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THE MOD 2 COHOMOLOGY RINGS OF
SLs OF THE IMAGINARY QUADRATIC INTEGERS

ETHAN BERKOVE AND ALEXANDER D. RAHM
(WITH AN APPENDIX BY AUREL PAGE)

ABSTRACT. We establish general dimension formulae for the second page of the equivariant
spectral sequence of the action of the SLs groups over imaginary quadratic integers on their
associated symmetric space. On the way, we extend the torsion subcomplex reduction technique
to cases where the kernel of the group action is nontrivial. Using the equivariant and Lyndon—
Hochschild—Serre spectral sequences, we investigate the second page differentials and show how
to obtain the mod 2 cohomology rings of our groups from this information.

1. INTRODUCTION

The objects of study in this paper are the groups SLg over the ring O_,, of integers in the
imaginary quadratic number field Q(y/—m), with m a square-free positive integer. These groups,
as well as their central quotients PSLs (O_,,), are known as Bianchi groups. The determination
of the (co)homology of Bianchi groups, motivated in [20], has a long history of case-by-case
computations (see [17] for a list of references). This changed with the recently introduced
technique of torsion subcomplex reduction, which provided general formulae for the Farrell
cohomology of the PSLy (O_,,) groups for any m [15]. In this article, we extend the subcomplex
reduction technique to the case where the kernel of a group action is nontrivial in order to obtain
the mod 2 cohomology rings of the SLs (O_,,) groups. For this purpose, we study a variant of
the long exact sequence in Borel cohomology. The reason why we consider only Fo—coefficients
is that for any prime ¢ > 2, the Lyndon—Hochschild—Serre spectral sequence with F,—coefficients
associated to the central extension

1 — {£1} — SL2(O_,,) — PSLy(O_;,) — 1

is concentrated in the horizontal axis, yielding H*(SLa (O_,,) ; F¢) = H*(PSLg (O_,,) ; Fy). Fur-
thermore, Bianchi groups contain only 2— and 3-torsion; results for H*(PSLa (O_,,) ; F3) can be
found in [15].

Philosophically, the cohomology of the Bianchi groups can be thought of as coming from two
sources. Since the Bianchi groups act on a 2—dimensional retract of hyperbolic 3—space X, the
Bianchi groups have virtual (co)homological dimension 2. Consequently, in dimensions 2 and
below, many of the cohomology classes of the Bianchi groups come from the topology of the
quotient space and are detected with rational coefficients [19]; calculations exclusively for ratio-
nal coefficients have been carried out in [23]. Above the virtual cohomological dimension, all
cohomology classes are torsion and originate from finite subgroups. In particular, one can use
the equivariant spectral sequence to determine the (co)homology of Bianchi groups. Results of
the second author have made this precise. The article |14] introduced the ¢~torsion subcomplex,
and contains a proof that this subcomplex determines the homology of PSLy (O_,,) above di-
mension 2; in addition, that the homology is a direct sum of generic modules associated to the
homeomorphism types of connected components of the subcomplex.

In this work, we will show how to extend the torsion subcomplex results from the projective
special linear group to the linear group. The difficulty that we need to overcome is that the
kernel of the action of SLg (O_,,) on X is nontrivial. We solve this problem by using a technique
reminiscent of the long exact sequence in relative Borel cohomology associated to a pair of
complexes (see 7] for a similar approach). This is the content of Section [5, where we describe the
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2 ETHAN BERKOVE AND ALEXANDER D. RAHM

E5 page of the equivariant spectral sequence in terms of components of the 2-torsion subcomplex.
We also need to determine whether any loops in the subcomplexes are homologous in the quotient
SLQ(@_m)\X . This interaction is tracked by the variable ¢ in our calculations. The last piece
of the puzzle in the determination of the mod 2 cohomology of the SLy Bianchi groups is the
rank of the second page differential. We can say a lot about this rank by individually analyzing
component types of a reduced 2-torsion subcomplex using the cohomology ring structure over
the Steenrod algebra. This is the subject of Section [7]

We conclude with some sample calculations. For instance, Example (¢) in Section [§] considers
the case when m = 3 mod 8, Q(v/—m) has precisely one finite ramification place over Q, and
the ideal class number of the totally real number field Q(y/m) is 1. These three conditions
are equivalent to the quotient of the 2—torsion subcomplex having the shape e, as worked out
in [15]. Under these assumptions, our cohomology ring has the following dimensions:

gt + 52, q =4k +5,

B+ B2 +2, q=4k+4,

dimp, HY(SLy (O_y,); Fo) = < B + 52 +3, ¢ =4k + 3,

Br4+B2+1, q=4k+2,

s q=1,

where 8¢ := dimp, H(s1,(0_,,)\X; F2). Let 81 = dimg Hi(sr,0_,,)\X; Q). For all absolute
values of the discriminant less than 296, numerical calculations yleld BQ +1 = B! = . In this

range, the numbers m subject to the above dimension formula and f; are given as follows (the
Betti numbers are taken from [17]).

m‘ll 19 43 59 67 83 107 131 139 163 179 211 227 251 283
61‘11243568771010121413

We add a few remarks about the approach taken in this paper. The finite subgroups we
consider have no subgroups isomorphic to Z/2 @& Z/2, so their cohomology is periodic of period
4. Furthermore, the restriction map on cohomology from any finite subgroup to the central Z/2
subgroup is onto in dimensions divisible by 4. We expect something similar for the Bianchi
groups we consider, since by results of Quillen [12] their mod-2 cohomology is F-isomorphic
to the cohomology of the maximal abelian subgroups, here the center Z/2. We show this in
Proposition where we identify a class « in dimension 4 which provides the periodicity. We
thank the referee for pointing out that this class « is the second Chern class of the natural
representation of SLy(C).

Under these observations, one might expect that a reasonable alternative approach to cal-
culating cohomology would come from using the Lyndon—Hochschild—Serre spectral sequence
associated to the short exact sequence

1 — {£1} — SL2(O_,,) — PSLa(O_;,) — 1

to determine cohomology up to degree 5. Unfortunately, although one can often easily determine
ds and d3 for this spectral sequence, calculations in an unpublished manuscript by the first author
yield that in cases with discriminant as low as m = 3 and 11, there is a non-trivial internal dy4
differential whose existence can only be determined by knowing H*(SL2(O_,,)) beforehand. For
this reason, an approach relying exclusively on this spectral sequence does not appear feasible.

This paper grew out of an attempt to take advantage of much of what is already known about
the PSLg (O_,,) Bianchi groups. Results in [14], for example, show that information about
H*(PSLg (O_,,)) above the cohomological dimension resides in “geometric” data. Specifically,
for a large range of values of m, the geometric data resides in four types of subcomplexes in
the quotient g, \X whose multiplicity we are going to denote by o, ¢, 8, and p. Other
calculations exist for the rational homology of gr,0_,,)\X ([23|, for example) which provide
values of the Betti numbers $; and (o for the quotlent space. Our work shows that these
data are almost sufficient for a full answer, and give very tight bounds on the cohomology of
SLa (O_,,) in all dimensions. We note that prior machine calculations for H*(SLa (O_,,)) have
been performed for many values of m, but the time to complete a calculation usually increases
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with m. Consequently, the results in this paper provide a constructive argument which can be
used to complement, corroborate, and extend existing results.

Acknowledgments. The first author thanks the De Brin Centre for its hospitality and for
funding a stay at NUI Galway devoted to the present work. We are grateful for a careful
check by Norbert Kramer, helpful comments by Matthias Wendt on the core of our long exact
sequence analysis, and for valuable assistance by Graham Ellis and Tuan Anh Bui on importing
our cell complexes into HAP [6] for the example calculations. Of special note, Tuan Anh Bui’s
resolutions for the cusp stabilizer groups have been of great help. We would even more like to
thank the anonymous referee, who provided an approach which streamlined a number of our
original arguments, and whose careful and thoughtful comments helped to greatly improve the
overall quality of this paper.

2. SPECTRAL SEQUENCES AND CENTRAL EXTENSIONS

The calculations in this paper involve two spectral sequences. We use the Lyndon—Hochschild—
Serre spectral sequence to determine cohomology of groups via group extensions. We also use
the equivariant spectral sequence since the Bianchi groups act cellularly on low-dimensional
contractible complexes. We introduce both spectral sequences briefly in this section; more
details can be found in [1], [4], and [10].

For the development of the Lyndon—Hochschild—Serre spectral sequence we follow the approach
in [1]. Given a short exact sequence of groups

(1) 1-H—-T-5T/H—1,

there is an associated fibration of classifying spaces. One can then apply the Leray-Serre spectral
sequence ([10], Chapters 5 and 6). This spectral sequence has Ey’ = HY(I'/H;H/(H; M)) for
untwisted coefficients M and converges to H™(T'; M). We note that the Leray-Serre spectral
sequence can also be developed more algebraically, as in [4], VIL5.

In the short exact sequence of groups in Equation [1, when the normal subgroup H is central
in I, it is possible to say more. This is a central extension, and in such cases I'/H acts trivially
on the homotopy fiber Byg. Then with field coefficients M, the Eo—term of the resulting spectral
sequence has the form

EY ~H(T/H; M) @ H (H; M).

For the remainder of this article, unless specified otherwise, we only consider cohomology with
(necessarily trivial) Fo-coefficients. We omit these coefficients from the notation.

Lemma IV.1.12 in [1] identifies a unique cohomology class k, called the k—invariant, which
generates the kernel of B* : H*(I'/H) — H?(T"). The k-invariant is also the cohomology class as-
sociated to the extension. The Leray-Serre spectral sequence, of which the Lyndon-Hochschild-
Serre spectral sequence is just one example, has many useful properties. It is compatible with
cup products, for example.

For the equivariant spectral sequence, we follow the development in [4, Chapter VII]. Let
the group I' act cellularly on a CW-space X in such a way that the stabilizer of any cell fixes
that cell point-wise. Consider the equivariant cohomology groups H*(T', C* (X)) with coefficients
in the cellular co-chain complex C*(X); in our setting, our co-chains will take on values in
Fy. One can define these cohomology groups by taking a projective Fo[I']-resolution, F', of Fo,
then setting H*(I', C*(X)) = H*(Homg,r(F,C*(X))). When X is a contractible space, the
equivariant cohomology groups can be identified with the cohomology of I'; as

H*(T, C*(X)) = H*(T', C*(point)) = H*(D).

Using the horizontal and vertical filtrations of the double complex Homp (F,C*(X)) we get a
spectral sequence with

By = (D, C'(X))
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converging to H(I'). Let X be a set of representatives of i—cells in X and let I', be the
stabilizer in I" of a cell 0. Then

C'(X)= [ Fo= ][] Coindf Fa.
oeX(®) cer\X®

Once we apply Shapiro’s Lemma and sum over the representatives of i—cells in I\ X;, the spectral
sequence takes the form E;7 =[]  H/(T,).
A [‘\X“)
The equivariant spectral sequence has a number of additional desirable properties that we
will use in the sequel.

