
the joining argument. We have therefore to find a trade-off between the centering
assumption and the annihilation of f(1).

For all k ≥ 1, let Gk be the cylinder set

Gk := {ω ∈ Ω : ωi = 1, 0 ≤ i ≤ k − 1}.

Of course, 1 ∈ Gk for all k, and we have µ(Gk) −−−−→
k→∞

0. Now, we set fk :=

f − f(1)1Gk
, so that

• fk remains continuous,
• fk(1) = 0,
• |

∫
Ω fk dµ| = |f(1)|µ(Gk) −−−−→

k→∞
0.

We will apply Bourgain-Sarnak-Ziegler’s criterion to fk and ω0 in the following
form: It is proved in [10] that, if for some ε > 0 and for all different prime numbers
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p and q less than exp(1/ε), we have

(43) lim sup
N→∞

1

N

∣∣∣∣∣

N∑

n=1

fk(T
pnω0)fk(T

qnω0)

∣∣∣∣∣ < ε,

then

(44) lim sup
N→∞

1

N

∣∣∣∣∣

N∑

n=1

µ(n)fk(T
nω0)

∣∣∣∣∣ < 2
√
ε log 1/ε.

To get (43), it is enough to show that if ρ is the weak limit of a subsequence of
the sequence of empirical probability measures

1

N

N∑

n=1

δ(Tpnω0,T qnω0),

then ∣∣∣∣
∫

Ω×Ω

fk(ω1)fk(ω2) dρ(ω1, ω2)

∣∣∣∣ < ε.

So, let ρ be such a probability measure on Ω × Ω. Then ρ is T p ⊗ T q-invariant.
Denote by ρ1 (respectively ρ2) its marginal distribution on the first (respectively

second) coordinate. The probability measure 1
p

∑p−1
i=0 ρ1 ◦ T

i is T -invariant on Ω,

hence there exists θ ∈ [0, 1] such that

(45)
1

p

p−1∑

i=0

ρ1 ◦ T
i = θδ1 + (1− θ)µ.

Set Ω′ := Ω \ {1}. Let us decompose ρ as

(46) ρ = ρ(Ω′ × Ω′) ρ( · |Ω′ × Ω′) + ρ(Ω′ × {1}) ρ( · |Ω′ × {1})

+ ρ({1} × Ω′) ρ( · |{1} × Ω′) + ρ({(1,1)}) ρ( · |{(1,1)}).

Here, ρ( · |{(1,1)}) can not be anything else than δ{(1,1)}. Assume that ρ(Ω′ ×
{1}) > 0. Then, we see by (45) that the first marginal of ρ( · |Ω′×{1}) is absolutely
continuous with respect to µ. But it is also T p-invariant, and since µ is T p-ergodic,
this first marginal has to be µ. Therefore, in (46), we can replace ρ( · |Ω′ ×{1}) by
µ⊗ δ1. By a similar argument, we can replace ρ( · |{1}×Ω′) by δ1⊗µ. In the same
way, we also prove that, if ρ(Ω′ ×Ω′) > 0, then both marginals of ρ( · |Ω′ ×Ω′) are
equal to µ. It follows that ρ( · |Ω′×Ω′) is a joining of (Ω, T p, µ) and (Ω, T q, µ). But
we have assumed that these two systems are disjoint, hence this measure must be
the product measure µ⊗ µ. Finally, (46) becomes

(47) ρ = ρ(Ω′ × Ω′)µ⊗ µ+ ρ(Ω′ × {1})µ⊗ δ1

+ ρ({1} × Ω′) δ1 ⊗ µ+ ρ({(1,1)}) δ{(1,1)}.

Remembering that fk(1) = 0, it follows that
∣∣∣∣
∫

Ω×Ω

fk(ω1)fk(ω2) dρ(ω1, ω2)

∣∣∣∣ ≤
(∫

Ω

fk dµ

)2

,

which goes to 0 as k → ∞. Hence, (44) is valid for all large enough k.



