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Abstract

The work presented is an experimental study on the influence of the blowing pressure profile

on the attack transient of the clarinet. A clarinet mouthpiece connected to a straight cylindrical

pipe was played by an artificial mouth in which the blowing pressure can be accurately controlled

through time.

Piece-wise linear time profiles are used for the blowing pressure. The observed oscillation thresh-

old as well as the envelope of the mouthpiece pressure are analyzed for different configurations and

compared to predictions from the Raman model. Differences between predictions and observations

are interpreted in terms of bifurcation delay.

Firstly, the pressure is increased constantly at several different rates until the oscillations are

well established in the resonator. The oscillations are seen to start at a value of the blowing pressure

which is higher than expected from a stationary analysis. This value is as high as the slope of the

pressure increase is higher.

In a second time, a fast linear increase of the blowing is suddenly stopped at a target pressure

value. In this case, the oscillations are seen to start close to the stop in pressure increase, or before

this instant. The transient time of the resonator pressure is constant.

∗Corresponding author, baptiste.bergeot@univ-lemans.fr
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1 Introduction

This work is an experimental study of the attack transients in a clarinet-like instrument (mouthpiece

and barrel of a real clarinet connected to a simple cylinder, see Fig. 1(a)) blown using a pressure

controlled artificial mouth (PCAM). A detailed description of the PCAM is made in section 3. The

general aim is to observe the time evolution of the envelope of the acoustic pressure inside the mouth-

piece during the attack transient (including the oscillation threshold) for simple time profiles of the

blowing pressure. More precisely, we focus on links between the characteristics of the attack transient

of the pressure inside the mouthpiece and characteristics of the time evolution of the blowing pressure.

Two different profiles are used for the blowing pressure. The first is a slowly increasing, then

decreasing pressure leading to an academic study of the influence of the increase rate (the slope)

of the blowing pressure on the attack transient of the acoustic pressure inside the mouthpiece. The

presentation of the experiment and the ensuing results are presented in section 4. In general, oscillations

inside the resonator are first observed at a much higher blowing pressure than the static oscillation

threshold predicted in the context of Raman model [1, 2, 3, 4, 5] (see section 2 for a brief description

of the this model). The difference between the two values increases with the slope of the blowing

pressure. This observation may be related to the phenomenon of bifurcation delay [6, 7]. Finally, we

show a comparison between experimental results and results obtained from numerical simulations of

Raman model, presented in section 2.

In section 5, a slightly more realistic mouth pressure profile is chosen. Its time evolution is divided

into two parts. In a first phase the blowing pressure increases at a higher rate than ones used in

section 4. The second phase is characterized by a constant blowing pressure. Consequences on the

attack transient of the sound are discussed.

2 Elements of theory of clarinet behavior

Raman model simplifies the structure of an auto-oscillating instrument to a maximum extent so that a

square-wave propagates in the resonator and reflects passively at the open end and through a nonlinear

function at the mouthpiece end. This allows to estimate static oscillation thresholds and amplitudes

of the permanent regime as a function of the playing parameters (blowing pressure Pm and lip force

ζ).

The seminal article from Mc Intyre et al. [8] proposes a general model for self-sustainded musical
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instruments such as the clarinet. This model divides the instrument into two elements: the exciter

and the resonator. The exciter of a clarinet is the reed-mouthpiece system characterized by the so-

called nonlinear characteristics of the exciter, a function relating the flow U across the reed entrance

to the pressure difference ∆P = Pm − P using Bernoulli equation [2]. The resonator is the bore of

the instrument described by its reflection function r(t). The solutions P (t) and U(t) depend on the

control parameters: Pm representing the mouth pressure and ζ which is related to the opening of the

embouchure. In this work we use a fixed embouchure, the control parameter ζ is therefore constant.

2.1 Nonlinear characteristics of the exciter

Assuming that the reed behaves as an ideal spring without damping or inertia, changes in pressure

induce an instant movement of the reed and an instant change in the flow U(t). This can therefore be

related to the pressure difference Pm − P (t) through the nonlinear characteristics of the exciter:

U =























ζ

Zc
(PM −∆P )

√

|∆P |
PM

sgn(∆P ), (1a)

if ∆P < PM ;

0, if ∆P > PM , (1b)

where PM is the static closing pressure of the reed. The control parameter ζ is a non dimensional

parameter, its expression is :

ζ = Zc S

√

2

ρPM
, (2)

where S is the cross-section of the reed channel at rest, ρ the density of the air and Zc = ρc/Scyl the

characteristic impedance of the cylindrical resonator of cross-section Scyl.