(1) There is a product on the spectral sequence, EF? @ ESt — Ef+s’q+t, which is compatible
with the standard cup product on H*(T") [4, VIL5]

(2) On the Es—page, the products in Eg " the vertical edge, are compatible with the products
in HO’EF\X(()) Hq(l—‘g). ’4, X45V1]

(3) The differential d; is a difference of restriction maps (cohomology analog of [4, VIIL.8])

11 Hj(rg)ﬂ I ®a).

O'EF\X(7‘> TGF\X(i+1)

Remark 1. In both the equivariant and Lyndon—Hochschild—Serre spectral sequences, the dif-
ferentials are derivations. Working mod 2, this means that given cohomology classes u,v € E,,
the differential satisfies the Leibniz rule,

dy(uv) = dr(u)v + udy(v).

A proof that the differential is a derivation for the Leray Serre spectral sequence can be found
in [10] (Section 1.4 and Theorem 2.14). For the equivariant spectral sequence, we lay out a
sketch following Brown [4, X.4]. Recall that H*(I', C*(X)) = H*(Homp(F,C*(X))), and note
that F®F is also a projective Fo[I']-resolution of Fy. Therefore, there is a diagonal approximation
AN :F — F®F. Consider the composition

Homr (F, C*(X)) ® Homp(F, C*(X)) —s Homp(F ® F,C*(X) ® C*(X))
2) 2 Homr(F,C*(X) ® C*(X))
— Homp(F, C*(X))

where U is the co-chain cup product on C*(X). The composition respects both the horizontal and
vertical filtrations of the double complex Homp(F, C*(X)). This immediately implies Property
for the equivariant spectral sequence. And since d,. is induced from the product on the double
complex Homr (F, C*(X)) which satisfies the Leibniz rule, the differential d, satisfies the Leibniz
rule as well. We note that in the equivariant spectral sequence, in light of the composition given
above, it may be difficult to calculate the products in the derivation. For further details on this
construction we direct the reader to Brown [4, X.4]. Having the differential be a derivation is
helpful. In particular, it implies two useful results: 1) when d,(u) = 0, then d,(uv) = ud,(v);
and 2) for r > 2, when u is a class on the E, page then d,(u?) = 2ud,(u) = 0, as the product
on the E, page is commutative for r > 2 |4, X.4.5.iv].

Finally, for both spectral sequences, one can define Steenrod operations which are compatible
with differentials as well as the Steenrod squares in the abutment. A complete account can be
found in [22]. However, we will only need the following facts:

(1) There are well-defined operations, S¢¥ : EP? — EP"™ when 0 < k < ¢ [22, Theorem 2.15].

(2) When k < q — 1, d2Sq*u = SqFdau, i.e., the operations commute with the differential
[22, Theorem 2.17].

(3) S ¢" commutes with the appropriate differentials to give the Kudo transgression theorem.
[22, Corollary 2.18].
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3. THE NON-CENTRAL TORSION SUBCOMPLEX

In this section we recall the f—torsion subcomplexes theory of [15] and compare it with the
non-central ¢—torsion subcomplexes we are going to study. We require any discrete group I
under our study to be provided with what we will call a polytopal T'—cell complex, that is, a
finite-dimensional simplicial complex X with cellular I'-action such that each cell stabilizer fixes
its cell point-wise. In practice, we relax the simplicial condition to a polyhedral one, merging
finitely many simplices to a suitable polytope. We could obtain the simplicial complex back as
a triangulation.

Definition 2. Let ¢ be a prime number. The {—torsion subcompler of a polytopal I'—cell
complex X consists of all the cells of X whose stabilizers in I' contain elements of order /.

We further require that the fixed point set X be acyclic for every nontrivial finite ~subgroup
G of T'. Then Brown’s proposition X.(7.2) [4] specializes as follows.

Proposition 3. There is an isomorphism between the f—primary parts of the Farrell cohomology
of I and the I'—equivariant Farrell cohomology of the £—torsion subcomplex.

For a given Bianchi group, the non-central torsion subcomplex can be quite large. It turns
out to be useful to reduce this subcomplex, and we identify two conditions under which we can
do this in a way that Proposition [3] still holds.

Condition A. In the /—torsion subcomplex, let o be a cell of dimension n — 1 which lies in the
boundary of precisely two n—cells representing different orbits, 71 and 7. Assume further that
no higher-dimensional cells of the /—torsion subcomplex touch o; and that the n—cell stabilizers
admit an isomorphism I';, = T',.

Condition B. The inclusion of the cell stabilizers I';, and I';, into I', induces isomorphisms
on mod ¢ cohomology.

When both conditions are satisfied in the /—torsion subcomplex, we merge the cells 71 and 7
along ¢ and do so for their entire orbits. The effect of this merging is to decrease the size of
the /—torsion subcomplex without changing its I'-equivariant Farrell cohomology. This process
can often be repeated: by a “terminal vertex,” we will denote a vertex with no adjacent higher-
dimensional cells and precisely one adjacent edge in the quotient space, and by “cutting off” the
latter edge, we will mean that we remove the edge together with the terminal vertex from our
cell complex.

Definition 4. A reduced £—torsion subcomplex associated to a polytopal I'-cell complex X
is a cell complex obtained by recursively merging orbit-wise all the pairs of cells satisfying
conditions A and B, and cutting off edges that admit a terminal vertex when condition B is
satisfied.

The following theorem, stating that Proposition [3| still holds after reducing, is proved in [15].

Theorem 5. There is an isomorphism between the {—primary parts of the Farrell cohomology
of I' and the I'—equivariant Farrell cohomology of a reduced £—torsion subcomplez.

In the case of a trivial kernel of the action on the polytopal I'—cell complex, this allows one
to establish general formulae for the Farrell cohomology of I' [15]. In contrast, our action of
SLs (O_,,) on hyperbolic 3-space has the 2-torsion group {£1} in the kernel; since every cell
stabilizer contains 2-torsion, the 2—torsion subcomplex does not ease our calculation in any way.
We can remedy this situation by considering the following object, on whose cells we impose a
supplementary property.

Definition 6. The non-central {—torsion subcomplex of a polytopal I'-cell complex X consists
of all the cells of X whose stabilizers in I' contain elements of order ¢ that are not in the center
of T

We note that this definition yields a correspondence between, on one side, the non-central ¢—
torsion subcomplex for a group action with kernel the center of the group, and on the other side,
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SL2 (O_;,) contains | Z/2n | Qg | Di | Te
PSLsy (O_,,) contains | Z/n | Dy | D3 | Ay
TABLE 1. The finite subgroups of SLa (O_,,) and their quotients in PSLy (O_,,)
by the order-2-group {1, —1}. Here, Z/n is the cyclic group of order n, Qg the
quaternion group of order 8, Di the dicyclic group of order 12, Te the binary
tetrahedral group of order 24. Further, the dihedral group are Dy with four
elements and D3 with six elements, and the tetrahedral group is isomorphic to
the alternating group A4 on four letters.

the /—torsion subcomplex for its central quotient group. We use this correspondence in order to
identify the non-central f~torsion subcomplex for the action of SLy (O_,,) on hyperbolic 3—-space
as the /—torsion subcomplex of PSLy (O_,,). However, incorporating the non-central condition
for SLy (O_,,) introduces significant technical obstacles, which we address in Section

We recall the following information from [15] on the f—torsion subcomplex of PSLa (O_y,).
Let I" be a finite index subgroup in PSLa(O_;,). Then any element of I' fixing a point inside
hyperbolic 3-space H acts as a rotation of finite order. By Felix Klein’s work, we know conversely
that any torsion element « is elliptic and hence fixes some geodesic line. We call this line the
rotation azis of a. Every torsion element acts as the stabilizer of a line conjugate to one passing
through the Bianchi fundamental polyhedron. We obtain the refined cellular complex from the
action of I on H as described in |13], namely we subdivide A until the stabilizer in T" of any cell
o fixes ¢ point-wise. We achieve this by computing Bianchi’s fundamental polyhedron for the
action of I', taking as a preliminary set of 2-cells its facets lying on the Euclidean hemispheres
and vertical planes of the upper-half space model for H, and then subdividing along the rotation
axes of the elements of T'.

It is well-known [19] that if - is an element of finite order n in a Bianchi group, then n must
be 1, 2, 3, 4 or 6, because v has eigenvalues p and p, with p a primitive n—th root of unity, and
the trace of yis p+p € O_,, NR = Z. When ¢ is one of the two occurring prime numbers
2 and 3, the orbit space of this sub-complex is a graph, because the cells of dimension greater
than 1 are trivially stabilized in the refined cellular complex. We can see that this graph is finite
either from the finiteness of the Bianchi fundamental polyhedron, or from studying conjugacy
classes of finite subgroups as in [9).

As in [18], we make use of a 2-dimensional deformation retract X of the refined cellular
complex, equivariant with respect to a Bianchi group I' := SLy (O_,,). This retract has a cell
structure in which each cell stabilizer fixes its cell point-wise. Since X is a deformation retract
of H and hence acyclic, Hj-(X) = Hf(H) = H*(T"). In what follows, we need to know about the
subgroups of finite order in Bianchi groups, as these appear as cell stabilizers. The subgroups
are given in Table [1| for both the SLs and PSLs Bianchi groups.

Cawveat. In order for the non-central 2-torsion subcomplex to be contained in the deformation
retract X, we exclude O_,, from being the ring of Gaussian integers O_; for the entirety of
this article. This does not cause any harm, as in this special case, all of the cohomology can be
computed by hand [19].

From two theorems of Norbert Kramer, we deduce that there are only four types of connected
components of non-central reduced 2-torsion subcomplex quotients possible for the PSLy, and
hence SLy, Bianchi groups. This is the subject of the following corollary.

Corollary 7 (to theorems of Kramer). The shapes of the types of connected components of non-
central reduced 2—torsion subcomplex quotients, with stabilizers for the SLa case, are all shown
in the last column of Table[d

Proof. For this proof, we consider Bianchi groups as being PSLs (O_,,), unless explicitly stated
otherwise. Kramer [|9], Satz 8.3 and Satz 8.4] has shown that the finite subgroups of PSLa (O_,,),
particularly the 2-dihedral subgroups Ds, are related to each other in one of only a few ways.
For each 2—dihedral subgroup G, there is, up to conjugacy, precisely one 2—-dihedral subgroup H,
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such that the intersection of G and H is a group C' of order 2 and such that H is not conjugate
to G. Let (', respectively C”, be the two other subgroups of G of order 2. There are three
possible cases.

(#). The groups G and H are maximal finite subgroups of the Bianchi group. In particular,
neither G nor H are contained in an Ay subgroup. Then, the groups C, C' and C” are
pairwise non-conjugate to each other; up to conjugacy, there is precisely one 2—dihedral
subgroup H’ which contains C’ and is not conjugate to G; and up to conjugacy, there
is precisely one 2—dihedral subgroup H” which contains C” and is not conjugate to G.
Furthermore, the groups H, H', and H” are conjugate to each other.