26 EL HOUCEIN EL ABDALAOUI, MARIUSZ LEMAŃCZYK, AND THIERRY DE LA RUE

Let us now come back to f . For all k ≥ 1, we have

1

N

∣∣∣∣∣

N∑

n=1

µ(n)f(T nω0)

∣∣∣∣∣ ≤
1

N

∣∣∣∣∣

N∑

n=1

µ(n)fk(T
nω0)

∣∣∣∣∣+
|f(1)|

N

∣∣∣∣∣

N∑

n=1

µ(n)1Gk
(T nω0)

∣∣∣∣∣ ,

and it only remains to estimate the second term in the RHS for large k.
Consider k so large that µ(Gk) < ε. Then, by (39), we can fix ℓ large enough so

that, for each n ≥ ℓ and all j,

(48) ω|j+hn

j = Bn =⇒

j+hn−1∑

i=j

1Gk
(T iω) < εhn.

Then, we apply Proposition 5: For N large enough, we can find 1 ≤ N1 ≤ N2 ≤ N
such that

• ω0|
N1

0 and ω0|
N
N2

are covered by building blocks of order ≥ ℓ up to εN
symbols,

• ω0|
N2

N1
= 1N2−N1 .

Then, by (48), we get
∣∣∣∣∣

N∑

n=1

µ(n)1Gk
(T nω0)

∣∣∣∣∣ ≤ 2N ε+ k +

∣∣∣∣∣∣

∑

N1≤n≤N2−1−k

µ(n)

∣∣∣∣∣∣
.

The conclusion follows, since we can easily derive from
∣∣∣
∑

n≤N µ(n)
∣∣∣ = o(N) that

sup
1≤N1≤N2≤N

∣∣∣∣∣∣

∑

N1≤n≤N2

µ(n)

∣∣∣∣∣∣
= o(N).

�

Of course, Theorem 4 applies in the case of a weakly mixing bounded rank-one
construction, for which we have proved that the spectral disjointness of differ-
ent positive powers holds. But as we have seen in Theorem 3, such a bounded
construction may also have a finite number of eigenvalues (we exclude here the
odometer case, where the symbolic model is not well defined). If non-trivial eigen-
values exist, Sarnak’s conjecture for the symbolic model raises new difficulties in
the non-uniquely ergodic case (that is, when 1 ∈ Ω). Indeed, eigenfunctions are
then discontinuous at the fixed point 1. This is the reason why, before coming
back to the symbolic model of rank-one transformations with a finite number of
eigenvalues, we introduce an alternative topological model in which eigenfunctions
are continuous.

Let (Ω, T ) be the symbolic model of a weakly mixing, reasonable rank-one con-
struction, and let K ≥ 2 be an integer. Consider the topological dynamical system
(Ω̃, T̃ ) where

• Ω̃ := Ω× {0, . . . ,K − 1},

• T̃ (ω, i) := (ω, i+ 1) if i < K − 1, and T̃ (ω,K − 1) := (Tω, 0).

Let νK be the uniform distribution on {0, . . . ,K − 1}, and µ̃ := µ⊗ νK . Then µ̃ is

the unique nonatomic ergodic T̃ -invariant probability measure on Ω̃, and if 1 ∈ Ω,
there exists a second ergodic T̃ -invariant probability measure which is δ1 ⊗ νK .
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As an ergodic measurable dynamical system, (Ω̃, T̃ , µ̃) is rank one. It is not

weakly mixing: It possessesK eigenvalues εjK , 0 ≤ j ≤ K−1, and the corresponding
eigenfunctions are constant on each Ωi := Ω × {i}, 0 ≤ i ≤ K − 1 (in particular,
they are continuous).

Lemma 14. Assume that 1 ≤ p < q are such that T̃ p and T̃ q are spectrally disjoint
on the continuous part of the spectrum. Then any joining ρ of (Ω̃, T̃ p, µ̃) and

(Ω̃, T̃ q, µ̃) satisfies, for f, g ∈ L2(µ̃)
∫

Ω̃×Ω̃

f(ω̃1) g(ω̃2) dρ(ω̃1, ω̃2) =
∑

0≤i,j≤K−1

ρ(Ωi × Ωj)K
2

∫

Ωi

f dµ̃

∫

Ωj

g dµ̃.

Proof. Let us denote by K the partition of Ω̃ into subsets Ωi, 0 ≤ i ≤ K − 1. Then
K yields the Kronecker factor of (Ω̃, T̃ , µ̃), and if f ∈ L2(µ̃),

f − Eµ̃[f |K] = f −
∑

0≤i≤K−1

1Ωi
K

∫

Ωi

f dµ̃

has a continuous spectral measure (for T̃ , T̃ p and T̃ q). Let ρ be a joining of

(Ω̃, T̃ p, µ̃) and (Ω̃, T̃ q, µ̃), and let f, g ∈ L2(µ̃). It follows from the assumption of the
lemma that the spectral measure of the functions (ω̃1, ω̃2) 7→ f(ω1) − Eµ̃[f |K](ω̃1)

and (ω̃1, ω̃2) 7→ g(ω2)−Eµ̃[g|K](ω̃2) under the action of T̃ p⊗ T̃ q are continuous and
mutually singular, hence orthogonal in L2(ρ). We then get

∫

Ω̃×Ω̃

f(ω̃1) g(ω̃2) dρ(ω̃1, ω̃2) =

∫

Ω̃×Ω̃

Eµ̃[f |K](ω̃1)Eµ̃[g|K](ω̃2) dρ(ω̃1, ω̃2)

=
∑

0≤i,j≤K−1

ρ(Ωi × Ωj)K
2

∫

Ωi

f dµ̃

∫

Ωj

g dµ̃.

�

Theorem 5. Let (Ω, T ) be the symbolic model of a weakly mixing, reasonable rank-

one construction. Fix K ≥ 2 and consider Ω̃, T̃ and µ̃ as above. Assume that for
all distinct prime numbers p, q, T̃ p and T̃ q are spectrally disjoint on the continuous
part of the spectrum. Then Sarnak’s conjecture is valid for (Ω̃, T̃ ).

Proof. We will adapt the proof of Theorem 4 to this setting. We fix f ∈ C(Ω̃) and

(ω0, i0) ∈ Ω̃, and we want to prove the orthogonality of the sequence
(
f(T̃ n(ω0, i0)

)
n≥1

with the Möbius function. For i ∈ {0, . . . ,K − 1}, let Ωi := Ω× {i} ⊂ Ω̃. We may,
without loss of generality, assume that

(49) ∀i ∈ {0, . . . ,K − 1},

∫

Ωi

f dµ̃ = 0.

Indeed, otherwise set ai :=
∫
Ωi
f dµ̃ and replace f with f ′ := f −

∑
0≤i≤K−1 ai 1Ωi

(which amounts to substracting the discrete-spectrum part of f). Then the se-
quence

(
f(T nω0)

)
n≥1

only differs from
(
f ′(T nω0)

)
n≥1

by the K-periodic sequence

(ai0+n)n≥1 (where i0 + n is computed modulo K), now orthogonality between a
K-periodic function and the Möbius function is already known (see e.g. [6], Chap-
ter 7).
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If 1 ∈ Ω, we cannot deal directly with f and we therefore choose a large integer
k and consider the continuous function fk defined by

fk := f −
∑

0≤i≤K−1

f(1, i) 1Gk×{i},

where Gk is defined as in the proof of Theorem 4. Then fk satisfies

• fk(1, i) = 0 for all i ∈ {0, . . . ,K − 1},
• fk(ω, i) = f(ω, i) whenever ω /∈ Gk.

Let p 6= q be distinct prime numbers, and let ρ be the weak limit of a subsequence
of the sequence of empirical probability measures

1

N

N∑

n=1

δ(T̃pn(ω0,i0),T̃ qn(ω0,i0)).

We want to bound ∣∣∣∣
∫

Ω̃×Ω̃

fk(ω1, i1)fk(ω2, i2) dρ(ω1, i1, ω2, i2)

∣∣∣∣ .

Note that we can assume that p > K and q > K, which ensures the ergodicity of
(Ω̃, µ̃, T̃ p) and (Ω̃, µ̃, T̃ p). Indeed, it is remarked in [10] that, provided ε is small
enough, (44) still holds if (43) fails only for small prime numbers. We decompose

ρ in the same way as in (46), but here Ω′ has to be replaced by Ω̃′ := (Ω \ {1})×
{0, . . . ,K−1}, and {1} has to be replaced by 1×{0, . . . ,K−1}. Since fk(1, i) = 0

for all i ∈ {0, . . . ,K − 1}, only the part ρ( · |Ω̃′ × Ω̃′) will contribute to the integral.

But the same argument as in the proof of Theorem 4 gives that ρ′ := ρ( · |Ω̃′ × Ω̃′)

is a joining of (Ω̃, T̃ p, µ̃) and (Ω̃, T̃ q, µ̃) (here we use the ergodicity of (Ω̃, µ̃, T̃ p) and

(Ω̃, µ̃, T̃ p)). By Lemma 14, we are left with a finite sum of products of integrals of
the form ∫

Ωi

fk dµ̃

∫

Ωj

fk dµ̃,

which, thanks to (49), can be made arbitrarily close to 0 by choosing k large enough.
To come back to our original function f , and to conclude as in the proof of

Theorem 4, it remains to bound

1

N

∣∣∣∣∣∣

N∑

n=1

µ(n)
∑

0≤i≤K−1

1Gk×{i}(T̃
n(ω0, i0)f(1, i)

∣∣∣∣∣∣

=
1

N

∣∣∣∣∣

N∑

n=1

µ(n)1Gk×{0,...,K−1}(T̃
n(ω0, i0)f(1, i0 + n)

∣∣∣∣∣ ,

where the sum i0 + n must be understood modulo K. By application of Proposi-

tion 5, we are reduced to estimate a sum
∣∣∣
∑

N1≤n≤N2
µ(n)ϕ(n)

∣∣∣ , where ϕ : n 7→

f(1, i0 + n) is a K-periodic function, and 1 ≤ N1 ≤ N2 ≤ N . But again, since we

know that
∣∣∣
∑

n≤N µ(n)ϕ(n)
∣∣∣ = o(N), we get

sup
1≤N1≤N2≤N

∣∣∣∣∣∣

∑

N1≤n≤N2

µ(n)ϕ(n)

∣∣∣∣∣∣
= o(N).

�
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Theorem 6. Sarnak’s conjecture holds for the symbolic model of any bounded rank-
one construction which is not an odometer.

Proof. Let (Ω′, T ′) be the symbolic model of such a bounded rank-one construction,
and µ′ the nonatomic ergodic invariant measure. Denote by (p′n) and (s′n,j), n ≥ 1,

0 ≤ j ≤ p′n − 1 the parameters of the construction, (B′
n) the building blocks, and

(h′n) their respective lengths.
We know by Theorem 2 that for any 1 ≤ p < q the continuous parts of the

maximal spectral types of (T ′)p and (T )′q are mutually singular. By Theorem 3,
either the dynamical system (Ω′, T ′, µ′) is weakly mixing and Theorem 4 applies,

or it possesses a finite number of eigenvalues of the form εjK for some K ≥ 2. In
the latter case, the proof of Theorem 3 shows that, for n large enough, the return
time to the basis of tower n is always a multiple of K. In other words, there exists
n0 such that, for any n ≥ n0, two successive (canonical) occurrences of B′

n have
their starting positions separated by a multiple of K. Appending if necessary some
extra spacers to the building blocks, but without changing the subshift Ω′, we can
always assume that for all n ≥ n0, h

′
n is a multiple of K. Then the parameters

(s′n,j) are themselves multiple of K for all n ≥ n0.
Now let us define a new family of building blocks (Bn)n≥n0

. Set hn0
:= h′n0

/K,

and Bn0
:= 0hn0 . Then, for all n ≥ n0 and all 0 ≤ j ≤ p′n − 1, set pn := p′n,

sn,j := s′n,j/K and define inductively

Bn+1 := Bn1
sn,0Bn1

sn,1 · · ·Bn1
sn,pn−1 .

Observe that the length hn of Bn is equal to h′n/K.
These new building blocks Bn define the symbolic model (Ω, T ) associated to

a bounded rank-one construction. Consider the system (Ω̃, T̃ , µ̃) constructed from

(Ω, T ) as in Theorem 5. Define the map ϕ : Ω̃ → Ω′ as follows:

• Let (ω, i) ∈ Ω̃. If the zero-th coordinate of ω is the j-th letter of a building
block Bn0

, let the zero-th coordinate of ϕ(ω, i) be the (Kj + i)-th letter of
B′

n0
, otherwise let the zero-th coordinate of ϕ(ω, i) be a spacer.

• For all j ∈ Z, define the j-th coordinate of ϕ(ω, i) as the zero-th coordinate

of ϕ(T̃ j(ω, i)).

Then ϕ is an isomorphism between (Ω̃, T̃ , µ̃) and (Ω′, T ′, µ′), hence (Ω̃, T̃ , µ̃) satisfy

the assumptions of Theorem 5, and Sarnak’s conjecture holds for (Ω̃, T̃ ). But ϕ is

also a topological factor map from (Ω̃, T̃ ) to (Ω′, T ′), which proves that Sarnak’s
conjecture is also valid for (Ω′, T ′). �
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