It can be noticed [5] that the coordinates of the maximum flow of the nonlinear characteristics are

linked to the reed parameters through:

Pmax =
PM

3
, (3)

and

Umax =
2

3
√
3

PM

Zc
ζ. (4)
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2.2 The resonator

In Raman model the resonator is a perfectly cylinder in which the dispersion is ignored and the losses

are assumed to be frequency independent [1, 2, 3, 4, 9, 5]. With these assumptions, the reflection

function seen from the mouthpiece becomes a simple delay with sign inversion (multiplied by an

attenuation coefficient λ). Using the variables P+ = 1

2
(P + ZcU) and P− = 1

2
(P − ZcU) (outgoing

and incoming waves respectively) instead of the variables P and U , the system can be simply described

by the following equation:

P+(t) = G
(

λP+(t− τ)
)

, (5)

where τ = 2l/c is the round trip time of the pressure perturbation with velocity c along the resonator

of length l. The function G is obtained by substituting the variables P and U by variables P+ and

P− in equation (1) . An explicit expression can be found in Taillard et al. [10].

The attenuation coefficient λ takes into account the visco-thermal losses along the resonator, which

at low frequencies are dominant over the radiation losses. It can be approximated by the expression:

λ = e−2αl, (6)

where α is the damping factor [11]:

α ≈ 3 · 10−5
√

f/R. (7)

R is the radius of the bore: R = 7.5 · 10−3 m in our experiment and f is the frequency in Hz. In

the context of Raman model the damping factor α is constant, calculated at the playing frequency.

2.3 Static oscillation threshold

A study of the stability of the fixed points of the function G, based on the usual static bifurcation theory

(i.e. assuming that the mouth pressure is constant along the time), gives an analytical expression Pmt

of the static oscillation threshold [12]:

Pmt =
1

9





tanh(αl)

ζ
+

√

3 +

(

tanh(αl)

ζ

)2





2

PM . (8)

We add the word static to the usual name oscillation threshold to emphasize that the analytical

expression is obtained from the static bifurcation theory which assumes a constant blowing pressure.

In practice this can correspond to increasing the pressure to a constant value and waiting for the

oscillating regime to be fully developed [13].
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3 Experimental setup : the pressure controlled artificial mouth (PCAM)

The experimental setup is made of a controlled artificial mouth [14, 15]. The artificial mouth consists

of a Plexiglas box. The mouthpiece and the barrel are rigidly attached to the box. Resonators (for

example, a real clarinet or a simple cylinder as in our experimenta) can be attached to the other end

of the barrel (see Figure. 1(a)).

Figure 1: (color online) (a) General view of the artificial mouth. (b) Lateral view of the mouthpiece
placed in the artificial mouth. The lip is shown in the position used for the measurements in this
article.

The machinery of the controlled artificial mouth is based on a high-precision regulation of the air

pressure in the Plexiglas box. This regulation enables to control the blowing pressure around a target:

a fixed value or around a value whose evolution in time is slow (like slowly varying ramps as in this

present work). The experimental setup is presented in Figure 2.

aWe use a plastic cylinder, l = 0.52 m long including the barrel of the clarinet.
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Figure 2: (color online) Principle of the pressure controlled artificial mouth. Through a control algo-
rithm implemented on a DSP card, the volume flow through the servo-valve is modified every 40µs in
order to minimize the difference between the measured and the target mouth pressure.

A servo-valve is connected to a compressed air source through a pressure reducing valve. The

maximum pressure available is around 6 bars, and the pressure reducer is used to adjust the pressure

P1 upstream the servo-valve. The servo-valve is connected to the entrance of the artificial mouth itself,

a chamber with internal volume of 30 cm3 where the air pressure Pm is to be controlled. The artificial

mouth blows into the clarinet. An air tank (120L) is inserted between the servo-valve and the artificial

mouth in order to stabilize the feedback loop during slowly varying onsets. The air tank is replaced

by a much smaller volume (∼ 2L) when faster varying targets are tested.

The principle of the control is as follows: through a control algorithm implemented on a DSP card,

the volume flow through the servo-valve is modified every 40 µs in order to minimize the difference

between the measured and the target mouth pressure.

The force applied by the lip on the reed also has an influence on the value of the oscillation threshold.

This force is maintained constant during the experiment using an artificial locked to a constant position

(cf. Figure 1(b)).