(p). The group G is a maximal finite subgroup of the Bianchi group, but H is contained in a
copy of A4. Then the groups C’ and C” are conjugate to each other, but not conjugate
to C. In addition, up to conjugacy, G is the only 2—-dihedral subgroup which contains
C’ and the only 2—-dihedral subgroup which contains C”.

(¢). The groups G and H are both contained in copies of A4 in the Bianchi group. Then the
groups C, C' and C” are conjugate to each other.

Using the description of a reduced 2-torsion subcomplex for the action of PSLy (O_,,) on
hyperbolic space given in [15] in terms of conjugacy classes of finite subgroups of PSLy (O_,,),
the three cases yield the following types of connected components in the quotient of a reduced
2-torsion subcomplex.

(#). The conjugacy class of G corresponds to one bifurcation point in the two torsion subcom-
plex, and the conjugacy class of H, H', and H” yields another. These two bifurcation
points are connected by the three edges coming from C, C’ and C”. This closes the
connected component and gives it the shape ©.

(p). The group H corresponds to an endpoint connected by one edge (coming from C') to the
bifurcation point corresponding to G. The conjugacy class containing C’ and C” yields
a second edge connecting the latter bifurcation point to itself. This closes the connected
component and gives it the shape O-e.

(1). The conjugacy class containing C', C" and C” corresponds to a single edge, connecting its
two end-points coming from G and H. This closes the connected component and gives
it the shape o,

As was observed in [13], conjugacy classes of cyclic subgroups which are not contained in any
dihedral subgroup of PSLy (O_,,) yield a connected component of shape O.

Passing to the preimages of the projection from SLy (O_,,) to PSLs (O_,,) as indicated in
Table [T} we obtain the last column of Table [2| with stabilizers as claimed. O

All four shapes subject to the above corollary occur at small discriminant absolute values (see
Appendix [A| and a few more examples in Figure 3 of [13]). Joint work in progress of Grant
Lakeland with the authors indicates the existence of one more component type for congruence
subgroups in the Bianchi groups.

A connected component of the 2—torsion subcomplex can be considered as a tree with action
of the subgroup G of the Bianchi group that sends the tree to itself. We obtain G as the groupe
fondamental du graphe de groupes ([21], not to be confused with the fundamental group of the
underlying graph) of a connected component of the quotient of a reduced non-central 2-torsion
subcomplex with attached stabilizer groups and monomorphisms from the edge stabilizers into
the vertex stabilizers. Such G in this paper can be built iteratively using amalgamated products
and HNN extensions. We collect the four possible connected component types in Table
We note that the degree of each vertex in the quotient space is the same as the number of
distinct conjugacy classes of Z/4 in the vertex stabilizer. This information determines the HNN
extensions up to ordering of the conjugacy classes. We also observe that all stabilizers which
contain a copy of Qg are associated to vertices. This observation will be used in Section
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Type of group G Quotient of tree acted on by G
(0) HNN extension Z /4% 4 OZ/4
(¢) Amalgamated product Te x4 Te Tes—Te
() | Double HNN extension ((Qg *7,/4 Qg) *Z/4) *7,/4 Qs© Qs
(p) Iterated construction (Qgx*z/4) *7/4 Te QsO—-+Te

TABLE 2. Connected component types of non-central reduced 2—-torsion subcom-
plex quotients. The homotopy type of the quotient space is given in the right-most
column. All edges have stabilizer type Z/4, and the stabilizer types of the vertices
are given.

4. MAPS INDUCED BY FINITE SUBGROUPS IN THE BIANCHI GROUPS

In this section, we classify the possible cell stabilizers of the SLg (O_,,)-action and deter-
mine the restriction maps between subgroups. We will use this information to determine the
cohomology of components of reduced non-central 2-torsion subcomplexes in Section [6]

Since the action of SLg (O_,,) on X is properly discontinuous, cell stabilizers are finite sub-
groups of SLg (O_,,). The enumeration of the finite subgroups of SLs(C) is a classical result,
and the list of finite subgroups which appear in the Bianchi groups PSLs(O_,,) is also well
known [8], see Table [L} in which we fix our notations.

We start by recalling some mod 2 cohomology rings. In what follows, the symbol Fo rep-
resents the field of two elements, and all the cohomology rings and groups in which we omit
the coefficients are meant to be taken with (obviously trivial) Fo—coefficients. We write reduced
cohomology classes [in square brackets] and nilpotent cohomology classes (in parentheses). The
index of a class specifies its degree.

Proposition 8. [1| The cohomology rings for finite subgroups of PSLa (O_,) are given below,
where a subscript denotes the degree of the generator.

H*(Z/2)=H"(Ds) = Fa[z:]
H*(Z/3)~ H* (1) = Fy
H*(Dg) =Fa[z1,y1]
H"(A4)

14

Faluz, vs, w]/(uj + v35 + w3 + vsws)
J

We use the Lyndon—Hochschild—Serre spectral sequence to determine the cohomology rings of
the finite subgroups of SLa(O_,,). In particular, for each finite subgroup G of SLy(O_,,), there
is a corresponding finite subgroup @ of PSLa(O_,,) which fits into the central extension

12722 —G—Q—1

where Z/2 is the subgroup of SLa(O_,,) containing {+I}. We note that all finite subgroups of
SLo(C) also sit inside SU(2) and act freely on it. Since SU(2) can be identified with the 3—sphere,
the cohomology rings for the finite subgroups of SLa(O_,,) are periodic of period dividing 4 [4].
In particular, the cohomology rings can all be expressed as a tensor product where one term is
a polynomial ring on one generator.
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Proposition 9. The following are the mod 2 cohomology rings of the finite subgroups of SLa(O—_y,).
H*(Z/4)=H"(Di) = Fales](b1)
H*(Z/2)=H*(Z/6) = Fa[e/]
H*(Qs) =Faled)(z1, y1, 22, Y2, 73)
H*(Te) =Fsleq](b3)

Proof. The cohomology results for cyclic group results are straightforward, and the calculation
of the other cohomology rings (and a classification for all periodic groups) are contained in [1].
However, we briefly review the derivations here as the descriptions will be useful when we
determine restriction maps to subgroups.

The dicyclic group Di is a semidirect product and fits into the short exact sequence

1—72/3—Z/3xZ/4— Z/4— 1.

Since H*(Z/3) has trivial mod 2 homology, in the Lyndon—Hochschild—Serre spectral sequence
the only nontrivial cohomology occurs on the horizontal axis and is isomorphic to H*(Z/4).

For Z/4, Qg and Te, we again use the Lyndon—Hochschild—Serre spectral sequence for central
extensions. In the spectral sequence of the extension, let Fao[e;] be the cohomology ring cor-
responding to the central subgroup Z/2. On the E; page of the spectral sequence, the image
of da(e1) can be identified with the k—invariant. In addition, the Kudo transgression theorem
describes the images of don 1 ((61)2" .

We start with the calculation of H*(Z/4). Let H*(Z/2) = Falz1], and consider the spectral
sequence associated to the central extension. In this case, the k-invariant da(e;) = 22, so
dg(ele) = xf“ and d2(6%) = 0. As the result, the spectral sequence collapses at the Fy page
with classes in even rows and in columns 0 and 1 only. The class e? represents the polynomial
class in H?(Z/4), and the class in Eg 1 is the one-dimensional exterior class.

We next calculate H*(Qg). The extension is central, so E}'? = HP(Dy) ® H%(Z/2), and
by [1, Proposition IV.2.10], the k—invariant dz(e1) = 22 + 2131 + 3> € H*(Ds). Also, da(e?) = 0,
which completely determines the differentials on the E5 page. Consequently, the only classes
which survive to the E3 page lie in even rows. Next, using the Kudo transgression theorem,

ds(e}) = d3 (Sq'(e1)) = Sq' (a7 + z1y1 + y7) = 2Ty1 + 2107
Through careful accounting, one can show that the classes that remain in Fs5 are in columns
0 through 3, and that the spectral sequence has non-zero terms in rows congruent to 0 mod 4.
Consequently, all higher differentials vanish and F3 = FE,. The only classes left correspond to 1,
1, Y1, x%, y3, vy = xly% and the product of these classes with powers of ei‘, which represents
a four-dimensional polynomial class. We find that as a ring, H*(Qg) = Faleq|(x1, y1)/(R), where
R is the ideal generated by 22 + x1y1 + y7 and 23y; + x1y%. The result follows.

Finally, we consider the calculation of H*(Te), which proceeds in a similar manner as the case
for H*(Qg), except now the quotient group is A4 and we have to consider

H*(A4) = Folug, v3, w3) /{u 4+ v3 + w3 + vaws).

Briefly, da(e1) = ug, and d3(€2) = v3 = Sq'(uz) [3]. Once again, after a careful check, the spectral
sequence collapses at the F3 page and the only classes left correspond to 1, the four-dimensional
class represented by e}, w3 € Eg”o, and the product of w3 with powers of ef. O

Given the following commuting diagram of groups,

Z7]2 Gy Q1
| IR
Z/2 G2 > Q2

if one knows the induced map i} : H*(Q2) — H*(Q1), it is often possible to calculate the effect
of 75 : H*(G2) — H*(G1). The commutative diagram gives rise to two Lyndon-Hochschild—Serre
spectral sequences, one for each extension, and the two are compatible via the isomorphism
on the fiber. Specifically, the maps between the spectral sequences are given by ] along the
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x—axis and the identity along the y—axis. Once the spectral sequences converge, for the cases we
consider in this work the result gives the effect of the restriction map resgf = 15 for classes on
the edges.

Proposition 10. The following are the nontrivial restriction maps on cohomology generators
for finite subgroups of SLa(O_p,):
2

resg, (e2) =e7

resZD/iG(eg) = resZD/iz(eg) =e?
res(ZQ;‘4(e4) = e%, res(ZQ/i(z:l) = b
res(ZQ/SQ (eq) =¢ef

res%/eﬁ(&l) = Tes%;’z(a;) = e}

resg (eq) =e3

7./6
7,)2

The results in this proposition are well-known, for example, see Lemma 2.11 and Corollary 6.7
in |1]. We also note that there are three copies of Z/4 in Qg. The three corresponding injections

are in bijective correspondence with the three surjections from (Z/2)? = H'(Qg) to Z/2 =
HY(Z/4).

Remark 11. We note that the restriction map is natural with respect to cup products, so the
results of Proposition can be used to determine the effect of the restriction map on other
cohomology classes. In particular, the only nontrivial restriction map on classes with nilpotent
%/84(63:31) = e3ib. In addition, in the cohomology of the groups we consider,
only polynomial classes restrict non-trivially to polynomial classes.

