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Abstract. Using an artificial mouth with an accurate pressure
control, the onset of the pressure oscillations inside the mouth-
piece of a simplified clarinet is studied experimentally. Two
time profiles are used for the blowing pressure: in a first set
of experiments the pressure is increased at constant rates, then
decreased at the same rate. In a second set of experiments the
pressure rises at a constant rate and is then kept constant for
an arbitrary period of time. In both cases the experiments are
repeated for different increase rates.

Numerical simulations using a simplified clarinet model
blown with a constantly increasing mouth pressure are com-
pared to the oscillating pressure obtained inside the mouthpiece.
Both show that the beginning of the oscillations appears at a
higher pressure values than the theoretical static threshold pres-
sure, a manifestation of bifurcation delay.

Experiments performed using an interrupted increase in
mouth pressure show that the beginning of the oscillation occurs
close to the stop in the increase of the pressure. Experimental
results also highlight that the speed of the onset transient of the
sound is roughly the same, independently of the duration of the
increase phase of the blowing pressure.

Keywords: Musical acoustics, Clarinet-like instruments,
Transient processes, Iterated maps, Dynamic Bifurcation, Bifur-
cation delay.

1 Introduction

The clarinet is one of the most well-described instrument in
terms of scientific theories for its behavior. The relative simplic-
ity of its elements and their couplings has allowed to explain
several features of the sustained sound of the clarinet, such as
the playing frequency, the harmonic content, or the amplitude
of the sound, and their variation with the action of the musician
on its instrument. An important part of the timbre of this musi-
cal instrument can thus be understood with currently existing
models. However, the timbre does not only depend on the char-
acteristics of the sustained sound but to a great extent, on the
quick variations that happen at the onset of the sound, i. e., the
attack transient.

The first studies [1, 2, 3, 4, 5, 6] concerning the clarinet as-
sume that the mouth pressure is constant and does not depend on
time. We call this approach the “static case”. These studies use
simple resonator models (single mode [1], iterated map[2, 3] or
continuation methods of the Hopf bifurcation[7]) and a linear
approximation of the non-linear characteristic function of the
exciter to predict the threshold pressure, the bifurcation diagram
and the temporal shape of the pressure inside the mouthpiece.
Results show that the oscillation threshold pressure, which will
be called in this article the “static oscillation threshold” is re-
lated to reed stiffness, the mouthpiece opening and the losses
inside the resonator [4, 2]. The calculated and the measured
thresholds show qualitative agreement if the threshold pressure
is measured while the mouth pressure is slowly decreasing [5].
Prediction of the transient using a linearization of the exciter
characteristic agrees well with numerical simulations [1] and
shows that the acoustic pressure starts with an exponential en-
velope before reaching saturation [6]. For a given resonator
and a fixed embouchure, the γ coefficient of the exponential
growth (p0eγt) depends only on the value of the constant mouth
pressure.

In a real situation, the attack of a note is produced with a
complex combined action of several gestures. In special occa-
sions, a musician will perform a “breath attack” without using
his tongue. These transients show that the mouth pressure in-
creases quickly, typically in 40ms [8] and that players overshoot
a desired blowing pressure and then “decay” back to a “sustain”
level.

More recent articles have studied the behavior of the instru-
ment for time-varying pressures. Typically, these have used
“Continuous Increasing Mouth Pressure” (CIMP), in which the
blowing pressure increases with time at a constant rate, and
“Interrupted Increasing Mouth Pressure followed by a Plateau”
(IIMPP), in which the constant increase is stopped at the “in-
terrupting time”, being followed by a constant pressure. Using
a CIMP, Atig et al [9] notices that oscillation threshold pres-
sure calculated using numerical simulation is higher than the
static oscillation threshold. Bergeot et al [10] provide an ana-
lytical/numerical study of a simple clarinet model (also used
in this paper and presented in section 3) in CIMP situations
and propose the term “dynamic oscillation threshold” to define
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the beginning of mouthpiece pressure oscillation in dynamic
cases. An analytical expression is proposed for the dynamic
threshold, predicting that it is always higher than the “static
threshold”. This phenomenon is known in mathematical litera-
ture as bifurcation delay [11]. We wish to emphasize that the
term “delay” in bifurcation delay does not necessarily refer to a
time difference but to a shift in the oscillation threshold. In this
work, the word “delay” often refers to that shift.

The comparison between theoretical results and numerical
simulations reveals an important sensitivity to the precision (i.e.
the number of digits) used in numerical simulations. Indeed,
numerical results only converge to the theory when the sim-
plified model (the same as used for analytical investigation) is
computed with hundreds or thousands of digits [10]. Otherwise,
theoretical results become useless in predicting the behavior
of the simulated model. In this case, the dynamic threshold
increases with the increase rate of the mouth pressure. Silva
[12] performs numerical simulations of an IIMPP, showing that
the beginning of the envelope of the mouthpiece pressure is an
exponential p0eγt arising once the mouth pressure stops increas-
ing, and in which the growth constant γ does not depend on the
duration of the mouth pressure increase.

In this paper, the operation of a simplified clarinet under sim-
plified conditions (CIMP and IIMPP mouth pressure profiles)
is studied experimentally. The “clarinet” is a simple cylindrical
tube attached to a clarinet mouthpiece – it has no bore variations,
no flare, no bell and no tone or register holes.

To characterise the onset, three main parameters will be used:
the time (or value of mouth pressure) at the start of the oscilla-
tions, their initial amplitude, and the growth constant (which as
will be seen, can be vary through time in some cases). These
parameters can be equivalently expressed as a function of time
or as a function of mouth pressure, since the latter is an affine
function of time.

In the case of the CIMP profile, these parameters, measured
using the artificial mouth, are compared to the parameters es-
timated using simulations of a simplified clarinet model for
different values of the increase rate of the CIMP.

In the case of the IIMPP, the starting time of the oscillations
and the growth constant are related to the characteristics of the
mouth pressure profile, in particular the “interrupting time” of
the IIMPP, and the value of constant pressure reached at the end
of the IIMPP.

The paper is organized as follows: section 2 presents the
experimental system (artificial mouth). Section 3 presents the
physical model used for simulating the clarinet system. The
experimental results are presented and discussed in section 4
for CIMP profiles and in section 5 for IIMPP profiles of mouth
pressure. In section 4 experimental results obtained for CIMP
profiles are compared to numerical simulations.

2 Experimental setup and configurations

We describe here the experimental setup and the two experi-
mental protocols used in the work. An outline schematic of the
experimental setup is presented in fig. 1.
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Figure 1: Principle of the Pressure Controlled Artificial Mouth
(PCAM).

2.1 Materials

A simplified clarinet is inserted by its mouthpiece into Pressure
Controlled Artificial Mouth (PCAM). The PCAM is responsible
for controlling the mouth pressure and provides a suitable sup-
port for the sensors used in measuring the physical quantities of
interest[13, 14].

The simplified clarinet is made of a plastic cylinder connected
to the barrel of a real clarinet. The total length of cylinder and
barrel is l = 0.52m (this is also the effective length of the
instrument, calculated from L = c/4f , where c is the sound
velocity and f the playing frequency) and the internal diameter
is 15mm.

The artificial mouth is made of a Plexiglas box which supports
rigidly both the mouthpiece and the barrel. It is a chamber with
an internal volume of 30cm3 where the air pressure Pm is to be
controlled. The artificial lip is made of a foam pad sitting on the
reed.

Both the internal mouth pressure and the pressure inside the
mouthpiece are measured using differential pressure sensors
(Endevco 8510B and 8507C respectively). Finally, a flowmeter
(Bürkert 8701) is placed at the entrance of the artificial mouth to
measure the input volume flow entering into the reed channel.

Control of the mouth pressure is based on high-precision
regulation of the air pressure inside the Plexiglas box. This reg-
ulation enables the control of blowing pressure around a target
which can either be a fixed value or follow a function varying
slowly over time. A servo-valve (Bürkert 2832) is connected
to a compressed air source through a pressure reducing valve.
The servo valve is a proportional valve in which the opening
is proportional to the electric current. The maximum pressure
available is approximately 6 · 105Pa. A pressure reducer is
used to adjust the pressure upstream the servo-valve which is
connected to the entrance of the artificial mouth itself. An air
tank (120 litres) is inserted between of the servo-valve and the
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Figure 2: Time evolution of the mouth pressure Pm(t) (CIMP profile)
and of the pressure inside the mouthpiece P (t). The slope k of the
mouth pressure is equal to 0.1 kPa/s.

Table 1: Estimation of the slope for each repetition in experiment plus
averages.

Experiment 1 2 3 4 5 6
Values of k (kPa/s) (incr. blowing pressure)
1st time 0.100 0.140 0.233 0.751 1.557 2.681
2nd time 0.100 0.140 0.233 0.752 1.557 2.712
3rd time 0.100 0.140 0.233 0.753 1.559 2.711
Average 0.100 0.140 0.233 0.752 1.558 2.702

artificial mouth in order to stabilize the feedback loop during
slowly varying onsets. This large tank is used for experiments
performed with the CIMP profile, and is replaced by a much
smaller tank (approx. 2 litres) when faster varying targets are
tested (IIMPP profile). The control algorithm is implemented
on a DSP card (dSpace DS1104), modifying the volume flow
through the servo-valve every 40µs in order to minimize the
difference between the measured and the target mouth pressure.
Moreover, because of the long response time of the flowmeter,
the volume flow is measured but is not used in the control loop.

2.2 Experimental protocol

2.2.1 "CIMP" profile

Starting from a low value (0.2 kPa in our experiment) the mouth
pressure Pm(t) is increased at a constant rate k (the slope) until
a few seconds after the clarinet starts to sound. The mouth
pressure is then decreased with a symmetric slope (k′ = −k).
During the experiment, the mouth pressure Pm(t), the pressure
in the mouthpieceP (t) and the incoming flowU(t) are recorded.
Fig. 2 shows an example of the time profile of Pm and P with
k = 0.1 kPa/s.

The experiment is repeated three times for each of the target
slope values k given as a command to the PCAM. The actual
values of the slope obtained during the experiment are estimated
using a linear fit and shown in table 1. We can see that the
use of the PCAM provides a very good repeatability on the
increase/decrease rate of the blowing pressure.
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Figure 3: Measured signals in an IIMPP case: blowing pressure Pm(t)
(solid black line) and pressure inside the mouthpiece P (t) (solid gray
line).

2.2.2 "IIMPP" profile

For the IIMPP profile, the blowing pressure has two phases, first
increasing at a faster rate than that used for the CIMP profile,
then kept at an almost constant value. For example, in fig. 3, the
blowing pressure Pm starts at a low value (approx. 0.1 kPa), in-
creases for a certain time (hereafter referred as (∆t)Pm

), reaches
a target value (approx. 7 kPa) and is then kept constant. The
experiment is repeated for different values of (∆t)Pm

(target
values are 0.05s, 0.2s, 0.5s and 1s corresponding respectively
to experiments numbered 1, 2, 3 and 4, cf. table 2) and re-
peated fifteen times for each value of (∆t)Pm

. Table 2 shows a
good agreement between the command and the measurement
of (∆t)Pm

. This indicates that the control of the PCAM works
even for rapid variations in blowing pressure. However, for
the fastest (experiment 1), the difference between the command
and measurement is about 50% of the command. Table 2 also
shows good repeatability of the blowing pressure slope during
the increasing part.

In this experiment, only the blowing pressure Pm and the
internal mouthpiece pressure P are recorded (see fig. 3).

3 Clarinet model

This section presents the physical model of the clarinet used
in this work. The numerical simulations of the model will be
compared to experimental results in section 4 for the CIMP
profile.

3.1 Equations

The model divides the instrument into two elements, the exciter
and the resonator.
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Table 2: Averages and standard deviations of the measured (∆t)Pm
and k obtained for each PCAM command for (∆t)Pm

.

Experiment 1 2 3 4
Command for (∆t)Pm

(s) 0.05 0.2 0.5 1

Average of measured (∆t)Pm
: (∆t)Pm

(s) 0.0747 0.2047 0.4590 0.9168
Standard deviation of measured (∆t)Pm

(s) 0.0100 0.0108 0.0029 0.0060

Average of measured k: k (kPa/s) 80.7354 29.9284 13.4157 7.4133
Standard deviation of measured k (kPa/s) 7.6354 1.0262 0.2061 0.0378

y(t)

−H

0 U(t) Ur(t)
Uin(t)

P (t)

Mouthpiece

Reed

Lip

Mouth

Pm

Reed channel

Figure 4: View of the physical quantities used in the model.

3.1.1 Exciter

The exciter of a clarinet is the reed-mouthpiece system, charac-
terized by four physical quantities, the flow U across the reed
channel, the pressure difference ∆P = Pm − P , the reed po-
sition y and the reed volume velocity Ur (fig. 4). For lower
frequencies than the resonance frequency of the reed, and in a
non-beating regime (this is the case in this work because we
study the beginning of the oscillations), Ur can be considered
as a length correction [15]. We thus assume that Ur = 0 so
that U = Uin, and take the length correction into account in the
effective length of the resonator. Ignoring reed damping and in-
ertia, the pressure difference and reed position are proportional.

With these assumptions, the model can be described by two
physical quantities ∆P and U linked through the nonlinear
characteristics of the exciter:





U =
ζ

Zc
(PM −∆P )

√
|∆P |
PM

sgn(∆P ), (1a)

if ∆P < PM ;

0, if ∆P > PM , (1b)

where PM is the static closing pressure of the reed. Parameter ζ
is a non dimensional parameter written as

ζ = Zc S

√
2

ρPM
, (2)

where S is the cross-section of the reed channel at rest, ρ the air
density and Zc = ρc/Scyl the characteristic impedance of the
cylindrical resonator of cross-section Scyl.

3.1.2 Resonator

The resonator is assumed to be a perfect cylinder in which only
plane waves propagate. In linear acoustics, any unidimensional
single-frequency pressure distribution can be expanded into two
waves propagating in opposite directions. Using this property,
the acoustic pressure P is the sum of an outgoing wave P+ and
an incoming wave P−:

P+ =
1

2
(P + ZcU) ; P− =

1

2
(P − ZcU) . (3)

Using the variables P+ and P− instead of the variables P
and U , the resonator can be described by its reflection function
r(t), satisfying

P−(t) =
(
r ∗ P+

)
(t). (4)

A monochromatic planar wave of frequency f propagates in
the resonator with a damping factor α taking into account the
visco-thermal losses, which at low frequencies are dominant
over the radiation losses. The approximate expression of α
is [16]:

α ≈ 3 · 10−5
√
f/R, (5)

where R is the bore radius.

Even if the acoustic signals P+ and P− are not monochro-
matic, the damping factor α is assumed to be constant, calcu-
lated at the playing frequency [17, 18, 19, 20, 2] and ignor-
ing dispersion. Using this restrictive assumption Dalmont and
Frappe [5] obtain a good agreement between theoretical an ex-
perimental results for threshold, in particular the oscillation
threshold, provided that embouchure parameters Pm and ζ are
well estimated. Because the damping factor α is assumed to be
constant, the reflection function r(t) becomes a simple delay
with sign inversion (multiplied by an attenuation coefficient λ)
and is written

r(t) = −λδ(t− τ), (6)

where,
λ = e−2αL, (7)

is the attenuation coefficient, τ = 2L/c is the travel time of the
wave over the resonator length L at speed c.
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3.2 Solutions

From equation (6), equation (4) can be simplified as follows:

P−(t) = −λP+(t− τ). (8)

Moreover, by substituting the variables P and U with vari-
ables P+ and P− in equation (1) we have:

P+ = G
(
−P−

)
. (9)

An explicit expression for functionG can be found in Taillard
et al [3], recalled in appendix A and plotted in fig. 5.

Using equations (8) and (9), the complete system can be
described by the following equation:

P+(t) = G
(
λP+(t− τ)

)
. (10)

Finally, knowing variables P+ and P−, it is possible to cal-
culate P using

P (t) = P+(t) + P−(t) = P+(t)− λP+(t− τ), (11)

and U using

ZcU(t) = P+(t)− P−(t) = P+(t) + λP+(t− τ). (12)

3.3 Static oscillation threshold

A study of the stability of the fixed points of functionG based on
the usual static bifurcation theory (i.e. assuming that the mouth
pressure is constant over time) gives an analytical expression
Pmst of the static oscillation threshold [4]:

Pmst =
1

9


 tanh(αl)

ζ
+

√
3 +

(
tanh(αl)

ζ

)2



2

PM . (13)

In practice Pmst is the minimum value of a static blowing
pressure above which an instability can emerge.

Using a linearization of the characteristic curve of the exciter,
it can be shown [6] that if the mouth pressure Pm is constant
and lower than Pmst, the mouthpiece pressure P (t) converges
exponentially to a non oscillating regime (called static regime
in the literature). If Pm is higher than Pmst, the pressure P (t)
increases exponentially from the static regime reaching asymp-
totically a signal of constant amplitude. For a given resonator
and a fixed embouchure (i.e. a given ζ in the model), the time
growth constant γ of the exponential depends only on the value
of the constant mouth pressure.

4 Results for the "CIMP" profile

The aim of this section is to compare the parameters of the tran-
sient deduced from experimental signals and numerical signals.
The parameters of interest are:

• The bifurcation delay BD defined as the difference be-
tween the dynamic oscillation threshold Pmdt and the an-
alytical static oscillation threshold Pmst defined through
equation (13).

• The time growth constant τ of the onset transient of the
RMS envelope of P (t).

• The pressure growth constant η of the onset transient of
the RMS envelope of P (Pm).

Firstly, the input parameters of the theoretical model (ζ and
PM ) are estimated from the experimental data in order to calcu-
late the value of Pmst and to calculate the values of P deduced
from equations (10) and (11). Secondly, the method used for
calculating the parameters BD, τ and η is presented, as shown
in fig. 7.

Then, the method is applied to experimental and numerical
signals leading to experimental parameters BDexp, τexp and
ηexp and to numerical parameters BDnum, τnum and ηnum.
Finally, we compare transient parameters deduced from experi-
mental and simulated signals.

4.1 Estimation of the parameters used in the model

The damping factor α is calculated at the playing frequency,
which is around 160Hz, using equation (5). Parameters PM and
ζ are deduced from the experimental non linear characteristics
of the exciter, prior to the oscillation, by estimating the coordi-
nates of the maximum of the characteristic curve (Pmax, Umax),
through equations (14) and (15):

Pmax =
PM
3
, (14)

and
Umax =

2

3
√

3

PM
Zc

ζ. (15)

Figure 6 shows an example of an experimental nonlinear
characteristic (gray line). As stated previously [21, 22, 5], due to
the visco-elasticity of the reed, there is a difference between the
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Table 3: Averages of the slope k, of the parameters PM , ζ and of the static oscillation threshold Pmst obtained for increasing and decreasing
blowing pressure.

Experiment 1 2 3 4 5 6
Increasing blowing pressure
k (kPa/s) 0.100 0.140 0.233 0.752 1.558 2.702
PM (kPa) 10.1249 10.1018 10.3133 10.6686 11.3559 11.7668
ζ (Ad.) 0.1858 0.1858 0.1829 0.1755 0.1619 0.1614
Pmst (kPa) 3.9811 3.9723 4.0658 4.2358 4.5760 4.7448
Decreasing blowing pressure
k′ (kPa/s) -0.100 -0.140 -0.235 -0.707 -0.679 -0.631
PM (kPa) 10.0302 9.8651 9.9945 10.2835 10.4859 10.4577
ζ (Ad.) 0.1734 0.1763 0.1750 0.1685 0.1616 0.1646
Pmst (kPa) 3.9806 3.9040 3.9602 4.1018 4.2155 4.1903
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Figure 6: Experimental nonlinear characteristics of the exciter (gray
line) for increasing and decreasing blowing pressure and comparison
with fitted model (black line) for increasing blowing pressure. (ζ =
0.19 and PM = 10.12 kPa) In this example the increase rate k of the
blowing pressure is equal to 0.1kPa/s.

characteristics measured for increasing and decreasing blowing
pressures.

The values of the parameters ζ and PM estimated for the
6 values of the slope k (table 1) are given in table 3 for the
increasing and decreasing blowing pressures. The difference
between the parameters estimated in both cases is low (less than
2 %). For this reason, we used the values of ζ and PM deduced
for increasing blowing pressure. In this case, the value of the
static oscillation threshold pressure is calculated using the first
three values of k and leads to Pmst = 4.01 kPa. Due to the
response time of the flowmeter (≈ 0.3s), in experiments 4, 5
and 6 (with faster varying pressures) the closing pressure PM
and static oscillation threshold Pmst are overestimated.

4.2 Estimation method of bifurcation delay and growth
constants

As a reminder, due to the affine relation between pressure and
time, the difference in time, between the time at which the
mouth pressure crosses the static threshold and the moment the
oscillations actually start can be mapped to a pressure difference.
The bifurcation delay BD is formally defined as the difference

in threshold values of the mouthpieces pressure:

BD = Pmdt − Pmst, (16)

with Pmdt the dynamic oscillation threshold and Pmst the
static oscillation threshold estimated in the previous section (see
fig. 7, at the bottom). Pmdt is estimated as follows: considering
that the acoustic pressure P is a zero mean signal with variance
σ2
n before the threshold, the beginning of the oscillation, at time
tstart, is empirically estimated when PRMS(tstart) ≥ 4σn.
Then the dynamic oscillation threshold is defined as Pmdt =
Pm(tstart) (cf. fig. 7).

The part of the signal used for the determination of σn is
manually delimited. The mean value of the standard deviation
of the noise σn over all the measurements is 0.01kPa (≈ 0.35%
of the PRMS value during the stationary regime).

For the estimation of the growth constants τ and η, firstly
the end time of the transient tend is estimated as the time cor-
responding to a local minimum of the second derivative of the
RMS envelope [23]. Then, assuming that the transient is ex-
ponential for a time-varying mouth pressure as it is for linear
looped systems in static case, the time growth constant τ is
calculated between tstart and t1/2 = tstart + (tend− tstart)/2,
as follows:

τ =
t1/2 − tstart

ln(PRMS(t1/2))− ln(PRMS(tstart))
. (17)

Given that the blowing pressure is an affine function of
time, PRMS can be described using similar functions of either
time or blowing pressure. The growth constant η is therefore
calculated on PRMS(Pm) between Pmdt = Pm(tstart) and
P1/2 = Pm(t1/2):

η =
P1/2 − Pmdt

ln(PRMS(t1/2))− ln(PRMS(tstart))
. (18)

4.3 Comparison between experiment and simulation

Experimental signals are first compared to numerical solutions
of equations (10) and (11). The simulation uses the experi-
mental blowing pressure Pm(t) and reed parameters ζ and PM
estimated in section 4.1. Then, experimental parametersBDexp,
τexp and ηexp are compared to numerical parameters BDnum,
τnum and ηnum.
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Figure 8: PRMS plotted against Pm for each value of the slope k. (a) Experimental signals, (b) signals generated by the numerical simulation of
the model with parameters ζ and PM estimated experimentally (cf. section 4.1), plotted against the measured blowing pressure Pm(t). Arrows
represent the evolution through time and highlight an hysteretis cycle.

4.3.1 Comparison between experimental and numerical pres-
sure signals

In fig. 8, the RMS envelope PRMS is plotted as a function of the
mouth pressure Pm for different slopes of the blowing pressure
(fig. 8(a): experimental signals and fig. 8(b): simulated signals).
First of all, in fig. 8(a), it is worth noting that for all values of
the slope k, the state reached at the end of the transient belongs
to the same periodic branch (slight repeatability errors aside).

Secondly, we can observe a substantial difference between
the experimental and numerical signal amplitudes. Two reasons
can explain this difference. The first is the fact that the damping
factor is estimated at the playing frequency. A second reason
could be the error made on the estimation of the reed parameters.
Note also that the model used for these simulations is a very
rough approximation to the instrument under study.

Figure 8 highlights a hysteresis cycle: the dynamic threshold
estimated during the increasing phase is higher than the value
of Pm at which oscillation stops during the decreasing phase.
Figure 6 shows a change of embouchure parameters between
the ascending and descending phases of the blowing pressure.
Although this could explain the hysteresis cycle observed in
fig. 8(a) (experimental results), the hypothesis is not confirmed
by numerical results shown in fig. 8(b). Indeed, numerical simu-
lations are run with constant embouchure parameters during the
ascending and descending phases of the blowing pressure, also
showing a hysteresis cycle. This provides a strong indication
that the hysteresis in the envelope of P in the experiment cannot
be due uniquely to the viscoelastic change in reed properties.

Finally, fig. 8(a) also shows that a direct Hopf bifurcation
takes place, since the RMS envelope approaches zero continu-
ously as the blowing pressure decreases.

4.3.2 Dynamic oscillation threshold

The indicators BDexp and BDnum are plotted as functions of
the slope k in fig. 9, where all recordings and all simulations are
represented. The measurements are repeatable, showing little
difference between the three tests of each slope k.

As suggested by fig. 8, the gaps BDexp and BDnum are al-
ways positive and increase with the slope k. This is as predicted
by recent theoretical predictions on a discrete time system af-
fected with noise[24]. Figure 9 shows that the indicatorBDnum

estimated on numerical simulations is always smaller than the
experimentalBDexp. A possible reason for this is that the static
oscillation threshold is underestimated in the fit to the model
(see sect. 4.1). Indeed, in fig. 8(b), the decreasing slope of simu-
lations k1, k2 and k3 shows an extinction of the sound close to
the static oscillation threshold Pmst = 4.01kPa. On the other
hand, for experimental signals (cf. fig. 8(a)), the extinction is
close to 4.5 kPa, which can indicate that the static threshold is
close to this value. The consistently lower value of the estimated
static oscillation threshold Pmst could in principle be due to an
underestimation of the acoustic losses α. However, as pointed
in section 3.1.1, using assumption (5), Dalmont and Frappe [5]
obtain a good agreement between theoretical an experimental re-
sults. Therefore, we believe that the error in the static oscillation
threshold probably comes from the estimation of the parameters
PM and ζ . Indeed, underestimation is common when using a fit
of non-linear characteristics [25].

Despite this underestimation, the delay in the start of the oscil-
lations still occurs even if the static threshold is close to 4.5 kPa.
Moreover, its dependence on the variation of the parameter k is
unchanged.
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Figure 7: Outline schematic showing the definition of the different
indicators of the transient. At the top: blowing pressure Pm and of
the RMS envelope PRMS of the pressure inside the mouthpiece as
functions of time. Illustrations of tstart, tend, Pmdt, Pend and τ . In
the middle: PRMS as a function of Pm. Illustration of η. At the
bottom: illustration of the bifurcation delay (BD), corresponding to
the pressure difference between the dynamic oscillation threshold Pmdt

and the static oscillation threshold Pmst (see equation (16)).

4.3.3 Growth constants of the onset transient

This section is devoted to comparing the indicators τexp, ηexp,
τnum and ηnum.

First of all, fig. 10 shows an example of the mouthpiece
pressure profile on a logarithmic scale (experimental signal
in fig. 10(a) and simulated signal in fig. 10(b)) compared
to the exponential fit of the onset transient (dashed line on
fig. 10). Even if the mouth pressure depends on time (CIMP
with k = 0.23kPa/s), the pressure P inside the mouthpiece (for
both experimental and simulated signal) increases exponentially
during the onset transient.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

k (kPa·s−1)

B
D

(k
Pa

)

Experiment: BDexp

Simulation: BDnum

Figure 9: Bifurcation delay estimated on experimental signals (BDexp

(+)) and on simulated signals (BDnum (◦)) as functions of the slope
k.

Figure 11 shows that τexp, ηexp, τnum and ηnum are close
to each other. Figure 11(a) shows that τexp and τnum decrease
with the increase rate k of mouth pressure. Conversely, in
fig. 11(b) ηexp and ηnum appear to increase with k.

4.4 Discussion

The similarity between experimental and simulated envelope
profiles (as functions of blowing pressure) provides a good
indication that the simplistic model is able to provide good
predictions of dynamic instrument behaviors, as it has already
provided for static values of the parameters [5]. In different nu-
merical simulations[10] of the same simple model the dynamic
thresholds were found to be much higher than the ones found
in experimental results, mostly because the time-profile of the
pressure is not affected by noise whereas the experimental one is.
A better prediction of the dynamic threshold can be performed
by introducing stochastic variables in the modeling[24]

Secondly, the fact that the values P expmdt (and also Pnummdt )
are always larger than the static oscillation threshold Pmst can
be explained by the intrinsic difference between the system
described by the static theory where the blowing pressure Pm
is assumed to be constant (a static case) and the system used
in experiments where the blowing pressure is increasing (a
dynamic case). Recent theoretical and experimental works [11,
26, 27] on dynamic nonlinear systems show that, in dynamic
cases (as in our experiments), the oscillations start significantly
after the static theoretical threshold has been exceeded. This
phenomenon is known as bifurcation delay.

Finally, the time growth constant τ decreases with the slope
k of the blowing pressure. Conversely, the pressure growth
constant η increases with k. This means that even if the speed
(as a function of time) of the onset transient of the acoustic
pressure inside the mouthpiece increases with k, the blowing
pressure sees a smaller variation during the onset transient.
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(a) Experiment

(b) Simulation

Figure 10: Time profile of the RMS envelope PRMS(t) (solid gray
line) compared to its exponential fit during the onset transient (dashed
black line). (a) Experimental signal and (b) simulated signal. k =
0.23kPa/s.

5 Results for the "IIMPP" profile

The aim of this section is to study the evolution of two indicators
deduced from the mouthpiece pressure as a function of the
increasing duration of the mouth pressure. The first indicator is
the oscillation start time, compared to the “interrupting time” of
the IIMPP. The second indicator is the time growing constant.

5.1 Indicator estimation

As in the previous section, a few indicators are extracted from
the measured signals, although with a few differences. An
illustration of the indicators is depicted in fig. 12.

The increasing phase of Pm is detected from a threshold on
the derivative of the measured Pm. Two reference points, the
start time (tstart)Pm

and the “interrupting time” (tend)Pm
, result

from this detection, and allow to estimate the duration of the
transient of the blowing pressure:

(∆t)Pm
= (tend)Pm

− (tstart)Pm
. (19)

Assuming that the growth of Pm is linear, its slope k is
estimated between the times (tstart)Pm

and (tend)Pm
.
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Figure 11: Parameters τ (a) and η (b) as a function of the increase rate
k of blowing pressure. (+) Experiment and (◦) simulation.

In this section, during the increasing part of the mouth pres-
sure IIMPP profiles, the increase rates k are higher than the ones
used in section 4. In this case, we have noted that the use of
the amplitude of the first harmonic PH1

(t) instead of the RMS
envelope PRMS(t) allows the detection of sound emergence at
lower amplitudes.

Amplitude of individual harmonics is extracted using het-
erodyne detection. Detection of a component at frequency f
is performed by constructing a new complex vector resulting
from the product of signal xn by exp(j2πft). This vector is
then multiplied by a 4-period-long window of type “Blackman-
Harris”, and the absolute value of the result is summed over the
window and normalized.

This algorithm was tested in 2 different signals: one with a
jump in amplitude and one with a jump in frequency (from f to
2f ) with accurate results, and a precision (smoothing) of about
2 periods in both cases.

In fact, the noise background is lower if calculated at a nar-
rower range of frequencies than for the RMS envelope which
is wideband. Therefore, in this section transient parameters are
estimated on PH1

(t).
Two reference values of PH1

(t) are first determined, a low
one corresponding to the noise background close to the note end,
and high value, the absolute maximum of the logarithm envelope.
Then, the first value of log [PH1/Pref] crossing the midpoint
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Figure 12: Schematic representation of (a) the blowing pressure
Pm and (b) its first time derivative. (c) Schematic representation
of log[PH1(t)]. Gray lines depict the duration (∆t)PH1

of the onset
transient of the pressure P inside the mouthpiece. Vertical dashed lines
demarcate the duration (∆t)Pm

of the transient of Pm. The delay T ,
defined by equation (21), is also represented.

between these two previous values is used as a reference time
t50. Four other points are detected with abscissa log [PH1

/Pref]:
t10, t30, t70 and t90. Using these reference points the duration
of the onset transient of the pressure P is defined as:

(∆t)PH1
= t90 − t10. (20)

Next, the delay T defines the difference in time between the
beginning of the onset transient of P and the end of the blowing
pressure increase:

T = t10 − (tend)Pm
(21)

This indicator provides some information on the causality
link between the discontinuity in the blowing pressure profile
and the onset of oscillations, a positive value indicating that
the oscillations may not be a consequence of the stop of the
pressure growth.

Finally, assuming that the onset transient consists of an ex-
ponential growth where PH1(t) ∼ et/τH1 , the time growth con-
stant τH1 is estimated as the slope of log [PH1(t)/Pref] between
t30 and t70.

5.2 Experimental results

The indicators defined above are calculated for each trial. Some
of the original trials were removed from the analysis when
the fundamental frequency f0(t) was higher than expected
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Figure 13: Example of the time evolution PH1(t) for each value of
(∆t)Pm

. A logarithmic scale is used for the ordinate axis.
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Figure 14: Average and standard deviation (error bars) of the time
growth constant τH1 obtained for each value of (∆t)Pm

.

(≥200Hz, whereas the expected playing frequency is around
160Hz) for a long period of time during the onset phase. These
correspond to squeaks or higher regimes which afterwards de-
cay to the fundamental. The trials where the onset phase lasts
longer than 400ms were also removed. After this treatment, four
signal are removed from the fifteen originals trials.

In the remainder of this paper, the figures show the averages of
the indicators over 4 trials of a particular configuration (written
with an overline) and the standard deviations as a function of
the average of the measured (∆t)Pm

noted (∆t)Pm
(cf. table 2).

Moreover, all time quantities are made dimensionless using
Tp = 1/fp, where fp ≈ 160Hz is the playing frequency.

The example depicted in fig. 13 shows that the amplitude of
the sound grows exponentially at the beginning of the onset.
Moreover, we can see that the time growth constant τH1

looks
constant regardless of the value of (∆t)Pm

.

Figure 14 shows the time growth constants τH1
obtained for

each value of (∆t)Pm
. Figure 14 confirms the observations

made in fig. 13: time growth constant τH1 does not depend on
the value of (∆t)Pm

. The repeatability of the measurement is
good for τH1

: the standard deviation is between 7% and 14% of
the average.

Indicator T is plotted on fig. 15. We can notice that the
beginning of the onset transient of the mouthpiece pressure is
close to the “interrupting time” of the blowing pressure.
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5.3 Discussion

In a fast linear increase in the blowing pressure followed by
a stationary phase (i.e. IIMPP case), the results highlight that
there is no “soft or fast” onset when the tongue is not used. The
speed (i.e. τH1

) of the onset transient of sound is roughly the
same regardless of the duration of the blowing pressure transient.
The only impact of increasing (∆t)Pm

is an increased delay in
the curve of PH1 (cf. fig. 13). Silva et al. [12] obtained similar
conclusions on numerical simulations.

A possible reason for this is the fact that the beginning of the
onset transient of the mouthpiece pressure is close to the end
of the blowing pressure growth. This is shown in fig. 15 where
the variable T is plotted. Therefore, for most of the mouthpiece
pressure onset transient, the mouth pressure is constant and
equal for each experiment, i.e. oscillations increase in “static”
situation. In this case, as recalled in section 3.3, simple linear
loop models predict that the time growth constant depends only
on the value of the constant mouth pressure. However, to con-
clude that for IIMPP profiles the time growth constant of the
mouthpiece pressure in the onset transient depends only on the
target value of the mouth pressure, further measurements with
different target values of the mouth pressure are required.

Th influence of the increase rate k on the time growth con-
stant τexp seen in section 4 could be explained by the fact that
blowing pressure still increases during the onset transient.

6 Conclusion

When a clarinet is blown using a linearly increasing mouth
pressure, oscillations appear at a much higher value than those
predicted by static bifurcation theory. This explains why in-
creasing sweeps of the blowing pressure do not provide accurate
information on the oscillation close to the static oscillation
threshold. Decreasing the rate of pressure variation shows a
limited improvement.

For interrupted fast attacks in mouth pressure, the oscillations
start at the moment the blowing pressure is stabilized. the
oscillations then follow an exponential envelope with a time
growth constant that only depends on the target values of the
parameters. An extension to musical contexts would require a
validation with in vivo measurements taking into account more
complex mouth pressure profiles and the influence of the tongue.

Finally, the similarity observed between experimental and
simulated envelope profiles suggests that the complex behaviors
observed experimentally with a time-varying blowing pressure
can be described analytically by applying the same blowing
pressure time profile to a simple classical model of the clarinet.
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Appendices

A Explicit expression of the function G

The analytical expression for function G, defined by equation
(9), is obtained by Taillard et al [3]. Its expression is recalled in
this appendix where the following notations are used:

P = P+ + P− = G(x)− x ; (22)

U = P+ − P− =
1

Zc
(G(x) + x) . (23)

These notations are slightly different from those used by
Taillard et al [3].

From the expression of the nonlinear characteristic, given by
equations (1), the non-beating regimes with positive flow and
negative flow can be explicitly written:





U (∆P ) =
ζ

Zc
(PM −∆P )

√
∆P

PM
(24a)

if 0 < ∆P < PM (Non-beating reed, positive flow) ;

U (∆P ) = − ζ

Zc
(PM −∆P )

√
−∆P

PM
(24b)

if − PM < ∆P < 0 (Non-beating reed, negative flow) ;

U (∆P ) = 0 (24c)
if ∆P > PM (Beating reed).

In the following sections, we recall the analytical expression
for function G for each of the three operating regimes (beating
regime, non-beating regime with positive flow and negative
flow) of the instrument.

A.1 Beating reed regime

For the beating case, the flow U is equal to zero. Therefore,
from equation (23), the expression of G is simply:

G(x) = −x. (25)

11



A.2 Non-beating reed regimes

From equation (22) and recalling that ∆P = Pm − P , function
G can be written as follow:

G(x) = Pm + ∆P (U) + x. (26)

Therefore, inverting equations (24b) and (24c) leads to a
direct analytical expression of function G for the positive and
negative flow cases respectively. In practice, inverting (24b) and
(24c) consists in solving a third order polynomial equation, as
explained by Taillard et al [3].

A.2.1 Positive flow

For the non-beating reed regime with positive flow, the analyti-
cal expression for function G is:

G(x) = Pm − PM
(
−2

3
η×

sin


1

3
arcsin



ψ − 9

2

(
3
PM

(Pm + 2x)− 1
)

ζη3




+

1

3ζ




2

+ x, (27)

with,

ψ =
1

ζ2
; η =

√
3 + ψ. (28)

A.2.2 Negative flow

As stated above, inverting equation (24c) consists in solving
a third order polynomial equation. For the non-beating reed
regime with negative flow, the analytical expression of function
G depends on the sign of the discriminant of the polynomial:

Discr = q3 + r2, (29)

with

q =
1

9
(3− ψ) ; r = −

ψ + 9
2

(
3
PM

(Pm + 2x)− 1
)

27ζ
.

(30)

Positive discriminant. In this case, the expression of G is:

G(x) = Pm + PM

(
s1 −

q

s1
− 1

3ζ

)2

+ x, (31)

where,

s1 =
[
r +
√

Discr
]1/3

. (32)

Negative discriminant. G is:

G(x) = Pm + PM

(
2

3
η′×

cos


1

3
arccos



−ψ − 9

2

(
3
PM

(Pm + 2x)− 1
)

ζη′3




− 1

3ζ




2

+ x, (33)

with,

η′ =
√
−3 + ψ. (34)
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