Finally, a flowmeter is placed at the entrance of the artificial mouth in order to measure the

nonlinear pressure/flow characteristic defined in equation (1).
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Table 1: Estimation of the slope for each occurrence of each experiment. Averages calculated from the
three values obtained for each experiment are also listed.

Experiment 1 2 3 4 5 6

Values of k (kPa/s) (incr. blowing pressure)

1st time 0.100 0.140 0.233 0.751 1.557 2.681
2nd time 0.100 0.140 0.233 0.752 1.557 2.712
3rd time 0.100 0.140 0.233 0.753 1.559 2.711

Average 0.100 0.140 0.233 0.752 1.558 2.702

4 Slowly time-varying blowing pressure

4.1 Description of the experiments

The procedure of the experiment is as follows: starting from a small value (0.2 kPa in our experiment)

the mouth pressure Pm(t) is increased at a constant rate k (the slope) up to a value beyond the

oscillation threshold. The mouth pressure is then decreased with a symmetric slope (k′ = −k). During

the experiment, the mouth pressure Pm(t), the pressure in the mouthpiece P (t) and the incoming flow

U(t) are recorded, and the RMS value PRMS(t) of the pressure in the mouthpiece is then calculated.

Fig. 3 shows an example of the time profile of Pm, P and PRMS with k = 0.1 kPa/s.

Figure 3: Time evolution of the mouth pressure Pm , the pressure inside the mouthpiece P and its
RMS value PRMS . The slope k of the mouth pressure is equal to 0.1 kPa/s.

The experiment is repeated for different values of the slope k and three times for each value. Values

of the slope are estimated using a linear fit and shown in Tab. 1. We can see that the use of the PCAM

provides a very good repeatability on the increase/decrease rate of the blowing pressure.

The aims of this section are:

• To compare the values Pm at which the oscillating resonator rises up from the background
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noise (hereafter referred to Pstart) to the analytical static oscillation threshold Pmt defined

through equation (8) and calculated using parameters obtained from the experimental nonlinear

characteristics;

• To determine whether Pstart depends on the slope k of the blowing pressure;

• To study the duration of the attack transient of P with respect to time and to the blowing

pressure (focusing on the study with respect to the blowing pressure);

• To study how this duration changes when the slope k increases.

Different objective indicators are estimated in order to acheive these aims. These indicators are

presented in Fig. 4.

Three time indicators are first estimated: tstart, tend and τ . tstart and tend correspond respectively

to the beginning and the end of the attack transient of the acoustic pressure P (t) inside the mouthpiece.

tstart is the time where P (t) rises up from the background noise, it is defined as the time at which the

RMS envelope PRMS(t) reaches a threshold equal to four times the average of the noise background.

tend is estimated as the time where there is a local minimum of the second derivative of the RMS

envelope [17]. tstart and tend define the duration of the attack transient (∆t)PRMS
of the sound inside

the mouthpiece calculated on the RMS envelope PRMS :

(∆t)PRMS
= tend − tstart. (9)

Assuming that the growth of the oscillations (here the growth of the RMS envelope of the acoustic

pressure inside the mouthpiece) is exponential, we estimate its time constant τ .

Then, indicators describing the evolution of the RMS envelope PRMS as a function of the blowing

pressure Pm are determined. Pstart and Pend are the values of the blowing pressure at times tstart and

tend.

The value Pstart can be questioned due to its intrinsic arbitrary nature. In fact there is no way

to determine exactly the instant at which the oscillations start. Should the oscillations start in a

completely noise-free environment, it would be straight-forward to determine an amplitude of the

oscillations at the playing frequency of the instrument. In our case, however, some energy exists at

this frequency due to the turbulence of the flow before any oscillation is present. It is thus difficult to

determine whether the oscillations are excited by the stochastic component of the pressure or by an

intrinsic instability of the system driven by a variable parameter [7].

Otherwise, the choice of the constant factor applied to the noise (4 in our case) can be seen as

arbitrary. However keeping this value the same for all experiments should provide values of Pstart that
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can be compared for different trials. In fact the noise level is quite reproducible, and thus the reference

value corresponding to Pstart follows a similar trend.

Pstart and Pend define the duration of the attack transient of the sound inside the mouthpiece with

respect to blowing pressure Pm:

(∆P )PRMS
= Pend − Pstart. (10)

Given that the blowing pressure is an affine function of time, PRMS can be described using similar

functions either of time or blowing pressure. The exponential coefficient of PRMS as a function of the

blowing pressure (τPm
) is then proportional to the time constant.