Di

In addition, res and resy,)y are isomorphisms.

components is res

We noted in the discussion after Proposition [§] that the cohomology of the finite subgroups
of SLy(O_,,) are all periodic of period dividing 4. Above the virtual cohomological dimension,
which is 2 for the Bianchi groups, the same period can be observed for the SLs Bianchi groups
and their subgroups. The proof of this is based on ideas of [2] and [5].

Proposition 12. Any (not necessarily finite) subgroup T in SLa(O_,,) has periodic cohomology
above the virtual cohomological dimension. The periodicity can be realized by cup product with a
4-dimensional class a.

Proof. The Bianchi groups act properly on X, which is homeomorphic to R3. In addition, from
the discussion after Proposition [8] we know that the finite subgroups in the Bianchi groups act
freely on SU(2) C SLy(C). Therefore the groups SLa(O_,,) and their subgroups act freely and
properly on R? x S3.
We essentially follow the argument in [5] and set Y := R3 x S with the I'-action described
above. There is a fibration
Y - ET' xr Y — BT,

where BT is the classifying space for I' and ET is its universal cover. Since Y has the homotopy
type of S?, this is a spherical fibration which is orientable as we are working with Fo—coefficients.
The result follows by applying the Gysin exact sequence.

The class « is the image under dy of the generator of H3(S?). As mentioned in the introduction,
the referee has pointed out that this class is the second Chern class of the natural representation

of SLy(C). O
5. CALCULATION OF THE F5 PAGE

In this section, we describe the Fs page of the equivariant spectral sequence for Bianchi groups
in a fairly general way. Some of our analyses will hinge on distinguishing types of cohomology
classes. Given a finite group G, we note that the nilpotent classes in H*(G) form an ideal. We
will denote this ideal by H7;/(G). We next define the reduced quotient module H}_ ;(G) as the
quotient by the ideal of nilpotent classes, so

0 — Hy1(G) - H(G) — Hiy(G) — 0

nil
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is exact. In what follows, we will also use the term “reduced class” to mean a class in the
cohomology ring which has non-trivial image in the quotient module.

Denote by X the cell complex described in Section [3| before Corollary |7} and by X, the non-
central 2-torsion subcomplex of X with respect to I'. Further, denote by X/ the subcomplex
of X, consisting of cells whose stabilizer group contains a copy of Qg, i.e. the stabilizer being
of type either Qg or Te. We note that if a cell of X is not in X7, then by Proposition |§| the
cohomology of that cell’s stabilizer is isomorphic to H*(Z/4) if the cell is in X§, respectively to
H*(Z/2) if the cell is not in X,;. We also note that X! is a 0-dimensional subcomplex of X.

Note 13. In the calculations that follow, we require that for any cell 7 € X, the inclusion
of the center Z(I") — T'; into the cell stabilizer of 7 induces a monomorphism on the reduced
parts of the cohomology rings, H} 4(I';) < H.4(Z(T")). Furthermore, for any cell o € X not in
X, we want that the inclusion Z(I') — TI', induces an isomorphism H} ,(T'y) — H}4(Z(T')). By
Proposition the action of the Bianchi groups on the cell complex X obtained from hyperbolic
space satisfies these conditions.

In the following equivariant spectral sequence material, we will assume that we are working
with -equivariant cohomology, i.e., EY?(Y) stands for the E5?-term of the equivariant spectral
sequence associated to the action of I on Y, unless specified otherwise. The next theorem will
be stated in terms from a relative spectral sequence, which is defined as follows. Given a cellular
subcomplex X’ C X, there is a short exact sequence of co-chain complexes

0—C"X,X") - C*(X) - C"X') = 0.

Let F' be a free resolution for I'.  Applying Homp,)(F, —) and then cohomology yields a short
exact sequence of chain complexes,

(3) 0— EPUX, X" — EPY(X) = EYY(X') — 0.

Theorem 14. In the equivariant spectral sequence with Fo-coefficients converging to ng+q(X),
the EY? page is given by the following rows, k running through N U {0}:

ER(X) = BP(X,) @ EPY(X, Xy),

By (X)) 2 HA(X!) @ Ey*(X, X)),  EP™(X) = BR*(X,X.) forp>1,
EpH(X) = EP(X.) @ By (X, X,

EpH(X) = B (r\X)

By the periodicity established in Proposition to prove this theorem it is sufficient to
calculate only the first four rows.
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Proof in odd degrees q. For the inclusion X; C X, where dim Xy = 1 and dim X = 2, Se-
quence is concentrated in the following diagram.

0 0 0
AN B

0 — EY(X,X,) — EP(X) 0 - 0
art At e

o o et

0 — BY(X, Xy) — BY(X) — BY(Xs) — 0

T T T

0 0 0.
(4)

Then, for fixed p, we have a splitting of Fo-modules, E¥"!(X) = EVY(X,) @ EP'Y(X, X;). Now
with respect to this splitting, there are no nontrivial maps between EP?(X,) and EPYH(X, X,)
because of the following mismatch: when ¢ is odd, classes in E5?(X;) are nilpotent by Proposi-
tion@ On the other hand, classes in the relative cohomology group E5 +ha (X, X) are all reduced,
since any cell stabilizer of a cell not in X has mod-2 cohomology isomorphic to H*(Z/2). We
note that the coboundary operator commutes with Steenrod operations. Then Proposition[9]and
the application of either Sq2Sq! or S¢® implies the vanishing result for maps between EPY(X)
and EPT1(X, X,). Finally, we remark that the map from EP9(X) to EP?(X,) takes nilpotent
classes to nilpotent classes.

Therefore, the d)"? differentials split over EY'?(X) = EP(X,) @ E?(X, X5). So Sequence (4))
splits not only level-wise, but as a short exact sequence of chain complexes. Taking homology
with respect to di"? then yields the desired splitting,

EY(X) = EYU(X,) @ By(X, X,).

O

Proof in degrees q = 4k + 2. For the inclusion X! C X, Sequence becomes the short exact
sequence of chain complexes

(5) 0 — EP?(X, X!) —» EP?(X) — EP?*(X]) = 0.

Recall that X is the subcomplex of X consisting of cells whose stabilizer group contains a copy

of Qg, and such cells are 0-dimensional. So EY ’2(X ’) is concentrated in the module E? 2 In

addition, classes in EY*(X!) are nilpotent whereas classes in E;"*(X, X!), being associated to
edges, are reduced — all of the edge stabilizers are isomorphic to Z/2 or Z/4 (the latter occurring
when the edge is part of the non-central 2-torsion subcomplex). The splitting argument is now
the same as in the case for ¢ odd, except for that we use Sq2. So Sequence splits, not only
level-wise, but as a short exact sequence of chain complexes. Finally, as X is 0-dimensional,
EP?(X!) = E2?(X!) is concentrated in column p = 0, where it is isomorphic to H(X). O
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Proof in degrees ¢ = 4k. The E; page of the spectral sequence is the co-chain complex

0 P °H*IT,) > P H¥T,) > @ H*(T,,) -0

JQEF\X(O) 01EF\X(1) O'QEF\X(Q)

Furthermore, by Proposition @, H4 (I'y;) = Fy and the horizontal maps are induced by cell
inclusion. Taking the homology of the co-chain complexes yields the isomorphism

EYH(X) 2 HP(p\X).
]

Theorem [14] describes the rows of the Fy page in terms of rows of Es pages of subcomplexes
and relative complexes. The cohomology of the former terms will be calculated in Section [6] We
calculate the latter terms next, first establishing some notation.

Notation 15. Here and in what follows, £, (r\Xs) := dimg Hy(r\Xs; Q). Denote by x(r\Xs) =
Bo(r\Xs)—pP1(r\Xs) the Euler characteristic of the orbit space 0\ X of the non-central 2-torsion
subcomplex.

For O not the Gaussian or Eisensteinian integers, the Euler characteristic of the hyperbolic
orbit space 1\ X vanishes because its boundary consists of disjoint 2—-tori |20, p. 513]. Conse-
quently, the Betti numbers 31 and f2 of the hyperbolic orbit space p\ X satisfy 1 — 51 + 2 = 0,
so we can replace 8 by 81 — 1 when it is convenient.

Notation 16. For ¢ € {1,2}, denote the dimension dimg, H?(p\ X; Fy) by 5.
The Universal Coefficient Theorem yields
Hq(F\X; ]FQ) = HOI’II(HQ(F\X; Z), FQ) D EXt(Hq_l(F\X; Z), ]FQ)

As X is 2-dimensional, the group Ho(r\X; Z) contains no torsion, so we obtain that the dimen-
sion B2 equals the Betti number 35 plus the number N of 2-torsion summands of Hy(r\X; Z).
As Ho(r\X; Z) contains no torsion, we obtain that 3! = 8; + N. The number N vanishes for all
absolute values of the discriminant less than 296 and has been determined in [17] on a database
which includes all the Bianchi groups of ideal class numbers 1, 2, 3 and 5, most of the cases of
ideal class number 4, as well as all of the cases of discriminant absolute value bounded by 500.

Notation 17. Denote by ¢ the co-rank (i.e., the rank of the cokernel) of the map
HY(r\X; Fy) — HY(r\X,; Fy) induced by the inclusion X, C X.

Notation 18. Let v denote the number of conjugacy classes of subgroups of quaternionic type Qg
in SLg (O_,,), whether or not they are contained in a binary tetrahedral group Te, and define
. 0, v=0,
st {3 72
There is a formula for v in terms of the prime divisors of the discriminant of the ring O_,,
of integers [9]. We use results from [13}/15] that the endpoints of 0\ X, are precisely the orbits
of vertices with stabilizer group Te, and that the bifurcation points of 1\ Xy are precisely the
orbits of vertices with stabilizer group Qg. We consider endpoints and bifurcation points of 1\ X
as “necessary” vertices, because they cannot be eliminated during the reduction of the torsion
subcomplex X,. This is due to the cohomology of their stabilizers, which is different from the
cohomology of all edge stabilizers. The reduction of the torsion subcomplex X eliminates all of
the other vertices, except for one orbit of vertices on components of type (o), which is needed for
the cell structure of O, but can be chosen arbitrarily on the component [13}|15]. This is why we
can think of v as the number of “necessary” vertices (endpoints or bifurcation points) of '\ Xs.
Further, we can count these as the vertices of the I'-quotient of a reduced non-central 2-torsion
subcomplex, in contrast to the “spurious” vertices found on connected components of type O,
which we omit.
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Proposition 19. There is an isomorphism EYY (X, Xs) = HP(p\X, r\X;s). In particular,

0, p=0,
dimg, E(X, Xs) = ¢ B'(0\X) + ¢+ x(r\Xs) =1, p=1,
B2(r\X) + ¢, p =2
Proof. We start with the split short exact sequence of chain complexes from Sequence ,
(6) 0 — EPY(X,X) = EV(X) = EPY(X,) — 0.

Every cell stabilizer in (X, X;) has cohomology isomorphic to H*(Z/2), so

EPM(X,X)= P HYZ/2).
O—EF\(XVXS)(;D)

As H(Z/2) = Fy, which has trivial automorphism group, the isomorphism is constant over all
cells. That is, the inclusion of an n-cell into an (n + 1)-cell induces a unique isomorphism in the
cohomology of the associated isotropy groups. Hence EVY(X, X;) = Fy ®7 CP(r\(X, X5)), with
the differential d}"? given as the coboundaries of CP(p\(X, Xs)) = CP(p\X)/CP(r\X;). This
implies our first claim, that

EPUX, X,) 2 HP(p\X, r\Xs).

As X is a 2-dimensional cell complex and X is 1-dimensional, the long exact sequence associated
to the relative cohomology of the pair (p\X, r\Xs) is concentrated in

H?(p\X, r\X,) — H*(r\X) 0 .

\

H'(P\X, r\X,) — H'(r\X) — H'(r\X,)

\

0 — H'(P\X, r\X,) — H°(r\X) — H(p\X,)

Since X, C X with X connected, we immediately see that H°(p\X) maps isomorphically to
a 1-dimensional Fy-subspace in H(r\ X;), yielding H*(r\ X, r\Xs) = 0. Therefore, the map
from HO(r\X,) to H'(p\X, r\X,) has rank 8°(r\X,) — 1. In addition, using the co-rank c
from Notation we have to complement H!(r\X, r\X,) by an Fy-subspace of dimension
BYHr\X) — (BY(r\Xs) — ¢). This yields the claimed formula x(r\Xs) — 1+ BY(r\X) + ¢ for the
dimension of H'(p\ X, r\X). The remaining terms of the long exact sequence produce

H?(P\X, r\X,) = H*(r\X) & (F2)“.

Proposition 20. In the second row of the equivariant spectral sequence,

1 - sign(v), p=0,
dimg, EP*(X, X!) = { B1(r\X) + v —sign(v), p=1,
BA(r\X), p=2.

Proof. We note that from Proposition |§|7 the cohomology rings of stabilizers of cells in (X, X))
are either isomorphic to H*(Z/4) or H*(Z/2). Both cohomology rings have period evenly di-
viding 2. Consequently, EP?(X, X!) and EY?(X,X!) are 2-periodic in ¢, and it is enough to
investigate EP°(X, X!) and E2°(X, X!). We consider the short exact sequence of chain com-
plexes defining Ef’o (X, X)),

0— EPY(X, X)) = EPY(X) —» EP'(X!) = 0.

Since E?’O(Xg) =~ (F3)¥ and Ef’O(Xg) = 0 for p > 1, this sequence of chain complexes is
concentrated in the following diagram.
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0 0 0
LA B
0— EXX,X!) — EX°(X) —0——0
(O B
0— E/%X, X)) — B°(X) —=0——0
(O RO
0 — BEYO(X, X)) — EYO(X) — (F2)" — 0

T T T

0 0 0

Since Eb (X)) = HP(p\ X) by Theorem the long exact sequence obtained with the snake
lemma from the above diagram is

By (X, X)) —— H2(r\X) 0

0 — EYY(X, X)) (r\X) (F2)®

S = Y N

By the 2-periodicity, the top row of the sequence already yields one case of the claimed formula,
dimg, E3?(X, X!) = dimg, E5°(X, X)) = 82(r\ X).

It remains to study the five-term exact sequence given by the two bottom rows. Here, we note
that HO(r\X) 2 Fy, and that ES’O(X, X!) is isomorphic to the kernel of the map

HO(p\X) — (Fa)",

which is non-trivial precisely when v > 0. Therefore, dimp, ES’O (X, X!) =1—sign(v). Thus, we
can extract a short exact sequence

0 — (Fp)v~sen® — B0(X, X!) — HY(r\X) — 0,
which implies dimg, Ey°(X, X!) = 81 (p\X) 4 v — sign(v). O

Corollary 21. The Es page of the equivariant spectral sequence with Fo—coefficients associated
to the action of I' on X is concentrated in the columns n € {0,1,2} and has the following form:

q=4k+3 Ey*(X,) Ey*(X,) @ (Fp)™  (Fp)™
g=4k+2 | HA(X)) @ (Fy)l-sien(®) (Fp)s H?(r\X)
g =4k +1 EYY(X,) Byl (Xs) @ (Fp)®  (Fp)“2
q = 4k Fy H'(r\X) H?(r\X)

ke NU{0} | n=0 n=1 n =2
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where

ar = B(r\X) +c+ x(r\Xs) — 1
az = B*(r\X) +c,
az = BY(r\X) + v —sign(v).

Proof. Theorem [14] describes the structure of the E5 page of the spectral sequence by row as co-
homology of the quotient space (¢ = 4k) and direct sums of cohomology groups of subcomplexes
and relative complexes (other values of ¢). Propositions [19| and 20| provide a description of the
cohomology of the relative complexes. O

6. CALCULATION OF THE SPECTRAL SEQUENCE ON THE SUBCOMPLEX

In Corollary [2T] we have expressed the Fs page of the equivariant spectral sequence converging
to H*(SL2 (O_;,)) in terms of invariants of the quotient space and the Ey page associated to the
non-central 2-torsion subcomplex X,. In this section, we will investigate that latter Eo page,
EP%(X;). Recall that the only 2-torsion elements which stabilize cells outside of the non-central
2—torsion subcomplex are in the Z/2 center. This allows us to relate back to and use results
about the 2-torsion subcomplex for PSLa(O_,,). What we have to do in order to establish this
relation is to show that E5'?(X,) splits as a direct sum indexed by the connected components of
Xs; then further that the reduction of subcomplex components is in complete agreement with
the analogous reduction for PSLy(O_,,). We do this in the following lemma.

Lemma 22. The terms EYY(X,) split into direct summands each with support on one connected
component of the quotient of a reduced non-central 2—torsion subcomplez.

Proof. An argument in Section 6 of |15] explains why the mod 2 cohomology of PSLa(O_,,)
splits into a direct sum above the virtual cohomological dimension. The argument references
the calculations in [3], and notes that classes that arise in one component of the non-central 2—
torsion subcomplex do not restrict to subgroups in others. This implies that products between
classes that come from distinct components multiply trivially in cohomology.

We need to extend this result from the projective special linear group to the special linear
group. In other words, we need to make sure that the result is compatible with the central
extension of PSLy(O_,,) by {£1} = Z/2. Summarizing results in [13] where the 2-torsion
subcomplex is developed, we note that all edge fusions, which happen during the reduction
of the subcomplex for PSLy (O_,,), remove a vertex with stabilizer Z/2 or S3. The adjacent
edges which are fused both have stabilizer Z/2. Since H*(S3) = H*(Z/2) and since this is an
isomorphism of rings, the mod 2 cohomology of the component corresponding to the 2—torsion
subcomplex is ring-isomorphic to the mod 2 cohomology coming from the original component.

Now the central {£1} group acts trivially on the retracted cell complex, so as noted in the
discussion after Definition [6] the non-central 2-torsion subcomplex for SLy(O_,) is identical to
the 2-torsion subcomplex for PSLy(O_,,). The stabilizers for SLa(O_,,) are extensions of the
stabilizers in PSLa(O_,,) by {£1}. In particular, Z/2 is extended to Z/4 and S3 is extended
to Di. Since there is a ring isomorphism H*(Di) = H*(Z/4), we conclude that at vertices where
there was an edge fusion in the 2-torsion subcomplex in the PSLo(O_,,) case, there will also be
an edge fusion in the non-central 2-torsion subcomplex in the SLo(O_,,) case. Therefore, the
non-central 2—torsion subcomplex can be reduced as in the PSL2(O_,,) case presented in [13].
This yields a splitting for all of the terms EY?(X). O

The main task in the remainder of this section will be to use the cohomology and restriction
information gathered in Section [ in order to determine the equivariant cohomology supported
on the individual connected components of the quotient of a reduced non-central 2—torsion
subcomplex. The key observation for this task is that the individual connected components of
the quotient of a reduced non-central 2—torsion subcomplex correspond to groups which can be
described as amalgamated products and HNN extensions. We recall the definition of an HNN
extension.



THE MOD 2 COHOMOLOGY RINGS OF SL OF THE IMAGINARY QUADRATIC INTEGERS 17

Definition 23. Let ¢ : G3 — G be an injection of G5 into G;. An HNN extension of Gy is a
group with presentation

Gixg, = <t,G1 |t gt = ¢(g),9 € Gy > .
The element t is often referred to as the free letter.

We note that the notation Gixg, is not completely descriptive, since there may be many
possible injective maps ¢.

Via Bass—Serre theory, it is known that amalgamated products and HNN extensions both act
on trees. In the amalgamated product G = G x G2, there is an action where the fundamental
domain is given by two vertices with stabilizers G; and Gs, connected by an edge with stabi-
lizer H. In the HNN extension G = Gi*q,, the fundamental domain is a single vertex with a
loop where the vertex stabilizer is G; and the edge stabilizer is G.

We can calculate the cohomology of HNN extensions and amalgamated products using the
next result.

Theorem 24. Let oy and o1 be 0—cells and 1—cells in a fundamental domain, and let G, and G,
be the vertex and edge stabilizers respectively. Then there is a long exact sequence in cohomology

(7) S DENG) SHG) S DHG,) S PH(G) S

eco vEOTQ eco
The direct sum is over one edge and two vertices if G is an amalgamated product (resulting in
a Mayer—Vietoris sequence), and over one edge and one vertex if G is an HNN extension.

The following is another result from Bass—Serre theory.

Proposition 25. In the long exact sequence of Theorem [24, the map 8 is the restriction map.
In an amalgamated product, o = resgl —resgz. In an HNN extension, o = resg; — ", where ©*

s the map induced by conjugating Go by the free letter.

In fact, when the equivariant spectral sequence only has two non-zero columns, the Fy page
degenerates into a Wang sequence which is precisely the long exact sequence in Theorem .
Furthermore, the map « is the d; differential. We note that although we are primarily inter-
ested in an additive calculation of the cohomology, the long exact sequence can also be used to
determine ring information, as ker(«) = im(5) and this is a ring isomorphism.

We will use the equivariant spectral sequence to carry out our cohomology calculations. We
recall that Remark [T1]states that concerning the occurring restriction maps on cohomology, only
reduced classes restrict non-trivially to reduced classes.

(0) Lemma 26. Let G 2 Z/4%5/,. Then dimg, HY(G) :{; qjl)?

b q Py N
Proof. The quotient of the tree acted on by G has shape O, with vertex and edge stabilizers
both isomorphic to Z/4. Using the restriction maps from Proposition [L0| we set up the F; and
FE»> pages of the equivariant spectral sequence for this HNN extension below.

E; page E; page
4 FQ — FQ 4 ]F2 ]FQ
3| Fy — Ty 3| Fy Fy
2| Fy, — Ty H.(d1) 2 | Fy o
1 FQ — FQ 1 ]FQ ]F2
0 FQ — FQ 0 ]F2 ]F2

0 1 ~]o 1

The arrows in the spectral sequence are the d; differentials given by d; = res%i — *. Since

both maps resgi and ¢* have identical effects on H*(Z/4), we obtain d; = 0. So the E; page
of the spectral sequence is the same as the F,, page. O
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1, q¢=0;

2, q=4k, k> 1;
(t) Lemma 27. Let G = Te xz/4 Te. Then dimp, HY(G) =0, ¢=4k+1;

1, q=4k+2;

3, q=4k+ 3.

Proof. The quotient of the tree acted on by G has shape es. Both vertex stabilizers are isomor-
phic to Te, and the edge stabilizer is isomorphic to Z/4. Propositions |§| and (10 allow us to build
the E1 and E5 pages of the equivariant spectral sequence for this amalgamated product. Both
pages are below.

Ey page E5 page
6 0 — [y 6 Fy
5 0 — Fo 5 Fy
4 (Fg)z — FQ 4 ]F2
3 (F2)2 — Ty Hy(d1) 3 (]F2)2 Fy
2 0 — Ty 2 Fq
1 0 — Ty 1 Fy
0 (]Fg)2 — FQ 0 F2

0 1 0 1

On the FE; page, the only non-zero restriction maps are the ones on reduced classes in rows
4k. O

We consider the group G =2 ((Qg *7,/4 QS) *2/4) *7,/4, constructed as follows. The copies
of Qg are amalgamated over a copy of Z/4. The group G is formed from Qg *z/4 Qs via an
iterated HNN extension. The first HNN extension takes a second Z/4 subgroup, non-conjugate
to the first, in one copy of Qg to a non-conjugate Z/4 subgroup in the other. The second HNN
extension is defined similarly using the third non-conjugate Z/4 subgroups.

() Lemma 28. Let G = ((Qg *7,/4 Qg) *2/4) *7,4 with HNN extensions as specified above.
Then

1, q=0;

4, q=4k, k> 1;
disz Hq(G) =44, g=4k+1;

5 q=4k+2;

5 q=4k+ 3.

Proof. The quotient of the tree acted on by G has shape ©. The two vertex stabilizers are
isomorphic to Qg, and the three non-conjugate edge stabilizers are all isomorphic to Z/4.

The E; page of the spectral sequence has two copies of H*(Qg) in column 0 and three copies
of H*(Z/4) in column 1. Our main concern is to determine the action of the d; differential from

1 1,1 " . . .
E? " to E". By Proposition we know that in dimension 1, a non-zero restriction res%/i can

be traced back to a non-zero restriction resZD/QQ. In cohomology, let b11,b12, and b3 denote the

exterior classes in g H! (Z/4) corresponding to the three edge stabilizers, and let x11,y11, 12, Y12
be the nilpotent classes in H'(Qg) ®@H'(Qg) corresponding to the two vertex stabilizers. Further,
assume that x11 and z15 both restrict isomorphically to bi; via the correspondence from Propo-
sition and that y11 and y19 both restrict isomorphically to bi2. In Ds, the product of any
two non-zero elements is the final non-zero element. Consequently, in cohomology, 11, y11,Z12
and ypo all restrict to by3. That is,

d(l)’l(»’b‘n) = b1 +bi3
d(l)’l(yn) = bio+bi3
d(l)’l(l‘m) = b1+ b3
AV (12) = bra + bus.

So d(l)’1 has rank 2. The only other non-zero differential is between polynomial classes in rows 4k.
Let eq1 and e42 be the polynomial generators of H*(Qg) @ H*(Qs), and let €3;, €3,, €25 be the
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squares of the two-dimensional polynomial generators in &3 H4(Z/ 4). Based on the geometry of
the quotient of the tree acted on by G, we have

d1(€41) = d1(642) = 6%1 + 6%2 + 6%3.

This implies that both the kernel and image of d; are 1-dimensional. We can now completely
determine the F7 and E5 pages of the equivariant spectral sequence.

Ey page E5 page
6| (Fo)* — (Fo)? 6| (Fo)*  (Fp)?
5 (F2)4 — (]FQ)?’ 5 (FQ)Q ]FQ
4 (]FQ)2 — (]FQ)B 4 ]F2 (]FQ)Q
3| (F2)? — (Fg)®  Hid) 3| (F2)*  (F2)?
2| (F2)! — (Fp)? 2| (F2)  (Fp)?
1 (F2)4 — (]F2)3 1 (F2)2 Fy
0 (F2)2 — (]Fg)g 0 FQ (FQ)Q

0 1 0 1

0

(p) Lemma 29. Let G = (Qs*z/4) *7/4 Te, where the HNN extension identifies two non-
conjugate copies of Z/4 in Qg; and the third conjugacy class of Z/4 in Qg is the amalgamated
subgroup with Te. Then

1 ¢g=0

3, gq=4k, > 1;
diIIl[F2 Hq(G) =<2, g=4k+1;

3, q=4k+2;

4, q=4k+ 3.

Proof. The quotient of the tree acted on by G has shape O-¢. The vertex stabilizer incident
to the loop is isomorphic to Qg. The other vertex stabilizer is isomorphic to Te, and the two
edge stabilizers are isomorphic to Z/4. This is the most complicated case, since the fundamental
domain for G consists of two vertices and two edges, and the restriction maps arising from the
edges have to be taken into account.

We follow the approach used for a similar mod 2 calculation in Lemma 3.1 of |3]. We start with
an analysis of the component of d; : H*(Qg) — H*(Z/4), where the copy of Z/4 is the stabilizer
of the loop. Referring back to the long exact sequence given in Equation [7] this component of

dy is the difference T@SZQ/84 — ", where the restriction map is induced by subgroup injection on

one side of the loop, and by the twisting from the HNN extension on the other one. We tweak
the notation for classes from Proposition |§| by denoting by b;; € H! (Z/4) the class in the loop
stabilizer and bjy € H(Z/4) the class from the edge stabilizer. (We use the same convention for
reduced classes.) By the mod 2 calculation in [3], which carefully tracks the effect of the twisting
map on cohomology, one can show that the generators xz; and y; mentioned in Proposition [J]
have images

resZQ;‘4(x1) = b11, but resZQ/84(y1) = 0.

That is, the restriction only detects the subgroup on one side of the HNN extension. The map
on cohomology induced by ¢, on the other hand, detects the subgroup on both sides:

©*(w1) = ¢*(y1) = b11.

Consequently, the component of d; mapping to the loop sends x1 to 0 and ¥; to bi1. In addition,
as res§f4(e4) = ¢*(e4) = €2,, the same component of d; sends e4 to 0. The map 1"(35(22/84 to the
unlooped edge with Z/4 stabilizer is given by Proposition although we need to determine
whether the nilpotent class with a nontrivial restriction is x1, y1, or 1 + y1. In fact, a basis for

H*(Qg) can be chosen so that resZQ/84 sends x1 to 0 and y; to byo. Summarizing,
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7’65%34@2/4@1) = bll + b12
Q _ 2
rest4@Z/4(e4) = €5
and all other classes are sent to 0. The rest of d; is given by the restriction map reerrfél, and
this map is nontrivial only on the reduced class. We have now completely determined the d;
differential, so we can write down the F; and Fy pages.

Ey page FE> page

6| (F)® — (F2)° 6| (F)*  (F2)?
5 (F2)2 — (]FQ)Q 5 Fy Fy
4 (]FQ)Z — (]FQ)Q 4 ]FQ IFQ
3 (F2)2 — (]F2)2 H*(dl) 3 (F2)2 (]F2)2
2| (F2)? — (F2)? 2| (F2)*  (F2)?
1 (F2)2 — (]F2)2 1 Fy Fy
0 (FQ)Z — (]FQ)Q 0 Fy Fy

0 1 0 1

0

Note 30. As the sub-subcomplex X/ is O-dimensional, we can read off the equivariant cohomol-
ogy Hg (X!) as the E? “I_terms of its spectral sequence. This furthermore splits as a direct sum

over the connected components of X, and we write ', ©', respectively O’ for subsets of X !
with orbit space constituting the vertices of a connected component e, €, respectively O of
r\Xs. Then using Proposition |§|7 we obtain on the known types of connected components

Hj (') = 0, H (©) = (F2)*, H (O') = (F2)*.
The set O is empty, but we can abuse notation and also write H5 (O') = 0.

7. DECOMPOSITION OF THE SECOND PAGE DIFFERENTIAL

Looking back at the four groups associated to non-central 2-torsion subcomplex quotient
components types shown in Table [2| we see that the groups associated to the quotient types s,
©, and O-* have periodic cohomology of period 4 starting above degree d = 0, where « is the
unique polynomial class in degree 4 which is detected on the fiber of the extension. In contrast,
for the quotient type O, the periodic cohomology has period 2, where the periodicity generator
is again the unique polynomial class in dimension 2.

In the equivariant spectral sequence for the action of SLa(O_,,) on X, which we will denote by
E3SL, we have completely determined the d; differentials. The final goal is to determine as much
as possible about the do differentials. By periodicity, once we know what happens in the first
four rows, we know what happens in the entire spectral sequence. Our main technique involves
an analysis of Steenrod operations in the E3SL. The target of the do differential is the second
column of the E3SL, where all 2-cell stabilizers are of type Z/2. We note that the Steenrod
algebra on H*(Z/2) is generated by the operation Sq¢'(z;1) = 2.

Lemma 31. All classes in Eg’2q of the E3SL are da-cocycles.

Proof. From Proposition |§|, we see that Sq' in the vertical edge of the E3SL is trivial in even
degrees. The only classes that might need to be checked are in H?*(Qg), and the result follows
since these classes arise from squares on the horizontal edge of the Lyndon-Hochschild—Serre
spectral sequence associated to the extension

1—-7Z/2— Qg — Dy — 1.

Going back to the E3SL, a non-zero target of the dy differential would be an odd-dimensional
class in H*(Z/2) in the second column which has a non-trivial Sq'. However, since Sq'dy = d2Sq!
this is impossible. O

As our cell complex X is 2-dimensional, we obtain the following corollary from this lemma

and Corollary
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Corollary 32. In the equivariant spectral sequence associated to SLa(O_,,), the do differential
can only be nontrivial on Eg’2q+1(X) o Eg’2q+1(Xs) for g > 0.

We note that the dg’q differentials are block-diagonalizable with matrix blocks supported each
by one connected component of the quotient of the non-central 2—torsion subcomplex. Working
one component type at a time, we next show that in the equivariant spectral sequence, for
components of type O, dg’l is trivial if and only if dg’?’ is. We will also show that the do
differential is trivial on components of type e and ©, and O in degrees ¢ = 3 mod 4. This
implies a vanishing result on components of type es.

(o) Lemma 33. The dy differential is nontrivial on cohomology on components of type O in
degrees ¢ = 1 mod 4 if and only if it is nontrivial on these components in degrees ¢ = 3 mod 4.

Proof. The vertex stabilizers for components of type O are Z/4, and Sq¢? (H*(Z/4)) # 0. Simi-

larly, classes in E22 2 are generated by H2(Z/2), and S¢? of these classes are also non-zero. The
result follows by applying periodicity, and noting that doSq? = Sq?ds. O

(t) Lemma 34. The d5?5" differential is trivial on connected components of type +—s.

Proof. By Lemma it is sufficient to restrict ourselves to classes in odd degree. For dg’q with
g = 3 mod 4, from the description of the classes from Lemma [27| and the calculation of H*(Te)
in Proposition [J] all Steenrod squares on bs are trivial. However, in the second column of the
E3SL, Sq? is non-trivial on E22 2, By the compatibility of the Steenrod operations with the ds
differential, do must be the zero map. O

(6, p) Lemma 35. The d; differential is trivial on components of types O— and © in dimensions
q = 3 mod 4.

Proof. The proof is identical to that in Lemma since, by Proposition @, Sq? is trivial on
H3(Qg) as well as H?(Te). O

Remark 36. It remains to determine how ds behaves on components on types O and © in
degrees ¢ = 1 mod 4, which is equivalent to understanding dg’l : Eg’l — Eg’o. Although the
results in Section |8 suggest that dg’q vanishes for these components, this problem remains open
for Bianchi groups in general.

8. EXAMPLE CALCULATIONS

In the examples computed in this section, we use Corollary 21 and the lemmata of Section [f]
to determine the Fo page of the equivariant spectral sequence converging to the cohomology of
SL2(O_,,). Since the equivariant spectral sequence collapses at the F3 page, once we understand
the d53ST differential, we can read off H*(SLa (O_,,) ; F2). On components of type e, results in
Section [7] show that this do differential vanishes. This can also be said on components of types
O~ and ©, except for that we were not able to establish this for dg’4k+l (cf. Remark . On

components of type O, Lemma [33| shows that we need only to know the rank of dg’l, for which
Appendix [A] provides numerical results. When we cannot completely determine the rank of da,
or when the value of the co-rank c is unclear (see Notation [L7)), we still can use Bianchi.gp [16]
and HAP [6] to compute H*(SLa (O_,,) ; Fa) in order to resolve this indeterminacy.

Example. (:). Let p\X; = e». Then v = 2, x(r\X;s) = 1 and ¢ = 0. By Lemma the
differential d2E3SL vanishes. Then applying Corollary Note and the proof of Lemma
we obtain the following dimensions for H*(T").

BHr\X) + B2(r\X), q =4k +5,
BHO\X) + B2 (r\X) +2, g=4k+4,
dimp, HY(SLy (O—p) ; F2) = § B0\ X) + B2(r\X) + 3, ¢=4k+3,
BHr\X) + B2 (r\X) +1, q=4k+2,
(r\X)

51 F\X7 q:l
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The type p\Xs = & occurs for instance for the cases I' = SLy (O_,,) with
m € {11,19,43,67,163}, where 82 = 33 = 31 — 1 and B! = B is given as follows.

m |11 19 43 67 163
Al 1 2 3 T

In these cases, the results for dimp, H?(SL2 (O_;,); F2) have been checked numerically using
Bianchi.gp and HAP.

Example. (). Let r\X; = ©. Then v = 2 and x(r\X;) = —1. By Lemma 35| the differential
dg’g vanishes. Applying Corollary Note|30/and the proof of Lemma we obtain the following

dimensions for H*(T").

¢+ BY(r\X) + B2(r\X) + 2 —rankdy', ¢ =4k +5,

C+61<F\X)+62(F\X)+27 q:4k+4a

dimp, HY(SLy (O_p,) ; F2) = S ¢+ B\ X) + B2(r\X) + 3, q =4k + 3,
)

¢+ BYU\X) + B2(r\X) 4 3 — rankdy', ¢ =4k +2,

\ﬁl(p\X)+2—rankdg’1, qg=1.
5. Then B' = 31 =2and 2 = B = 1.
Instances are I' = SLg (O_,,) with m =¢ 100r 13. Then ' = ; = 3and 2 = 2 = 2.
58. Then B! = 81 = 12and B2 = By = 11.

The authors’ numerical calculations yield dg’l = 0, at an also vanishing co-rank c in all these
four cases.

Example. (0). For the case 0\ X; = O, we observe that v and x(r\Xs) are zero. Corollary
and the proof of Lemma yield just two cases on the Es-page: Ey?(X) = H"(p\X) + ¢ for
n € {1,2} and ¢ odd, E5"?(X) =2 H"(p\X) otherwise.

Let T' = SLg (O_,,) with m = 7. Making use of the fact that in this case the quotient space
r\X is homotopy equivalent to a Mobius strip [19], 8* = 81 = 1, 32 = 2 = 0 and hence dy = 0.
From the cell structure with stabilizers and identifications, we easily see that the co-rank c
vanishes. This allows us to conclude that HY(SLy (O_7); Fa) = (FF3)? for all ¢ > 1.

Let I' = SLy (O_,,) with m = 15. Then ' = B; = 2 and 3? = 5 = 1. The numerical
4, ¢=2,

3, qg=1.
We infer that again both ¢ and that the do—differential vanish.
35. Then 8! = f; = 3and % = By = 2.
Let T' = SLy (O_,;,) with m =< 91. Then 8! = 8; = 5and % = By = 4.
115. Then B! = B; = 7and 8% = By = 6.
5 q=2,
3, ¢=1,

computation yields dimg, HY(SLa (O_15) ; Fa) =

The numerical computation yields dimg, HY(SLa (O_35) ; F2) = {

9; q Z 27 13’ q Z 27
5 q=1, 7, = 1.
So we infer that ¢ = 0 and that the do—differential has full rank on the column n = 0 both in
rows ¢ = 4k 4+ 1 and g = 4k + 3, while it is zero on classes in even rows.

dim[p‘Q Hq(SL2 (0791) ; Fg) == { and ChIIlIF2 Hq(SL2 (07115) ; FQ) :{

Example. (p). On p\X; := O, we observe that v = 2 and x(r\Xs) = 0. Applying Corol-
lary Note [30| and the proof of Lemma we obtain the following dimensions for the Ej"%—
page.

q=4k+3 2 B\ X)+1+c B2r\X)+c
q=4k +2 2 BHr\X) +1 B2 (r\X)
q=4k+1 1 Br\X) +c  B(r\X)+c
q =4k 1 B (r\X) B2 (r\X)
keNU{0} [n=0 n=1 n=2
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By Lemma the differential dg’?’ vanishes. This allows us to conclude that
BHP\X) + B2\ X) + ¢ + 1 —rank dy",
BH\X) + (0 \X) + ¢ +2,
dimp, HY(SLa (O_.,) ; F2) = B (r\X) + A2(r\X) + ¢ + 3,
BYr\X) + B2(r\X) + ¢ + 2 — rank dy",
kBl(r\X) + 1 —rank dg’l,

q=4k + 5,
q =4k + 4,
q =4k + 3,
q =4k + 2,
q=1.

For the first example of case (p), namely I' = SLy (O_,,,) with m = 2, the orbit space p\ X is
homotopy equivalent to a cylinder [19], so B'(r\X) = 1, B%(r\X) = 0 and dg’l = 0. From the
cell structure with stabilizers and identifications, we easily see that ¢ = 0 in this case.

The examples of Euclidean rings O_5, O_7 and O_1; have been checked in HAP [6] with the
cellular complex imported from Bianchi.gp |16]; and the example O_s additionally by a paper-
and-pencil calculation by the first author using classical methods. We also observe that these
three Euclidean examples are compatible with the homology with Steinberg coefficients calcu-

lated in [19] up to a minor typo present in the latter paper in the case O_s.

Example. (0 0 0). Let p\X; = OOO. Then v = 0 and x(r\Xs) = 0, yielding the Ey page

dimensions
q=4k+3 3 Br\X)+2+c BAr\X)+c
q=4k+2 1 BH(r\X) BA(r\X)
q=4k+1 3 Br\X)+2+c BAr\X)+c
= 4k 1 B (r\X) B*(r\X)
keNU{0} [n=0 n=1 n =2

Lemma |31| yields rankdg’2 = 0.
This case is realized for I' = SLg (O_,,) with

e m = 235. Then B! = ) = 13 and 2 = By = 12.

With the HAP implementation, we obtain

27, q>2,
14, ¢g=1.
e m = 427. Then 31 = B' = 21, B2 = 2 = 20 and the machine obtains
43, q > 2,
22, q=1.

dimp, H?(SL2 (O_235) ; F2) :{

dimF2 Hq(SL2 (0_427) N ]FQ) = {

In both cases, we infer that ¢ = 1 and we confirm rank dg’l = rank dg’?’ = 2 that we obtain from

Appendix [A] and Lemma
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Example. (0 0 0). Let p\Xy, = ©OO. Then v = 2 and x(r\Xs) = —1, yielding on the Fj
page the dimensions

q=4k+3 4 BYr\X)+c+3 BAr\X)+c

q =4k +2 4 AHr\X) +1 B2(r\X)

q=4k+1 4 Br\X)+e+1 Br\X)+c 1y
q =4k 1 BH(r\X) B2(r\X)

keNU{0} [n=0 n=1 n=2.

This case is realized for I' = SLy (O_,;,) with m = 37. Then
Bl = B; =8 and B2 = B, = 7. With the HAP implementa-

tion, we obtain

19, ¢ =4k + 5, ©)
19, q =4k +4, (13)
dim]F2 Hq(SLQ (0_37) ) Fg) = <20, q=4k+ 3,
20, q=4k+2, 3
11, g=1,

so we conclude that rank dg’l = rank dg’g =1 and that ¢ = 1.
To illustrate the difficulty in manually determining the co-
rank ¢, we print, in Figure [1| a fundamental domain for the
non-central 2—torsion subcomplex as a dashed graph contained
in the boundary of the Bianchi fundamental polyhedron for
the action of SLa (O_37) on X. In this figure, vertices labeled (1)
by Bianchi.gp with the same number are identified. However,
in order to preserve readability, only the vertices of the non-
central 2—torsion subcomplex are labeled; and identifications
of cells outside of it need to be taken into account for the Betti
number #; = 8.

Example. (0 t). Let p\Xs = Oes. Then v = 2 and
x(r\Xs) = 1. Using our calculations in the above ex-
amples, we obtain the following dimensions for the Ej*I-

page.

(10)’

3)
q=4k+3 3 BE\X)+c+2 BAHr\X)+e
q =4k +2 0 AHr\X) +1 B2 (r\X)
q=4k+1 1 BYr\X)+c+2 B(r\X)+ec (6)
q =4k 1 B r\X)e B (r\X)
keNU{0} [n=0 n=1 n=2

(14)
This case is realized for I' = SLy (O_,,) with (10)

6. ThenB!=p =2and 5% = By = 1. (12)

22. Then B' = 31 =5and B° = By = 4.
With the HAP implementation, we obtain

4, q=4k+5,
6, q=4k+4,
diIn]F2 Hq(SLQ (076) ; Fg) =47 q=4k+3,

q =4k + 2,
qg=1,

10, g =4k+5, FIGURE
12, =4k +4,

5
3
dimp, HY(SLy (O_g) ; Fy) = [13, = k43, 1. Fundamental

1)

main in th

11, g=4k+2, doma the
-~ case m = 37.

6, g¢g=1,

so we conclude that ¢ =0 and do = 0.
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9. COMPARISON WITH THE SECOND PAGE DIFFERENTIAL OF PSL

As the dg?’SL differential is not yet completely determined (we do not know a priori which
rank it has in odd degrees on components of type O), this section compares its rank with the
dimension over o of the 2—primary part of the image of the d%vo—differential of the homological
equivariant spectral sequence associated to PSLa(O_,,) on the cell complex X with integral
coefficients. We denote the latter dimension by D, and set I' := PSLy(O_,,) for this section. We
compute the dimension D numerically, using the following arguments. We use the cell structure
which is subdivided until each cell o is fixed point-wise by its stabilizer I',. The thquage of
this spectral sequence is concentrated as follows in the three columns p € {0, 1,2},

qg>1 2-torsion @ 3-torsion 2-torsion @ 3-torsion 0
qg=1 Farrell supplement 2-torsion @ 3-torsion 0

d3 0
q=0 VA Hi(r\X; 2) Ha(r\X; Z)

where the “Farrell supplement” is the cokernel of the map

@ Hy (Fzﬂ Z) & @ Hl(Fa; Z)

o €r\X(© oer\ XM

induced by inclusion of cell stabilizers. The Farrell supplement and H;(p\X; Z) have been
computed on a database of Bianchi groups [17].
For the cases in this database for which the origin of d%,o is nontrivial and its target contains

2-torsion, Aurel Page has computed the abelianization T'® = H;(T; Z), i.e. the commutator
factor subgroup, of I' = PSLs(O_,,). As the above spectral sequence converges to the group
homology of I' with integer coefficients, we obtain a short exact sequence

0 — Farrell supplement/ — PSLy(0_,,)% = Hi(p\X; Z) — 1;

image dg,o
and we deduce from it the image of d%,o in Appendix

Observation 37. e Within the scope of the database in Appendix [A] the dimension D
is at most the number of connected components of type O in the non-central 2-torsion
subcomplex quotient. It is clear from Hi(Ay4; Z) = 7Z/3 that the target of d3 has
no 2-torsion on the connected components of type e, and the same property follows
for connected components of type O—* by a lemma of [13] specifying the matrix block
induced in the dirdifferential by the inclusions into Dg. The connected components on
which our observation is backed only by the numerical results are the ones of type ©.

e In the scope of the table in the appendix, the dimension D agrees with the rank of the
dg’lfdifferential of the cohomological equivariant spectral sequence with Fo—coefficients
associated to SLa(O_,).
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APPENDIX A. NUMERICAL RESULTS

The program [11] computes a presentation of the Bianchi groups. Aurel Page has car-
ried this out and calculated the commutator factor groups (abelianizations) SLa (O_,,)*" and
PSL; (O_,,)*" in the cases that we need in order to deduce the image of d%,o in the way described
in Section [0]. The outcome of this procedure is included in the below tables. We denote by A
the discriminant of O_,,, i.e.

AT m = 3 mod 4,
"~ | —4m, otherwise.

and by [ the first Betti number of both PSLg (O_,,) and SLa (O_,). This Betti number has
been computed with the two independent programs [11] and [16] with identical results. We
provide the remaining torsion parts SLg (O,m)fzﬁs and PSLy (O,m)?o?s obtained with |11]. We
insert the quotient of a reduced non-central 2—torsion subcomplex from [15] and [16]:

Let o denote the number of connected components of homeomorphism type O, let ¢ the one
for e, 0 for © and p for O-. In the cases where the dévissage (extension problem between
the last page of the equivariant spectral sequence and group homology) of the 2-torsion part
of PSLs ((’)_m)Ab is trivial, using Corollary and Lemmata through we deduce the
rank of dg’l for the equivariant spectral sequence with Fo—coeflicients associated to the action of
SLo (O_,,) on X as the difference

rankg, d" = 0+ 20 + p + dimy, (Hom(Hy (1\X; Z)tors, F2)) — dimg, (Hom(SL2 (O_p)2P FQ)) .

tors ?

We can see that the dévissage of the 2-torsion part of PSLy (O_,,)" is trivial when

e cach summand Z/(2") of PSLy (O_,,)"" has r = 1,

e or when H;(pr\X;Z) admits no 2-torsion.
These two criteria allow us to apply the above formula to all cases in our database except for
m € {142,1227,1411,1555}. In those four cases, the situation is somewhat more complicated.

By Lemma we know furthermore that the rank of dg’l is the rank of dg’q in all odd degrees
g = 2k + 1 on components of type O.
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—A[m Jo[t]0]p]B1[PSL2(O_m)im, | imaged3 ((PSL) [ SLz (O—m)in, | ranke, dy'* (SL)
35 |35 |[1|0]|0]|0] 3 Z/3 Z/2 Z/3 1
40 |10 |0|0|1]0]| 3 (z/2)? Z/3 (z/2)? 0
47 |47 |1|0]0|0] 5 Z/2®Z/3 0 Z/A®Z/3 0
52 |13 |0|0|1]|0]| 3 (z/2)? 0 (z/2)? 0
55 |55 |1|0]0|0] 5 Z/2 Z/3 Z/4 0
56 |14 | 2|0]|0]|0]| 5 7/2@7/3 7/2 Z/207/3 1
68 |17 |0|1]1]|0] 5 (Z/2)? 2 Z/3 0 (z/2)2®Z/3 0
79 |79 [3]|0|0|0]| 6 (z/2)? 7)2 7)2®Z/4 1
8 |21 [3]|0|l0|0]| 7 (Z/2)? 2 Z/3 Z/207Z/3 (z/2)?oZ/3 1
87 |87 |1|0]|0]|0] 8 Z/27Z/3 0 Z/A® /3 0
8 |22 |[1|1]|0]|0]| 5 Z/2 Z/3 Z/2 0
91 |91 |[1]|0|0]|0]| 5 0 Z/2 0 1
95 |95 |[1|0]|0|0] 9 Z/287Z/3 0 Z/A®Z/3 0
103 |103|1|0|0|0] 7 Z/2 0 Z/4 0
104 |26 |0|O0|1|0] 8 (Z/2)? ®7/3 7/3 (z/2)?*7/3 0
111 [111 |1]0]|0|0] 10 729 7/3 0 Z/A® /3 0
115 115 |1 |0|0|0O]| 7 0 Z/2®17/3 0 1
116 |29 (0|01 |0| 9 (Z/)2)2®7/3 0 (z/2)*a7/3 0
119 119 |20 |0 |0 |11 Z/26Z/3 Z/2 Z/AZ/3 1
120 |30 |3]|0|0|0| 10 Z/2®Z/3 (Z/2)? & (2/3)? Z]2®Z/3 2
127 |127|1|/0|0|0O] 8 Z/2 0 Z/4 0
132 33 |3]2|0|0]|10]| (Z/2)?20Z/3 Z/2 ® (Z/3)? (z/2)27/3 1
136 |34 |2]|0]0|2]| 8 (z/2)? (Z/2)>®7Z/3 (z/2)? 2
143 | 143 |1 |0 |0 |0 |12 Z/27/3 Z/3 Z/ADTL/3 0
148 [ 37 |2|0|1|0] 8 (z/2)3 7]2 (z/2)3 1
151 [ 151 |1]0|0|0] 10 Z/2 0 Z/4 0
152 |38 |1|1|0|0]10 Z/26Z/3 0 Z]287/3 0
155 | 155 |1 0|0|0] 10 Z/3 72 Z/3 1
159 | 159 |1 /0|0 |0| 14 Z/267Z/3 0 Z/AZ/3 0
164 |41 |0 |1]|1|0]|12]| (Z/2)?2@Z/3 0 (z/2)?oZ/3 0
167 | 167 |1|/0|0|0]13 Z/2Z/3 0 Z/ADZ/3 0
168 |42 |3]0|0|0]13 Z/2®1Z/3 (z/2)? /3 Z/287Z/3 2
183 | 183 | 1|0 |0 |0 | 14 Z/2®7/3 0 Z/A®Z/3 0
184 |46 |2 |0|0|0] 11 Z/2 Z/2®Z/3 Z/2 1
191 191 |1|/0|0|0]15 Z/2®7/3 0 Z/A®Z/3 0
195 [ 195 20| 0|0 15 Z/3 (z/2)?e12/3 Z/3 2
199 |199 |1/0|0|0]13 Z/2 0 Z/4 0
203 203 |1|0|0]|0]12 Z/3 72 Z/3 1
212 |53 |[0|0|1]|0]| 14| (z/2)%?®2Z/3 0 (z/2)?>®7/3 0
215 | 2151 |0|0]| 0|18 Z/2®7/3 0 Z/A®Z/3 0
219 [219 |1 |2]0]|0] 13 Z/3 7/2 Z/3 1
223 223 [3|0[0]|0]15 Z/2 (Z/2)? Z/4 2
228 |57 [3|2|0]|0]|16]| (Z/2)%?9Z/3 7Z/207/3 (z/2)>®7/3 1
231 [231[2|0|0]0]21 Z/2®Z/3 728 7/3 Z/AB L3 1
232 |58 |0[0|1]|0]12 (z/2)? 7/3 (z/2)? 0
235 | 2353 |0|0]|0]13 Z/2 (z/2)?e2/3 Z/2 2
239 [ 239 |1|0|0]|o0]|18 Z/27Z/3 0 Z/ADZ/3 0
244 |61 [0|0|1]0]15 (z/2)? 0 (z./2)? 0
247 | 247 |1 |0] 0| 0| 14 7/2 0 Z/4 0
248 |62 |[2|0]0]| 0] 16 Z/2®Z/3 Z/2 Z/2®Z/3 1
255 | 255 |2 0|0]0]|23 Z/27Z/3 Z/2® (2/3)? Z/A®7Z/3 1
259 | 259 [ 1|0|0]|0]14 0 Z/2®Z/3 0 1
260 |65 | 1|0|2]|0]|20]| (z/2*®z/3 7Z/207/3 (z/2)*®7/3 1
263 | 263 | 1|0|0]|0]|18 Z/287Z/3 0 Z/A®Z/3 0
264 |66 | 2|2]|0]0]|20 Z/297/3 Z/2® (2/3)? Z/207/3 1
271 | 271 | 1|0 |0|0 |17 Z/2 0 Z/4 0
276 |69 | 3|0|0]|0|23| (Z/2)?e@Z/3 Z/207/3 (z/2)?®2/3 1
280 |70 [3|0]0]|0]19 Z/2 (Z/2)? & (2/3)? