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Abstract

In this paper, we aim at modeling and analyzing the regulation processes in
multi-cellular biological systems, in particular tissues. The modeling frame-
work is a generalization of several existing formalisms. In particular, it can
be seen as an extension of logical regulatory networks (à la Thomas) with
information about cells physical state and environment, e.g., their spatial re-
lationships. The resulting formalisms, called integrated regulatory networks
(IRNs) is equipped with a transition systems semantics that preserves the
possibility of an enumerative and exhaustive state space exploration. This
paper presents the modeling framework, its semantics, as well as a prototype
implementation that allowed preliminary experiments on some applications
related to biology.

Keywords: Logical regulatory networks, topological collections,
enumerable state space, spatial modeling, systems biology.

1. Introduction

Regulation processes are the corner stone to understand many aspects of
biological systems. They occur at many levels like transcription and transla-
tion of the genetic material, or protein modifications. They define complex
networks of interactions that cannot be easily understood without resorting
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to formal modeling and automated analysis. The generalized logical formal-
ism initially proposed by René Thomas in the seventies [41, 42, 43], is a
discrete modeling formalism that has proved to be an effective way to cap-
ture regulation processes and analyze them. It has been successfully applied
to the study of a variety of regulatory networks comprising relatively large
number of components [35, 36]. This formalism however does not provide any
modeling device to specifically address the question of multi-cellular systems,
where the regulatory networks of cells can influence each other in a way that
is dependent on the spatial relationships between the cells.

On the other hands, several formalisms inspired by formal language theory
have been used to model and simulate the dynamics of multicellular systems.
For instance, Lindenmayer systems are generative grammars that have been
successfully used since the seventies in the modeling of plant growth and
developmental biology [29, 34]. This framework is widespread for the realistic
simulation of developing organisms, but has not been the target of automated
analysis like model-checking.

This paper aims at proposing a modeling framework integrating regula-
tion and development in multi-cellular systems. It takes into account physical
information about cells (like weight, volume or spatial organization) as well
as about the environment (like temperature or mechanical stress). We are
particularly interested by the modeling of the dynamics of tissues and, follow-
ing the central dogma of molecular biology [12], the physical transformations
of cells (like migration, division and apoptosis – cell death) will be governed
by the regulatory processes.

This framework is devoted to the analysis of systems such as developmen-
tal processes, invasive cancers, plant growth, etc. Therefore, one of our main
objectives in such a modeling framework is to preserve the ability to perform
model-checking based analysis in order to be able to assess causality-related
properties and reveal rare events, which usually cannot be obtained through
simulation. This constrains the possible choices for modeling physical infor-
mation. In particular, there should be a finite number of possible evolutions
from a given configuration and they should be enumerable. Moreover, each
configuration should be represented in a normalized form, allowing the recog-
nition of two identical configurations. For instance, floating-point positions
are not a possible solution; instead, we shall use solutions based on discrete
(qualitative) and combinatorial structures.
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Contributions. Our starting point is a qualitative modeling approach devel-
oped in [9, 10] based on logical regulatory networks [41, 42, 43] and extended
later to introduce modularity [7, 8]. In this extension, modularity allows a
systematic modeling of multi-cellular systems, each cell being represented by
a module. However, the spatial relationships between the modules within a
model is represented in a very coarse way, with no link to any kind of ge-
ometrical or topological information. Moreover, in this setting, the number
of modules is fixed when the model is first built. In [15], we extended this
by including explicitly the spatial aspects of a system and allowing spatial
transformations through explicit cells division (by duplication), apoptosis (by
destruction) or migration. Finally, only two kinds of discrete space represen-
tation were considered and the interactions between the logical (regulatory)
specification and the spatial specification of the system were rather ad-hoc.

In the present paper, we further generalize and unify these approaches
by considering physical aspects and not only spatial ones. Physical aspects
include arbitrary transformations as well as environmental factors which are
not necessarily controlled by the regulatory processes (e.g., the temperature)
but affect the model dynamics (e.g., the rate of diffusion).

Spatial aspects are the physical aspects concerned with the topological or
geometrical organization of the system. Their modeling is specified through
rewriting rules, called transformations, acting on topological collections [14].
Topological collections generalize the notion of labeled graphs to higher di-
mensional objects. This framework, implemented in the language MGS, has
been used in the context of P systems [17] and in several large modeling
projects in systems biology [2, 18, 39].

The resulting framework, called IRNs for Integrated Regulatory Networks,
allows the specification and the analysis of spatially organized biochemical
modules. It is given a semantics in terms of transition systems that is im-
plemented in a prototype, allowing to prove the feasibility of the approach
and to run preliminary experiments on simple applications. We present in
particular two instances of spatial information specification. One is based on
sequences that can be extended or shrunk and is used to specify and analyze
a model for the cell division and differentiation of a filamentous blue-green
alga Anabæna catenula [46, 23]. The other one is based on predefined grids
and applied to the modeling of a quorum sensing mechanism.

Notice that the approach presented in this paper is applicable only if a
unique sort of module is considered at the same time, i.e., if all the cells in a
tissue are of the same kind. The extension to take into account multi-sorted
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systems is quite straightforward, but the resulting notations are much more
complex. Our prototype implementation actually does not have any such
limitation. However, for this paper, an intuitive and simpler presentation
has been preferred. Furthermore, this paper does not consider the expression
and analysis of properties in the models, we simply provide a framework
with enumerable state spaces which is enough to guarantee that any model-
checking technique is potentially applicable (in particular, modal/temporal
logic based approaches).

Outlines. The next section introduces the background of our work, in par-
ticular the modeling formalisms we start from (for regulatory aspects as well
as for the modeling of spatial information). Our contributions are then pre-
sented in sections 3 and 4, the former is dedicated to the definition of the
syntax and semantics of IRNs, while the latter presents some experiments.
The paper ends with a conclusion and a discussion about future works.

2. Background

In this section we present some background material about logical regu-
latory networks and about topological collections and their transformations.
These formalisms will be used in the definition of the IRN framework and
will be illustrated through an example: the modeling of the growth of a
blue-green alga.

2.1. A running example

Anabæna catenula is a cyanobacterium that grows in filaments of one
hundred cells or more. The sequence of cells is composed of small and large
cells that are polarized to the right or to the left.

In case of nitrogen starvation, a differentiation process occurs: specialized
cells called heterocysts differentiate from the photosynthetic vegetative cells.
Heterocysts are anaerobic factories for nitrogen fixation and are located at
regular intervals along each filament.

Plant signals exert both positive and negative regulatory control on het-
erocyst differentiation. Wilcox et al. have proposed an activator-inhibitor
model of heterocysts differentiation where the high concentration of the ac-
tivator triggers the heterocysts differentiation [46]. The production of the
activator is an autocatalytic reaction and also catalyzes the production of
the inhibitor. The inhibitor is an antagonist substance that represses the
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activity of the activator when its concentration is high enough. The diffusion
of the inhibitor to the neighboring cells prevents neighbors becoming hetero-
cysts and explains why heterocysts appear in a regular spaced pattern in the
filament. A possible IRN model of the growth and differentiation processes
of Anabæna will be presented in section 3.2.

2.2. Logical regulatory networks

A logical regulatory network [41, 42, 43] is usually depicted as a graph
whose vertexes are regulatory components, for example, genes or proteins,
and whose arcs indicate how each component is influenced by others. A
simple regulatory network for an Anabæna cell is depicted in the middle
of Figure 1. Component Sz encodes the size of the cell (0 for small, 1 for
big); component Hc encodes whether the cell is heterocyst (with value 2),
vegetative (value 0) or in an intermediary state (value 1). The intuition of
the network depicted this way is that Hc is auto-regulated and inhibits Sz .
This is thus a network of influences, not to be confused with an automaton
nor with the corresponding state space. Different shapes of arrows heads
indicate activation ( ) or inhibition ( ).

More formally, a regulatory network is defined as a set of regulatory com-
ponents, each component Cmp being associated with a regulatory function
nextCmp that provides the following information: its codomain defines the
range of values Cmp can assume, the current value of Cmp being denoted as
xCmp; its arguments define the regulatory components Cmp depends on; its
evaluation defines the level toward which Cmp is called to evolve by steps
of ±1. For example, in Figure 1, Hc is always called to evolve towards 2, but
starting from 0, it must go through 1.

Hc

Sz

nextHc(xHc)
df
= 2

dom(Hc)
df
= {0, 1, 2}

nextSz(xSz , xHc)
df
=

{
xSz if xHc > 0
1 if xHc = 0

dom(Sz)
df
= {0, 1}

0,0 0,1

1,0 1,1

2,0 2,1

Sz

Hc Hc

Hc Hc

Sz

Sz

Sz

Hc Hc

Sz

Sz

Figure 1: Left: the formal definition of a simple regulatory network for one cell of Anabæna.
Middle: its graphical abstract representation. Right: the corresponding state space where
each node is a state labeled by xHc , xSz and each edge corresponds to the change of one
variable as indicated in its label.
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A state s of a regulatory network is a binding that provides for each
component Cmp its current level s(Cmp)

df
= xCmp. In other words, a binding

is a partial function on a finite domain associating values to components.
Given a state s and a component Cmp, it is possible to evaluate nextCmp,
yielding a target value xCmp

′ for Cmp. If xCmp
′ 6= xCmp, this defines a possible

evolution of the system to a state s′ that is such that s′(C )
df
= s(C ) for each

component C 6= Cmp, and:

s′(Cmp)
df
=

{
xCmp + 1 if xCmp

′ > xCmp ,

xCmp − 1 if xCmp
′ < xCmp .

Such an evolution rule allows to define the state space that is suitable to per-
form model-checking of various reachability- or causality-related properties.
The right part of Figure 1 shows the state space of the regulatory model of
Anabæna.

2.3. Topological collections and topological rewriting

Integrative modeling of biological processes (e.g., in system biology) re-
lates different models that operate on different levels of abstraction and var-
ious spatial and time scales. The spatial organization of cells is crucial and
the description of the morphogenetic processes at a cellular level implies
the integration of molecular mechanisms such as cell-cell signaling, mechan-
ical stresses and genetic regulation embedded in a complex dynamic geome-
try [11].

Topological collections have been introduced in [17] to describe arbitrary
complex spatial structures that appear in biological systems [18] and other
dynamical systems with a time varying structure [14, 22]. Figure 2, adapted
from [40], summarizes the main spatial representations actually used in bio-
logical modeling (see also [5] for a review). The notion of topological collec-
tion has been used successfully to represent all these kinds of space.

A topological collection is a weakening of the notion of topological chain
that is developed in algebraic topology and corresponds to a labeled cellular
complex [31]. An (abstract) cellular complex is a formal construction that
builds a space in a combinatorial way through more simple objects called
topological cells.1 Each topological cell abstractly represents a part of the

1The reader must pay attention not to confuse biological and topological cells.
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Figure 2: Various representation of space often used in systems biology according to [40].
(a) In particle space, molecules are represented as individual particles with positions in
a continuous space. (b) Such methods accommodate a discrete dynamics when parti-
cles jump in time and space by calculating the maximum distance that the particle can
travel and interact in the time slot. Lattices discretize regularly the space: in micro-
scopic lattices (c) at most one particle is allowed to occupy a lattice site while mesoscopic
methods (d) allow several ones. (e) Mesh spaces are usually used to solve PDE (e.g., in
reaction-diffusion systems) or for cellular automata like models. (f) Compartmental spaces
focus on the molecular transfers between compartments.

whole space. The structure of the whole space, corresponding to the parti-
tion into topological cells, is considered through the incidence relationships,
relating a cell and the cells in its boundary. A topological chain is a func-
tion from a cellular complex to a set of labels equipped with some algebraic
structure [31].

Transformations of topological collections are defined by rewriting rules.
A general notion of topological collection rewriting [14] has been developed
in a logical style [17] and in a more operational style [38].

2.3.1. Topological collections

In this paper, we focus on a particular case of topological collections,
namely on graphs. We can then forget some of the full technical machin-
ery for topological collections manipulation, the target topological collection
downgrading to a labeled graph. Let V be a set of symbols used to denote
the vertexes and E a set of symbols used to denote the edges of the graph.
For technical reasons, an edge is not an element of V × V: the connection
between vertexes and edges are captured by a strict partial order (i.e., an
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irreflexive, transitive and antisymmetric binary relation) on the set of topo-
logical cells C df

= V ∪ E, written ≺C. We have v ≺C e if vertex v is one of
the ends of edge e. A one dimensional abstract cellular complex K = (A,≺)
on C is a partially ordered subset of (C,≺C) and ≺ is called the incidence
relationships of the complex K.

A topological collection over K
df
= (A,≺) with labels in L (the set of

possible labels) is a triple (K,C,L) where C is a partial function from A ⊂ C
to L. For convenience, such a collection is denoted by C. Moreover, |C|
denotes the set of cells c ∈ A for which C(c) is defined, and vert(C) = A∩V
is the set of the vertexes of C.

The topological collection C can be written as a formal sum
∑

c∈|C| `c · c
where `c

df
= C(c). With this notation, K and L are left implicit but can

usually be recovered from the context. By convention, when we write a
collection C as a sum C

df
= `1 · c1 + · · · + `p · cp, we insist that all ci are

distinct. Notice that the addition is associative and commutative.

2.3.2. Topological rewriting

In the framework of this paper, topological rewriting can be defined as a
simple kind of graph rewriting following an approach similar to that taken
in [32]: using the additive representation of topological collections, topologi-
cal rewriting can be simply defined as an adapted version of conditional first-
order associative-commutative term rewriting, see [38] for the details. The
formal definition of topological rewriting is less interesting than the syntax
of the pattern language used to specify the left hand side (lhs) of a rewriting
rule: as a matter of fact, the lhs of a rule must match a sub-collection, that
is a subset of (K,C,L). This includes a sub-relation of the incidence relation
≺ of K. This information can be difficult to specify without the help of a
dedicated language.

We rely here on the syntax of the path pattern language defined for
MGS [20]. A transformation T is a function specified by a set of rewrit-
ing rules {p1 → e1, . . . , pn → en} where each pi is a pattern and each ei is an
expression. An application of such a rule matches a sub-collection with one
pk that is then substituted by the result of expression ek. The path pattern
language relies on the constructions below.

• A label ` ∈ L matches a vertex labeled by this value. So, it corresponds
to the term ` · v where v is a fresh variable ranging over the vertexes.

8



• A pattern variable v matches a vertex and its label. The identifier v can
be used elsewhere in the rule to refer to the label of the matched cell;
the cell itself can be referred through the special identifier v. Using the
additive notation for topological collections, this pattern is translated
to v · v where v ranges over the labels, and variable v ranges over the
vertexes.

• A guard / can be used to specify a condition that must be satisfied
by the matching. For instance, expression v/v > 5 matches a cell v
labeled by a integer greater than 5.

• Associative operator “,” is used to specify a path, i.e., a sequence of
elements. A comma implies also some constraints on the incidence
relationships linking the two arguments: in the additive notation, the
pattern v, w translates to the conditional pattern

v · v + w · w / ∃ u : v ≺ u ∧ w ≺ u

In other words, the vertexes matched by v and w are linked by edge u.

Rule applications are controlled through a rule application strategy. Sev-
eral strategies are available in MGS like the maximal parallel application
used in Lindenmayer or P systems, and the Gillespie stochastic simulation
algorithm used in the exact simulation of chemical reactions [37]. These
strategies are non-deterministic, i.e., applied on a collection C, only one of
the possible outcomes (randomly chosen) is returned by the transformation.
We will see later on how our implementation overcomes this limitation in
order to explore the whole state space.

2.3.3. Modelling the growth of Anabæna

In this section, we apply topological collections to the modeling of the
growth of Anabæna. In MGS, several specialized types of topological collec-
tions are available for the modeler as predefined data types. Here we will use
sequences to model the one dimensional organization of the alga. Sequences
are a particular kinds of topological collections where the underlying graph
are linear, i.e., the set of vertexes V is equipped with a total order <. In
addition, this total order is compatible with ≺, that is, if there exists an edge
e such that v ≺ e and v′ ≺ e, then v < v′ or v′ < v. Edges are directed and
the direction is taken into account by the comma operator.
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We use the four symbols: left, right, Left and Right, to represent the
various states of polarity and size of an Anabæna cell. The following four
transformation rules give the fate of each kind of cell [30]:

left→ Left Left→ left,Right right→ Right Right→ Left, right

meaning that a small left polarized cell grows into a big left polarized cell, a
big left polarized cell divides into a small cell with the same orientation, and
a big cell with opposite orientation, etc. Note that the comma operator is
overloaded and appears also in the right hand side (rhs). In this context, it
is simply used to build the new sequence to substitute. Thus, irrespectively
of the complexity of the sub-collection to be substituted and the complexity
of the underlying spatial organization, the lhs and rhs of a rule handle simple
paths (sequences).

The “one symbol = one cell state” approach for the modeling of Anabæna
is no longer acceptable when the number of possible states increases. So,
we shall use arbitrary values to label the topological cells of a collection and
we illustrate here the use of MGS records to handle concisely a state as a
product of sub-states. A record is a dictionary associating values to names,
i.e., it implements a binding (the fields of the record form the domain of the
binding). For example, we can use a record with two fields to specify the
polarity and the size of a cell:

{ Polarity = left; Sz = small }

Curly brackets are used in MGS to delimit the record r; application r(a)
to access the value of a field. Special constructions can be used to ease the
pattern-matching of such objects. In particular, a pattern

{ Polarity = left; Sz = size } as r

matches any record with at least a field “Sz” and a field “Polarity” with value
left. The construction“as” is used to give a name to the matched record. This
identifier, and the identifier used to match the value of a field, can be used
elsewhere in the rule. For example, the two previous rules used to increase
the size of left and right polarized cell, can be summarized by a single rule:

{ Sz = small } as r → r+{ Sz = big }

The + operator in the rhs denotes the asymmetric merge of records [33]. The
expression r1 + r2 computes a new record r having the fields of both r1 and
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r2: r(a) has the value of r2(a) if the field a is present in r2, otherwise it has
the value of r1(a). We take the same notations for bindings.

It is possible to recover various kinds of rewriting using dedicated inci-
dence relationships: set and multiset rewriting (e.g., as in P systems), string
rewriting (e.g., as in Lindenmayer systems) or array rewriting (e.g., as in lat-
tice gaz automata). However, if topological rewriting is very expressive for
simulation purposes, the automated analysis of the behavior of the iterated
applications of topological rewriting rules is very difficult. These difficulties
are partly caused by the wide range of rewriting strategies that can be used
and by the intertwining between the management of the labels (logical part)
and of the structure (physical part).

So, the obvious follow-up was to combine the logical and the physical
parts of the model and to establish a uniform presentation of both aspects,
especially from the point of view of the control, in order to ease the analysis
of such models. This is proposed in the IRN formalism.

3. Integrated regulatory networks

3.1. Intuitive presentation

Integrated regulatory networks (IRNs), an extension of logical regulatory
networks, are presented in several steps. First, logical regulatory networks
are generalized by removing the condition that component value domains
are integer intervals [0;n] and that they evolve by steps of ±1. Then, we
introduce the notion of modules as in [8, 15]. This results in the definition of
local variables and their update functions. For example, local variables may
be regulatory components or modules characteristics like weight or size. To
model regulation, it is of course possible to resort to local variables whose
domains are integer intervals [0;n] and that actually evolve by ±1.

The evolution of a local variable within a module may depend on the
values of some local variables in other modules. This is modeled as a local
measure, allowing to collect those values in the neighborhood of the evolving
module. For example, a local measure may integrate the concentrations of a
regulatory component diffused toward a cell from its neighbors according to
the distances between cells.

Next, to model spatial relations between modules, we localize them on
a topological collection. Neighborhood relationships between modules are
represented by a labeled graph. For example, the graph may reflect the
spatial arrangement of cells in a tissue, or the positions of bacterias in a
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population. The vertexes of this graph are module identifiers and a vertex
and its associated label correspond to a given module. Two modules i and
j are neighbors if there is an edge between the vertexes labeled i and j.
Topological collections are used to implement a database that records the
neighborhood relationships, which can be queried and updated efficiently.
So, local variables become bindings attached to the vertexes of the collection.
Similarly, local measures taken from a module i become a computation of a
single value from (possibly several) multisets of pairs (`j, xlvar j) where `j is
the label of the arc between i and j and xlvar j is the value of a local variable
lvar in module j. Local measures are actually generalizations of integration
functions from [8].

The whole graph may be labeled itself, yielding global variables. Global
variables may reflect environmental parameters like temperature or pressure.
Moreover, global measures are obtained by computing a value from an ob-
servation of the whole graph. For example, a global measure may be the
number of cells in the tissue, or the average of a local variable over the cells.

Finally, we introduce graph updates to allow for evolutions of the structure
of the graph. They correspond to physical modifications in the system, for
instance a reconfiguration of the spatial relationship like in cells migration,
but also in cells division or death.

3.2. Anabæna example

In this section, we will sketch the use of the IRN formalism to the model-
ing of the growth of Anabæna and the cell differentiation process described
in section 2.1. This example implies a fundamental mechanism in develop-
ment: a morphogenesis driven by a reaction-diffusion process taking place in
a growing media.

The first model allowing an extensive simulation of this process was devel-
oped in the field of parametric L systems [24]. It is based on the numerical
resolution of a set of coupled differential equations that specify the diffu-
sion and the reaction of the two morphogens amongst the cells (considered
as homogeneous compartments). The cell division process (which introduce
additional equations to solve at each division) is specified using an L sys-
tem grammar where each symbol is labeled by a set of continuous variables
(concentrations, size, etc.).

In contrast to this model, we propose here a discrete and qualitative
model of Anabæna growth and differentiation. Our goal is not to compare
this model with parametric L systems, but to investigate the usability of
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model-checking techniques in the analysis of developmental processes. For
example, one of our goals is to check that our model cannot produce two
neighbor heterocysts.

The system and its evolutions are formalized as follows. First, we assume
that Anabæna cells are linked in one sequence containing a number Nbr of
cells (a global measure), the maximal number of cells being limited to Nbrm
in order to ensure the finiteness of the dynamics (the corresponding transition
system).

The environment can provide nitrogen (modelled by a global variable
Nitro) to sustain the growth of the population. This variable is simply con-
trolled by the number of cells in the system, i.e., if Nbr is below a fixed
threshold NbrN then Nitro remains constant, otherwise it decreases.

A cell is characterized by two local variables: its size Sz and its kind Hc
(for the sake of simplicity, we forget the polarity). The size Sz can be small
or big. The kind Hc belongs to {vegetative, undetermined, heterocyst}, where
undetermined is an intermediary state in the transition between the vegetative
and heterocyst states. If there is some nitrogen, cells cannot become hetero-
cysts. There is nitrogen if it is provided by the environment (i.e., Nitro is
non zero) or because there are heterocysts in the neighborhood: this property
is modeled as a local measure Ah, a Boolean function indicating whether a
neighbor is heterocyst (Ah stands for “Any heterocyst?”). A small cell can
grow if there is some nitrogen or if there are heterocysts in the neighborhood.
A big cell divides under the same conditions (and if the population is less
than Nbrm) to give two small children cells. The latter is modeled as a graph
update Div . If there is no more nitrogen and if there is no heterocyst in
the neighborhood, a cell can change its kind from vegetative to undetermined,
and then to heterocyst. A heterocyst remains heterocyst as long as there is a
starvation of nitrogen. A heterocyst does not grow and cannot divide. Notice
that since we do not model cells death in this example (for simplicity), the
population will never decrease. So, whenever a nitrogen starvation occurs, it
becomes permanent.

The expected dynamics is formally defined by the evolution function spec-
ified in the tables given in Figure 3. We will see later on how division Div is
specified.

3.3. Formal specification of the framework

An integrated regulatory network (IRN ) is specified by the finite set of
its global and local variables with their variable update functions, its local
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current Nitro
Nbr

< NbrN ≥ NbrN
0 0

any n > 0 n n− 1

current Hc

Nitro
0 > 0
Ah

false true

vegetative undetermined vegetative
vegetative

undetermined heterocyst undetermined
heterocyst heterocyst

current Sz

Hc
heterocyst vegetative or undetermined

Nitro
0 > 0
Ah

false true

small small small big big

big big

Figure 3: Evolution tables of variables: Nitro (top), Hc (middle) and Sz (bottom).

and global measures definitions, and its graph update functions. A state of
an IRN is defined by a binding λ of its global variables and a topological
collection C that will define, in particular, the bindings for the vertexes (local
variables) and the edges.

3.3.1. Syntactical aspects

To support intuition, IRNs are depicted using the conventions described
in Figure 4. The shape and style (dotted or plain line) of the components
denote their nature while the arcs indicate a potential influence (resulting in
corresponding arguments in the function). Note that only one kind of arrow
tip is used because influences may be arbitrary and not limited to inhibition
or activation, as in logical regulatory networks. The constraints about the
arcs are defined consistently with the arguments allowed for each kind of
update function. The rationale is as follows: local variables and measures
can depend both on local and global information that is available to every
module; global variables or measures occur globally in the system and so
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lvlocal variable

lmlocal measure

gvglobal variable

gmglobal measure

gugraph update

3 3 3 3 –

3 3 3 3 –

– – 3 3 –

– – 3 3 –

3 3 3 3 –

Figure 4: Graphical conventions: measures are depicted in dotted lines; local objects are
depicted by round nodes while global objects are depicted by square nodes. The check
marks indicate whether an arc is allowed (3) or not (–) toward the node types in the left
column from each node type in the top row.

cannot depend on any local information; graph updates occur at some given
module and thus can depend on local or global information, but no function
can depend on a graph update because it does not compute any value but
instead transforms the spatial structure (i.e., C). Moreover, we assume that
any variable may depend on its current value, so we do not need to draw
self-loops in the graphical representation. Finally, we require that an IRN is
well-formed, in the sense that there is no mutual recursion between measures
and all functions are total on their finite domain and computable. Using these
conventions, the Anabæna example can be depicted as shown in Figure 5.

We assume that IRN variables range over finite sets of values and may
be updated using variable update functions. For each global or local variable
var , there is a unique update function that computes the new value of var
and whose allowed parameters are defined consistently with the constraints
given in Figure 4 (e.g., a global variable update may take as parameters only
global variables or global measures as shown in the corresponding row). As
for regulatory networks, xvar denotes the current value of variable var . By
convention, the same name is used for the variable and its update function.
For example, in Anabæna modeling, global variable Nitro can be specified by:

Nitro(xNbr) ∈ {0, . . . , n}

for a given n > 0 and is defined according to Figure 3.
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Nitro Nbr Div

Ah

Hc Sz Hc Sz Hc Sz

Figure 5: In black: graphical representation of the IRN specification of Anabæna; in the
upper part, global variable Nitro, global measure Nbr and graph update Div ; in the middle
part, local variables Hc and Sz ; in the lower part, local measure Ah. In gray, a view of a
linear graph C with three vertexes with the corresponding local variables.

A local variable has a value in each module i in C, which is computed
by an update function with the same name (common to all modules) that
may take parameters as specified by Figure 4. For example, in Anabæna
modeling, local variables Hc and Sz may be specified by giving their update
functions:

Hc(xHc i, xNitro , xAhi) ∈ {vegetative, undetermined, heterocyst}
Sz(xSz i, xNitro , xAhi) ∈ {small, big}

where xAhi is the value of the local measure Ah computed for module i. They
are defined according to Figure 3. The notation xlvar i is also used to denote
the value of the local variable lvar in module i.

Measures are obtained from observations of the topological collection C.
We distinguish global measures that are obtained by observing C globally,
and local measures that are obtained by observing a module i and its neigh-
borhood in C.

A global measure is defined by a function (with the same name) that
returns a value in a finite set, taking as parameters C and the binding λ for
the global variables, and possibly other parameters as allowed by Figure 4.
For example, in the Anabæna modeling, global measure Nbr may be specified
as:

Nbr(C, λ) ∈ {0, . . . ,Nbrm}
returning the number of vertexes in C, bounded by Nbrm.

A local measure lm is defined using a function with the same name that
returns a value from a finite set, taking as parameters the values of lvar in
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all the neighbors of i for each local variable lvar it depends on, and possibly
other parameters as allowed by Figure 4. These values of each such lvar ,
denoted by xlvar@i, are collected as a multiset of pairs (`j, xlvar j), where `j is
the label of the edge between i and j in C. In the Anabæna example local
measure Ah may be specified as:

Ah(xHc@i) ∈ {true, false}

returning true if there is at least one heterocyst in the neighborhood of i, and
false otherwise.

A graph update is a function that takes as parameters a topological col-
lection C, a binding λ for global variables, and a module identifier i. It either
returns an empty set when the application conditions have not been met, or
computes a set of new collections {C1, . . . , Cn} (n > 0). We assume that, for
each Ck, vert(C)\{i} ⊆ vert(Ck) and all the modules in vert(C)\{i} are un-
changed, i.e., that the transformation is local to i. Notice that this does not
forbid to make changes on the edges and their labellings, for instance, a cell
migration will change the edges. In terms of topological collections, a graph
update corresponds to a set of transformations. In the Anabæna example,
graph update Div(C, i) returns an empty set of graphs if the conditions for
division are not met, or a singleton graph where the cell i has been replaced
by two identical cells with Sz = small.

3.3.2. Dynamics

A state of an IRN is represented by a pair (λ,C) where λ is a binding
assigning values to the global variables, and C is a topological collection that
records the graph structure and the value of the local variables as bindings
attached to the vertexes. In other words, we have xgvar = λ(gvar) for a global
variable gvar and xlvar i = C(i)(lvar) for a local variable lvar and a vertex i.

Schematically, a state (λ,C) of an IRN may evolve to another one (λ′, C ′)
in one of the following manners, if the corresponding application conditions
are met and if (λ′, C ′) 6= (λ,C):

• by applying a graph update gup to the current topological collection
for a module i: the resulting topological collection is C ′ returned by
gup(C, i), and the global variables are unchanged λ′

df
= λ;

• by applying a global variable update: the resulting topological collec-
tion is unchanged C ′

df
= C, and binding λ′ is λ updated for some global

variable gvar such that λ′(gvar)
df
= gvar(· · · );
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• by applying a local variable update on a module i of C: the resulting
topological collection C ′ is C where lvar at module i has been updated,
i.e., C ′(i)(lvar)

df
= lvar(· · · ) and C ′(i′)(v)

df
= C(i′)(v) for every i′ 6= i

and every v 6= lvar , and the global variables are unchanged λ′
df
= λ.

Given an initial state (λ0, C0), and the evolution rules defined above, one
may build a transition system describing the dynamics of the IRN.

Implementation of the dynamics for Anabæna. In the Anabæna example,
graph update Div may be implemented as the following MGS transformation
on C:

cl,
(
{ Sz = big, Hc = k } as c

)
, cr

/ ( c = i) ∧ (Nbr(C, λ) < Nbrm) ∧ (k 6= heterocyst)
∧
(
λ(Nitro) > 0 ∨ cl(Hc) = heterocyst ∨ cr(Hc) = heterocyst

)
→ cl, c+{ Sz=small }, c+{ Sz=small }, cr

where cl and cr match the left and the right neighbors of the cell c. The
condition c = i holds when the vertex associated to cell c is i. The rest
of the guard checks that the condition to divide are met (see section 3.2).
Recall that, e.g., cl used in the rhs of the rule denotes the labeling of vertex
cl, which is a binding that records the local variables of the corresponding

module. So, for example, cl(Hc) is the value of Hc in module cl. Two
additional exclusive rules are defined similarly to handle the case of a cell at
one end of the filament.

The value of a global or a local measure is obtained by invoking the
corresponding function with the appropriate parameters. For example, Nbr
is computed as:

Nbr(C, λ) = size(C)

where the function size in MGS returns the number of vertexes in the topo-
logical collection.

A local measure lm, needs to read the current values of each involved local
variable lvar in all the neighbors of module i. For example, local measure Ah
for a module i can be computed in MGS using function NeighborFold(i, f, init).
This is a higher-order function that iterates a binary reduction function f
over the labels of the neighbors of i to build up a return value. The argument
init is used to initialize the accumulator. In our example, we have:

Ah(C, λ, i) = NeighborFold(i, (\x, acc.acc ∨ (x(Hc) = heterocyst)), false)
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where \x1, · · · , xk.expr is the MGS notation for a lambda abstraction.
The update of a global variable gvar corresponds to a call to the corre-

sponding update function with the appropriate parameters computing a new
value for gvar belonging to dom(gvar). For example, the update function of
global variable Nitro is defined as follows:

Nitro(xNbr) = if (xNitro > 0) ∧ (xNbr ≥ NbrN) then xNitro − 1 else xNitro

The update of a local variable lvar in a module i is defined similarly and
corresponds to a call to the corresponding update function with the appro-
priate parameters, computing xlvar i, a new value for lvar in i, which belongs
to dom(lvar). The actual updating is applied through a transformation with
a single rule. For example, in the Anabæna modeling, the application of the
update function for the size of a cell is given by

c / ( c = i)→ c+ {Sz = Sz(c(Sz), λ(Nitro),Ah(C, λ, i))}

where function Sz is specified in Figure 3.

3.4. Properties of IRNs

3.4.1. Conservative extension of existing formalisms

As we have shown in our incremental presentation, IRNs form a con-
servative extension of various formalisms. First, the generalized logical for-
malisms [43] may be recovered by using a single module with only local
variables whose update functions are compatible with logical regulatory net-
works (in particular, they enforce variations by steps of ±1). The extension
with modules from [8] can then be recovered by using several modules with
only local variables, local measures to implement so-called integration func-
tions (used to aggregate the values of local variables in neighbor modules),
and labeling the edges of the graph by real numbers in the segment [0; 1] (an
abstract notion of distance). The dynamics in [8] is given by colored Petri
nets executions while IRNs are executed as transition systems. There is an
obvious correspondence between both because every transition of the Petri
net implements exactly one update function. Finally, we have seen at the be-
ginning of section 3 how the current work is derived from our own extension
of [8] proposed in [15].

3.4.2. D0L systems encoding

IRNs can easily encode some formalisms proposed to model biological
development [29], in particular D0L systems. A D0L system is a triple
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G = (Σ, h, ω) where Σ is an alphabet, h is a finite substitution on Σ (into Σ∗)
and ω, the initial word, is an element of Σ+. Letter “D” stands for determin-
istic (the derivation sequence is unique) and the numerical argument of the
L system gives the number of interactions in the rewriting process: a 0L sys-
tem is a context free L system. For D0L system, there exists at most a single
production rule for each element a of Σ given by a → h(a). (We assume L
systems such that the length of h(a) for all a is strictly greater than 1.) The
translation of the production rules in topological rewriting rules is straight-
forward: the production rules a → a1 · · · ak in the L system translates into
the equivalent MGS rules: a→ a1, · · · , ak for each symbol a ∈ Σ. However, a
maximal parallel rewriting strategy must be used to respect the synchronous
evolution of L systems, which we will emulate.

If each symbol is represented as the value of a local variable, this approach
does not translate directly into an IRN, because the IRN evolutions of mod-
ules are asynchronous. Thus, we decide to manage the application explicitly,
using a flag which indicate where a production can take place. Our approach
is to apply the production sequentially, letter by letter, from left to right,
starting from the first letter.

More precisely, we consider an oriented ring topology. A module is com-
posed of three local variables: S with values in Σ, Start with a Boolean value
indicating the beginning of the word in the ring topology (there is exactly one
module with a variable Start set to true) and Flag ∈ {quiet, done, ready, go}
used to trigger the application of a production.

The application of a production is translated into a graph update function
consisting of a rule for each production a→ a1 . . . ak of the D0L system:

{S = a, Start = s,Flag = go} → {S = a1, Start = s,Flag = quiet},
{S = a2, Start = false,Flag = quiet},
. . . ,

{S = ak−1, Start = false,Flag = quiet},
{S = ak, Start = false,Flag = done}

We assume that there is exactly one module with Flag equal to go in the
initial state and this module has Start set to true. When the graph update
function applies, it substitutes the module with a go flag by several new
modules.
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ag, bq, cq, dq, eq, fq, gq, hq
ag−→ Aq, Ad, bq, cq, dq, eq, fq, gq, hq
bq−→ Aq, Ad, br, cq, dq, eq, fq, gq, hq
Ad−→ Aq, Aq, br, cq, dq, eq, fq, gq, hq
br−→ Aq, Aq, bg, cq, dq, eq, fq, gq, hq
bg−→ · · ·
hg−→ Aq, Aq, Bq, Bq, Cq, Cq, Dq, Dq, Eq, Eq, Fq, Fq, Gq, Gq, Hq, Hd
Ar−→ Ar, Aq, Bq, Bq, Cq, Cq, Dq, Dq, Eq, Eq, Fq, Fq, Gq, Gq, Hq, Hd
Hd−→ Ar, Aq, Bq, Bq, Cq, Cq, Dq, Dq, Eq, Eq, Fq, Fq, Gq, Gq, Hq, Hq
Ar−→ Ag, Aq, Bq, Bq, Cq, Cq, Dq, Dq, Eq, Eq, Fq, Fq, Gq, Gq, Hq, Hq

Figure 6: A complete evolution of an IRN encoding a D0L system with rules such that
each letter is replaced by two copies in upper case. The value of the flag is given by the
subscript, the left-most cell is the one starting the word and the ring is left-right oriented.

The local variable Flag evolves following the update function below:

Flag(xPrev i, xNext i)
df
=


quiet if xFlag = done ∧ xNext i = ready
ready if xFlag = quiet ∧ xPrev i = done
go if xFlag = ready ∧ xPrev i = quiet
xFlag for the other cases

In this function, local measures Prev and Next give the value of Flag at the
previous and the next module (with respect to the ring orientation). Figure 6
illustrates the propagation of the flags.

The initial state of the system is composed of modules with variable Start
set to false except for one module m, and with variable Flag set to quiet,
except for the module m where it is equal to go. A word generated by the
L system can be read as the values of S (in the direction of the ring), starting
from the unique module m with Start set to true, when xFlagm is equal to go.

3.4.3. Further properties of IRNs

The IRN formalism enjoys also some other interesting properties and we
want to stress three of them in particular. The first one is that the size of
a model specification is independent from the number of cells in the system.
This means that the description of the dynamics, through the various update
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functions, is generic. What is remarkable is that this is not true if we simply
unfold over the cells a logical formalism à la Thomas.

A second important property is that our framework is polytypic, that
is, generic with respect to the topology of the underlying graph [25]. This
property enables for example to use the same model on NEWS grids or on
hexagonal grids (see below, section 4.2). Polytypism is achieved in our case
through the use of the polytypic neighborhood operator (the coma operator
described in section 2.3.2) or iterators like NeighborFold (section 3.3.2).

Finally, thanks to syntactical restrictions and the definition of the dy-
namics, the transition system (state space) of an IRN is always finite. This
enables various analysis techniques, in particular model-checking.

4. Applications

4.1. Anabæna continued

Thanks to the previous formalization, we can model-check various prop-
erties of the Anabæna dynamics. Figure 7 shows an explicit representation
of the transition system for a given initial configuration. On such graphs,
it can be checked, for example, that no reachable state has two neighbor
heterocysts. In the instance depicted in Figure 7, one can see that nitrogen
does not decrease before the initial cell has divided, which corresponds to the
chosen parameter NbrN

df
= 2.

The transition system has been computed using our prototype that in-
cludes the set of MGS functions already presented. Because MGS is a sim-
ulation tool, it could compute only one trajectory among the possible ones
(i.e., one maximal path from the top-most node in figure 7). Such a state
space is perfectly suitable to perform various model-checking approaches: for
instance it is easy to check that no reachable state has two neighbor hetero-
cysts. More elaborated properties may be expressed using a temporal logic
and checked automatically using appropriate tools.

To compute the whole state space, we have used an external program
that drives MGS to perform the actual computation while the program is
only responsible for building the transition system ensuring that all the pos-
sible executions have been explored. The coupling between MGS and the
exploration program is currently made exploiting the capability of MGS to
be used in interactive mode: the driver program sends commands to the
MGS shell and retrieves the corresponding outputs. This way of coupling
works well on small examples like those considered in this paper but it has
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Figure 7: The transition system generated from the initial state corresponding to a single
small vegetative cell and xNitro

df
= 1, with both parameters Nbrm and NbrN set to 2. Each

state is depicted as a rectangle whose label gives first xNitro then, for each module, the
value of each local variable Hc and Sz encoded by the initial character of the corresponding
symbol. For example, 0:hB,vs stands for an IRN state with λ

df
= {Nitro = 0} and C

df
=

{Hc = heterocyst,Sz = big}, {Hc = vegetative,Sz = small} (two vertexes linked by comma
operator). There is an edge between two nodes iff a corresponding transition exists. Edge
labels are either Hi, Si or N, corresponding respectively to an evolution of Hc, Sz in
module i, or Nitro globally. Leaf nodes in this directed acyclic graph (there is no periodic
behavior) are stable states.

at least two important limitations: it is slow because its requires to con-
vert data from/to text, and it is error prone because such a conversion is
complex in general. A way to overcome this problem is to use for a future
implementation a lower-level coupling through the internal API of MGS.
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Nbrm NbrN initial state states transitions stable states

2 2 1:vs 39 42 16
2 2 2:vs 43 50 16
2 2 3:vs 47 58 16
3 2 1:vs 223 346 56
3 2 2:vs 235 378 56
3 2 3:vs 247 410 56
3 3 1:vs 191 286 48
3 3 2:vs 199 306 48
3 3 3:vs 207 326 48
5 4 3:vs 5375 12466 896
5 4 3:vs,vs 5373 12464 896
5 4 3:vs,vs,vs,vs 5361 12432 896

Table 1: State space size for the Anabæna example wrt various initial configurations.

To conclude about the Anabæna example, table 1 shows the evolution of
the state space size with respect to the choice of various parameters. It shows
in particular that the well known state space explosion phenomenon mainly
depends on Nbrm. This is not surprising: the number of states clearly grows
exponentially with the number of cells, but parameter NbrN and the initial
value of xNitro are global and do not really increase the combinatorial explo-
sion (in particular, they have no influence on the stable states). Similarly,
adding more cells to the initial state does not reduce significantly the state
space when the chosen configuration is not close to a stable state.

4.2. Quorum sensing

The Anabæna example shows the interplay between the logical and the
physical part of a system. However, it involves only a simple linear organi-
zation of the cells.

In this second example, we will sketch the use of topological collections
to model a more elaborate geometry and the benefit of polytypism. We are
interested in the sketch of a bacterial communication mechanism promoting
collective behavior within a population: quorum sensing. This term refers to
a type of decision-making process whereby the detection and the synthesis
of small diffusing autoinducer molecules enable a single cell to coordinate
its behavior with the rest of the bacterial population. This mechanism has
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mainly been proposed to serve as a means to regulate gene expression with
the local density of the cell population [47].

In our example, we assume that the sources of the signaling molecules are
a specialized cell type within a tissue or a biofilm. The spatial organization
of the tissue will be modelled by Group Based Fields or GBFs that generalize
the idea of grids to several dimensions and several neighborhood structures.

We first present the notion of GBF then a simple model of quorum sensing.

4.2.1. Group based fields

GBF are topological collections whose vertexes are elements in an Abelian
group [16]. The group is defined by a finite presentation:

G = 〈g1, . . . , gn;w1 = 0, . . . wn = 0〉

where Gg = {g1, . . . , gn} is a set of generators together with some constraints
wj on their combinations: wj is a group element which equates to zero (we
use an additive notation and 0 denotes the identity element of the group).
The graph underlying the GBF is the Cayley graph of the finite presentation:
the set of vertexes V is composed of the elements of the group G and there
is an edge labeled by gk ∈ Gg between the vertexes h and h′ iff h+ gk = h′.

For instance, in order to define a square grid, also called a NEWS grid
(north, east, west, south), we may use two generators e (east) and n (north).
This is illustrated in the left part of Figure 8. Similarly, a hexagonal grid
can be defined by means of three generators n, e and nw (north-west) and a
constraint n − nw − e = 0, as illustrated in the right part of Figure 8. As
shown by the dashed path, we have 2 ·n+e = 2 ·e+n+nw, which can be also
checked in an algebraic way, by substituting nw with n − e in this equality
as allowed by the constraint. Notice that this grid is called hexagonal rather
than triangular because the grid can be paved by hexagonal cells placed on
the vertexes.

The GBF structure is thus adequate to define the arrangement on a grid,
in any number of dimensions. In such grids, a distance can be naturally
defined as the minimum number of steps in order to reach one point from
the other (this is the approach of geometric group theory). For instance, in
the hexagonal grid of Figure 8, points at e and n are at distance 1 because
only one step in direction nw is required to reach the latter from the former;
similarly, points n and 2 · n + e are at distance 2.

The main drawback with grids is that inserting new elements is not pos-
sible: there must exist a “hole”, i.e., an unallocated vertex, to place the cell
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Figure 8: Left: a GBF defining a square grid, with two generators e and n. Right: a GBF
defining a hexagonal grid with three generators e, n and nw, and a constraint n− nw = e.

to be inserted. However, the simplicity of grids is well adapted to model, for
instance, accretive growth that occurs at the borders of a tissue [19].

4.2.2. A simple discrete quorum-sensing process

The purpose of the toy model we develop here is to illustrate the spatial
representation capabilities of IRNs and not to develop a realistic or a relevant
model of quorum sensing. Thus, we simplify this mechanism as follows: we
assume that each cell is able to sense a signaling molecule (inducer) in its
immediate environment (e.g., the inducer can bind to a membrane receptor
and induces the transcription of some genes) and then activate the synthesis
of the inducer itself.

The cells in a tissue are represented by modules organized in a GBF.
Each cell is characterized by a local variable M ranging over {0, . . . ,M} and
representing a discrete level of the signaling molecules produced by the cell.
The concentration M evolves in a cell accordingly of the local concentration
computed as a local measure D. To simplify, we assume that D simply com-
putes the average value of the concentrations in the neighbors, which can be
implemented in MGS as:

D(C, λ, i) = round
(
NeighborFold(i,+, 0)/NeighborFold(i, succ, 0)

)
where succ is the successor function on integers. Then, the variable update
function for M simply computes the average between the current value of M
in the cell and the value observed through D in the neighborhood (i.e., the
cell evolves toward the concentration sensed in the neighborhood). Finally,
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we assume that cells whose initial concentration is M are sources so that M
does not change for them.

We choose initial states in which all the non-source cells have M set to 0.
This results in stable states showing gradients of concentrations decreasing
from the source cells. The gradient is the consequence of the rounding to inte-
gers that forbid a progressive convergence toward the concentration of source
cells (as it would happen in a continuous setting) and creates a decreasing of
the sensed average values as cells are farther from the sources.

Two examples are represented in Figure 9, one uses the NEWS grid and
the other the hexagonal grid. This shows the polytipic features of IRNs: the
specification of the measure and of the update functions remains the same in
the two examples (including their MGS implementations), only the type of
the underlying topological collection changed. Figure 10 shows the transition
system of a quorum sensing process. One can see that the chosen topology
is crucial to determine the system evolution and the final pattern.

5. Related and future works

In this paper, we advocate the need of a modeling framework suitable
to represent and study the regulations in multi-cellular systems, taking into
account the spatial relationships between the cells as well as the spatial trans-
formations resulting from cells divisions, migrations, or apoptosis. Discrete
algebraic formalisms like P systems, process algebras or Petri nets are very
relevant because automated tools can be used to help both the modeling and
the systematic analysis of system behaviors (cf. [1] for the model-checking
of P systems). Such formalisms may take spatial relationships into account.
For instance, classical membrane systems rely on membranes inclusion to ab-
stract the spatial organization of cellular processes. However, the limitations
of this structure has been recognized [17] and leads to the development of
several variants: tissue P systems [45], population P systems [4], etc. Some
process algebras (e.g., used to study mobility or variants of π-calculus used
for biological modelling) rely also on a notion of localization but often the
spatial relationships are not explicitly exposed (the algebra of locations is
encoded into identifiers) or too limited (nesting structures). [3, 6, 26] are
among the rare works where geometry (especially a notion of distance) is
embedded in a process algebra to deal with the dynamic spatial arrangement
of cells through simulation. These frameworks focus on the articulation of
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Figure 9: Each row shows the initial and final state of a quorum sensing process. Only
the declaration of the underlying spatial representation changes between the two rows:
exactly the same variables, update functions and implementations have been used.
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Figure 10: The transition system of a quorum sensing process for two rows of cells on a
square grid.
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local coordinate frames but the affine maps do not allow enumeration of the
state spaces.

The IRN framework presented in this paper, based on the well-known
formalism of logical regulatory networks combined with spatial information,
may be enriched and extended in several directions.

First, the current definition of IRNs only supports systems having a
unique kind of modules. However, it is due to a deliberate presentation
decision allowing us to focus on essential IRN concepts using simple nota-
tions. Natural extensions to many different kinds of modules may easily be
provided and are already handled by our prototype implementation which
does not have any such limitations. Future works will provide a generalized
formal definition of the framework presented in the paper. We also intend to
run case studies in order to assess the relevance of our proposal: in particular
we shall consider models of Drosophilia embryo as in [8] and extend them
with cells divisions.

Second, concerning spatial transformations, we focus here on labeled
graphs. However, our mathematical description is not based on the usual
graph morphisms and pushouts like in [13] but is inspired by the approach of
J.-C. Raoult [32] where graph rewriting based on a (multi-)set point of view
is developed. The proposed model is close to term rewriting modulo associa-
tivity and commutativity (where the left hand side of a rule is removed and
the right hand side is added). This kind of approach also allows to extend
results from term rewriting to topological rewriting (as we did for termina-
tion in [21]). Note that the notions of topological collection and topological
rewriting are more general and may handle higher dimensional objects, a
feature relevant in a lot of application areas [44].

Another direction of future research consists in relaxing some constraints
concerning the dynamics definition; for example, to allow alternative update
strategies or infinite state spaces. Concerning the former, the current frame-
work defines the dynamics of the system using an asynchronous strategy.
This approach is relevant, e.g., for regulation networks. But we have seen
in section 3.4.2 an example that could be more easily expressed using a syn-
chronous maximal parallel update strategy. The design space of update strat-
egy is largely open, from asynchronous to synchronous and from deterministic
to non-deterministic ones. For the latter research direction, the actual IRN
specification restrictions ensure finiteness of the state space, but may become
artificial in practice. Some of these restrictions may be relaxed by resorting
to abstraction and specific reduction techniques, like those in [27, 28], which
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originally have been designed for systems with dynamic process creation.
Finally, we intend to study an alternative approach for spatial information

in order to address systems such as blood-cells populations. The idea is to
implement the spatial relation as a purely stochastic relation reflecting the
idea that such cells are in constant movement but may meet occasionally.
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