Attack

transient

t

•

•

Pstart

tstart

Pend

tend

∼ e
t

τ

Pm

PRMS

Attack

transient

Pm

PRMS

•

•

Pstart Pend

∼ e

Pm

τPm

Figure 4: Outline schematic showing the definition of the different indicators. At the top: schematic
representation of the the blowing pressure Pm and of the RMS envelope PRMS of the pressure inside
the mouthpiece as functions of time. Illustrations of tstart, tend, Pstart, Pend and τ . At the bottom:
schematic representation of PRMS as a function of the Pm. Definition of τPm

.

4.2 Estimation of the static oscillation threshold

An estimation of the theoretical static oscillation thresholds of the clarinet system can be calculated

using equation (8) by introducing the correct parameters α, ζ and PM in equation 1. The damping

9



Table 2: Averages of the slope k, of the parameters PM , ζ and of the static oscillation threshold Pmt

obtained for increasing and decreasing blowing pressure.

Experiment 1 2 3 4 5 6

k (kPa/s) 0.100 0.140 0.233 0.752 1.558 2.702
PM (kPa) 10.125 10.102 10.313 10.669 11.356 11.767
ζ (Ad.) 0.186 0.186 0.183 0.176 0.162 0.161
Pmt (kPa) 3.981 3.972 4.066 4.236 4.576 4.745

factor α is calculated, through equation (7), at the playing frequency. The parameters PM and ζ are

determined from the coordinates of the maximum of the characteristic curve (Pmax, Umax) through

equations (3) and (4).

Fig. 5 shows an example of an experimental nonlinear characteristic (gray line). As stated previ-

ously in [18, 19, 13], due to the viscoelastic behavior of the reed, the two characteristics, for increasing

and decreasing blowing pressure, are different.

The focus of this article is the growth of the oscillations for increasing blowing pressures. Therefore,

the reed parameters needed for the calculation of the static oscillation threshold are those estimated

from the characteristics obtained for increasing pressures. The averages of PM , ζ and Pmt calculated

from the three values obtained for each experiment are summarized in Tab. 2.

Due to the response time of the flowmeter (≈ 0.3s), the experimental nonlinear characteristics

corresponding to experiments 4, 5 and 6 cannot provide an optimal estimation of the parameters.

The closing pressure PM and of the static oscillation threshold Pmt are overestimated. Therefore,

the parameters PM , ζ and Pmt used in the rest of this paper are averages obtained with the slower

increasing blowing pressures (experiment 1, 2 and 3). Their numerical values are: PM = 10.18 kPa,

ζ = 0.185 and using equation (8) Pmt = 4.01kPa. For decreasing blowing pressures the average static

oscillation threshold is 3.95 kPa. The viscoelastic behavior of the reed has therefore a small effect on

the value of the static oscillation threshold.

In Fig. 5 the comparison between the experimental nonlinear characteristics (gray line) and the

analytical one (black line) calculated using equation (1) shows a good agreement. Therefore the

estimation of the parameters ζ and PM appears to be satisfactory.

10



-1 0 1 2 3 Mx 44 6 7
0

5

10

15

My

20

Pm − P (kPa)

U
(L

/m
in

)

Experimental

Theoretical

Figure 5: Graphical representation of the experimental nonlinear characteristics of the exciter (gray
line) for increasing and decreasing blowing pressure and comparison with model (black line) for in-
creasing blowing pressure. In this example the increase rate k of the blowing pressure is equal to
0.1kPa/s.

4.3 Experimental results

In Fig. 6, the RMS envelope PRMS is plotted as a function of the mouth pressure Pm for different

slopes of the blowing pressure. First of all, it is worth noting that for all values of the slope k, the state

reached at the end of the transient belongs to the same periodic branch (slight repeatability errors

aside). Fig. 6 highlights an hysteretic cycle: periodic sound emerges from the background noise during

the increasing phase at a higher value of Pm than the value at which it stops during the decreasing

phase. In the light of the results presented in Tab. 2, this difference cannot be explained only by the

change of the reed parameters during the ascending and descending phase of the blowing pressure. In

section 4.4 the comparison between experiment and numerical simulations will confirm this hypothesis.

Finally, Fig. 6 also shows that a direct Hopf bifurcation takes place, since the RMS envelope approaches

zero continuously as the blowing pressure decreases.
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Figure 6: Graphical representation of PRMS as a function of Pm for different values of the slope k:
k1 < k2 < ... < k6. Arrows represent the direction of the mouth pressure time evolution and highlight
an hysteretic cycle.

The main results presented in this section are summarized in the example depicted in Fig. 7.
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∼ ePm/τPm
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Bifurcation delay

Figure 7: Graphical representation of PRMS , Pstart, Pend and ePM/τPm . One example is shown for each
value of the slope k. As previously k1 < k2 < ... < k6. A logarithmic scale is used for the ordinate
axis.

The observations that can be drawn from these graphics can be resumed as follows:

• Periodic sound always starts at a higher value (Pstart) of the blowing pressure than static oscil-

lation threshold Pmt. This observation is interpreted as a case of bifurcation delay [6, 7]

• The difference between Pmt and Pstart increases as the slope k of the blowing pressure is increased.

These results are studied more precisely in section 4.3.1.
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• The attack phase of the pressure P inside the mouthpiece, when plotted against the blowing

pressure, increases as an exponential growth.

• The attack phase takes place in a range of values of Pm which increases with the slope k of the

blowing pressure. See 4.3.2 for a more rigorous study of these two previous points.

4.3.1 Beginning of the attack transient of the acoustic pressure inside the mouthpiece

This section looks in more detail into the apparent delay between the start of the oscillations in the

resonator pressure (Pstart) and the expected start (the static threshold Pmt).

The indicator ∆G = Pstart − Pmt is plotted with respect to the slope k in Fig. 8 where all records

are represented. We notice a good repeatability of the measurement. Indeed, there is little dispersion

between the three tests of each slope k. As suggested by Fig. 6 and Fig. 7, the gap ∆G is always

greater than zero and increases with the slope k.

0 0.5 1 1.5 2 2.5 3
3.5

Pmt

4.5

5

5.5

6

∆G : bifurcation delay

k (kPa/s)

P
st
a
rt

(k
P
a
)

Figure 8: Graphical representation of Pstart (◦) as a function of the slope k. The shaded portion
depicts the bifurcation delay ∆G.

The fact that the values of Pstart are always larger than static oscillation threshold Pmt can be

explained by the intrinsic difference between the system described by the static theory where the

blowing pressure Pm is assumed to be constant (this is a static case) and the system used in experiments

where the blowing pressure is increasing (this is a dynamic case).

Recent theoretical and experimental works [6, 20, 21] on dynamical nonlinear systems show that,

in dynamic cases (as in our experiments), the oscillations start significantly after the static theoretical

threshold has been reached. This phenomenon is known under the name of bifurcation delay or dynamic

bifurcation. In [7], the authors present a mixed analytical/numerical study of the lossless model of the

clarinet (Raman model with λ = 1) taking into account a time-varying blowing pressure. We see
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that, in a noisy system (numerical noise, i.e. round off errors of the computer), the bifurcation delay

increases with the slope of the blowing pressure, as the variable ∆G in our experiment.

Therefore, the variable ∆G is interpreted afterwards as a measurement of the bifurcation delay in

our system, although some caution might be need while using this value.

4.3.2 Duration of the attack phase of the acoustic pressure inside the mouthpiece

We focus here on the duration of the attack transient of the pressure P inside the mouthpiece of the

instrument measured both in time and blowing pressure Pmt(t). For this, (∆t)PRMS
and (∆P )PRMS

are

plotted in Fig. 9 as functions of the slope k. Fig. 9(a) shows the evolution of (∆t)PRMS
, the duration

of the attack transient deccreases with the slope k. On the contrary, Fig. 9(b) shows that (∆P )PRMS

appears to increase with the slope k. This means that even if the duration (with respect to time) of the

attack transient of the acoustic pressure inside the mouthpiece decreases with k, the blowing pressure

sees a wider variation during this attack transient.

This previous result is attested by the Fig. 10(a) where the parameter τ is plotted as a function

of the slope k. Indeed, the time constant τ of the exponential growth of the RMS envelope decreases

with k unlike the constant τPm
which increases (cf. Fig. 10(b)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.2

0.4

0.6

0.8

1

(∆
t)

P
R
M

S
(s

)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

k (kPa·s−1)

(∆
P
) P

R
M

S
(k

P
a
)

(b)

Figure 9: Graphical representation of (∆t)PRMS
(a) and (∆P )PRMS

(b) with respect to the slope k.
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Figure 10: Graphical representation of the parameters τ (a) and τPm
(b) with respect to the increase

rate k of the blowing pressure.

4.4 Comparison with Raman model

In this section, previous experimental results are compared to numerical computations using Raman

model (using equation 5). The simulation uses the experimental blowing pressure Pm(t) and the

reed parameters ζ and PM estimated in section 4.2 to plot PRMS envelopes and compare them with

experimental signals in Fig. 11. As in experiments, hysteretic cycles and bifurcation delays are present

in simulations.

The behavior of the model is qualitatively the same as that of the real system. The comparison

between the indicators (Pstart, Pend, τPm
and τ) previously estimated on real signals and those obtained

on simulated signals (see Fig. 12, 13 and 14) confirms the close proximity between the behavior of the

model and that of the instrument.

However, a closer look reveals a few differences. Fig. 12 shows that the values Pstart and Pend

estimated on numerical simulations are always smaller than the experimental ones. A possible reason

for this is that the static oscillation threshold deduced from PM and ζ is underestimated. Indeed, in

Fig. 11(b), the decreasing slope of simulations k1, k2 and k3 shows an extinction of the sound close

to the static oscillation threshold Pmt = 4.01kPa. On the other hand, for experimental signals (cf.

Fig. 11(a)), the extinction is close to 4.5 kPa which can indicate that the static threshold is close to this

value. Underestimation is common when using a fit of the non-linear characteristics [22]. Nevertheless,

the delay in the start of the oscillations still be occurs even if the static threshold is close to 4.5 kPa.

Moreover, its dependence on the variation of the parameter k is unchanged.
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Figure 11: Graphical representation of PRMS as function of Pm for each values of the slope k. (a)
Experimental signals, (b) signals generated by the numerical simulation of Raman model using the
parameters ζ and PM estimated experimentally (cf. section 4.2) as well as the measured blowing
pressure signal Pm(t).
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marks are related to values obtained experimentally and the gray marks are related to values obtained
on numerical simulation of Raman model.
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rate k of the blowing pressure. (◦) simulation and (+) experiment.

These numerical simulations also provide a strong indication that the hysteresis in the envelope of

the resonator pressure cannot be due uniquely to the viscoelastic change in reed properties. In fact the

simulations are run with constant reed parameters (leading to a constant ζ) and a hysteresis is still

observed.
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5 Fast transient to a constant blowing pressure

The previous section highlighted the presence of a delayed start of oscillations in the context of a

continuously variable blowing pressure. In the current section a slightly more realistic evolution of the

blowing pressure is used in order to investigate the effect of a sudden stop in the pressure increase.

Such a time profile of Pm(t) can be seen as a simplistic model of an attack curve of a real musician.

5.1 Description of the experiment

In the following measurements, the time evolution of the blowing pressure is divided into two parts.

During the first part, the blowing pressure increases at a rate larger than the ones used in section 4.

In the second part, the blowing pressure is kept close to a constant value. An example is shown in

Fig. 15.

The procedure is as follows: the blowing pressure Pm starts from a low level (≈ 0.1 kPa), increases

during certain time (will be hereafter referred as (∆t)Pm
), reaches a target value (≈ 7 kPa) and remains

constant. The experiment is repeated for different values of (∆t)Pm
(the commands given for it to the

PCAM are: 0.05s, 0.2s, 0.5s and 1s corresponding respectively to experiments numbered 1, 2, 3 and 4,

cf. Tab. 3) and fifteen times for each value of (∆t)Pm
.

During the experiment the blowing pressure Pm and the pressure P inside the mouthpiece are

recorded (see Fig. 15). The mean flow U entering the instrument is also recorded but, as in section

4 in fastest cases, the response time of the flowmeter is too slow to expect a good estimation of the

model’s parameters. Moreover, the opening of the embouchure is different from that of section 4. Thus

the parameters estimated in section 4.2 cannot be used in the current measurements.
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Figure 15: Graphical representation of the the measured signals: the blowing pressure Pm(t) (solid
black line) and the pressure inside the mouthpiece P (t) (solid gray line).
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The main aim of this section is to study the influence of the duration of the increase phase of the

blowing pressure (∆t)Pm
on the attack transient of the mouthpiece pressure P (t). The target value of

the blowing pressure is the same in each experiment.

As in the previous section, a few indicators are extracted from the measured signals, although with

a few differences. The growing phase of Pm is detected from a threshold on numerical derivative of

Pm. Two reference points, (tbeg)Pm
and (tend)Pm

, result from this detection, and allow to estimate the

duration of the transient of the blowing pressure:

(∆t)Pm
= (tend)Pm

− (tbeg)Pm
. (11)

Assuming that the growth of Pm is linear, its slope k is estimated between the times (tbeg)Pm
and

(tend)Pm
.

The attack transient of the pressure P inside the mouthpiece is here described by the amplitude

of the first harmonic PH1
(t) instead of the RMS envelope PRMS(t) as it can detect the emergence of

the sound at lower amplitudes. In fact, the noise background is lower if calculated at a narrow range

of frequencies than for the RMS envelope which is wideband. Fig. 16 shows a comparison between the

two envelopes PRMS(t) and PH1
(t) for different values of (∆t)Pm

.
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Figure 16: Example of the time evolution PH1
(t) and PRMS(t) for each value of (∆t)Pm

. A logarithmic
scale is used for the ordinate axis.

A low (noise background close to the note end) and high value (absolute maximum) of the logarithm
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envelope log [PH1
/Pref] (Pref = 1kPa) are first detected. The first value of log [PH1

/Pref] crossing the

midpoint between these two previous values is used as a reference time t50. Four other points are

detected on log [PH1
/Pref]: t10, t30, t70 and t90. Using these reference points the duration of the attack

transient of the pressure P is defined as:

(∆t)PH1

= t90 − t10. (12)

Next, the duration T defines the difference in time between the beginning of the attack transient

of P and the stop of the growth of the blowing pressure:

T = t10 − (tend)Pm
(13)

An illustration of these previous indicators is depicted in Fig. 17.
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Figure 17: (a) Graphical representation of the static blowing pressure Pm, the gray area represents the
duration (∆t)Pm

of the transient of Pm. (b) Plot of PH1
(t) using a logarithmic scale for the ordinate

axis, the hatched area depicts the duration (∆t)PH1

of the attack transient of the pressure P inside

the mouthpiece. The duration T , defined by equation (13), is also represented.

Finally, assuming that the attack phase consists of an exponential growth where PH1
(t) ∼ et/τH1 ,

the time constant τH1
is estimated as the slope of log [PH1

(t)/Pref] between t30 and t70.

5.2 Experimental results

The indicators defined above are calculated for each trial. Some of the original trials are removed

from the analysis if the fundamental frequency f0(t) is higher than expected (≥200Hz, whereas the

expected playing frequency is around 160Hz) for a long period of time during the attack phase. This
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corresponds to squeaks or higher regimes which afterwards decay to the fundamental. The trials where

the attack phase lasts longer than 400ms are also removed.

First of all, Tab. 3 shows a good agreement between the command and the measurement of (∆t)Pm
.

This indicates that the control of the PCAM works even for rapid variations of the blowing pressure.

However, for the fastest one (experiment 1) the difference between the command and measurement is

about 50% of the command. Tab. 3 also shows a good repeatability of the measurement of the slope

k of the blowing pressure during the increasing phase.

In the remaining of this paper, the figures (except Fig. 20) will show the averages of the indicators

(written with an overline) plus or minus the standard deviations with respect to the average of the

measured (∆t)Pm
noted (∆t)Pm

.

Table 3: Averages and standard deviations of the measured (∆t)Pm
and k obtained for each command

given to the PCAM for (∆t)Pm
.

Experiment 1 2 3 4

Command for (∆t)
Pm

(s) 0.05 0.2 0.5 1

Average of measured (∆t)Pm
: (∆t)Pm

(s) 0.0747 0.2047 0.4590 0.9168

Standard deviation of measured (∆t)
Pm

(s) 0.0100 0.0108 0.0029 0.0060

Average of measured k: k (kPa/s) 80.7354 29.9284 13.4157 7.4133
Standard deviation of measured k (kPa/s) 7.6354 1.0262 0.2061 0.0378

The example depicted in Fig. 16 shows that the amplitude of the sound grows exponentially at the

beginning of the attack. Moreover, we can see that the time constant τH1
looks constant regardless to

the value of (∆t)Pm
.

Fig. 18(a) shows the average plus or minus the standard deviation of the time constants τH1
obtained

for each value of (∆t)Pm
. Fig. 18 confirms the observations made in Fig. 16: the time constant τH1

does not depend on the value of (∆t)Pm
. Moreover, we can see that the duration (∆t)PH1

of the attack

transient plotted in Fig. 18(b) also does not depend on (∆t)Pm
. The repeatability of the measurement

is good for both τH1
and (∆t)PH1

: the standard deviation is between 7% and 14% of average.

In this particular case of a fast linear growth of the blowing pressure followed by a stationary phase,

these results highlight that there is no "soft or fast" attack. The duration of the attack transient of

sound is roughly the same whatever the duration of the transient of the blowing pressure. The only

impact of increasing (∆t)Pm
is a rightward shift of the curve of PH1

(cf. Fig. 16).
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Figure 18: Average plus or minus the standard deviation of (a) the time constant τH1
and (b) the

duration of the attack transient (∆t)PH1

obtained for each value of (∆t)PH1

.

This result differs from results presented in section 4.3.2 (Fig. 9(a) and 10(a)) which show that

both (∆t)Pm
and τ decrease with the slope k of the blowing pressure.

In section 4.3.2, the blowing pressure still increases during the attack transient. Here, the slopes

are larger (cf. Tab. 3) and therefore the beginning of the attack transient of the mouthpiece pressure

is close to end of the growth of the blowing pressure. This is shown in Fig. 19 where the difference

between the beginning of the attack transient and the stop of the blowing pressure, referred as the

variable T , is plotted.
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).

A confirmation of this fact can be found by checking the value of the blowing pressure during the

attack in the resonator pressure (Fig. 20). Indeed, we can see that the blowing pressure is almost

constant during the transient of the mouthpiece pressure. This can explain why the time constant τH1

and the duration of the attack transient (∆t)PH1

are the same regardless of the value of (∆t)Pm
.

6 Conclusion

This work presents a preliminary study on attack transients of clarinet-like instruments. Although

many studies exist on permanent regimes for these instruments (form thresholds of transition between

different regimes to amplitudes of oscillation and harmonic content), none of these studies allows to

ascertain how these regimes of oscillation evolve from silence or from another oscillating regime while a
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control parameter varies continuously. In this work we focused mainly on observations of the amplitude

of the oscillations when starting a blowing of the instrument with archetypal time profiles.

It is clear from the results presented above that the oscillations do not start at the predicted values

of the oscillation threshold using a static Raman model. In basic experiments of linearly increasing,

than decreasing blowing pressures, the static threshold can be found close to the extinction of the

oscillations for the decreasing pressure phase. During the increasing phase the static threshold value

is crossed without any visible trace of oscillations. These start at a pressure value which increases as

the rate of pressure variation gets higher. Therefore, the clarinet experiences a dynamic bifurcation, a

phenomenon that has been highlighted on a very simple clarinet model in [7].

A consequence of these observations is that the static bifurcation digram measured using constant

blowing pressure does not provide accurate informations on the dynamics of the instrument blown

with a continuously variable blowing mouth pressure. Another conclusion concerns the methodology

to confront experimental results to results provided by the static bifurcation analysis of a model.

Using a linearly increasing ramp for the blowing pressure does not provide accurate indication of the

oscillation close to the static threshold of oscillation. Decreasing the rate of pressure variation shows

a limited improvement of this fact. Around the static threshold, the bifurcation diagram is better

estimated using decreasing rather than increasing blowing pressures.

For more practical applications such as defining the attack produced by a musician, the second

experiment provides a good insight on the behavior of the instrument during an attack of a note. In

the cases studied, the oscillations start very close to the instant the pressure buildup is stopped. After

this instant, the oscillations undergo an exponential increase with a time constant that depends only

on the target parameter values (stationary blowing pressure and lip force). As a consequence, in this

case the attack of a note can be seen as starting at the moment for which the blowing pressure is

stabilized, and from that instant, the attack time is a constant that depends only on the target values

of the parameters.

On the contrary, for continuously increasing pressure ramps, the time constants of the oscillation

growth are clearly dependent on the slope of the increase in blowing pressure, which can be seen as a

consequence of the different values of Pm at which the oscillations start.

Similar envelopes are obtained when introducing the experimental time-variations of the blowing

pressure into a simplistic model of the clarinet (Raman model): there is a similar difference between

the starting and stopping thresholds, the stopping threshold being close to the static threshold of

oscillation. The similarity between experimental and simulated envelope profiles (as functions of the

blowing pressure) provides a good indication that the simplistic Raman model is able to provide good

predictions of dynamic behaviors of the instrument, as it has already provided for static values of
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the parameters. This conclusion is interesting since it means that the complex behaviors observed

experimentally with a time-varying blowing pressure can be studied with a simple classical model of

the clarinet provided the blowing pressure follows the same trajectory.

An interest of using these over-simplified models is that analytical models of the sound envelope can

be determined from the knowledge of the time evolution of the control parameter [7]. These analytical

envelopes are based on the concept of dynamic bifurcations, a concept that will be compared to

situations where stochastic variations of the control parameter are present. This will hopefully allow

a closer match between the analytical predictions and the curves observed in the present article.
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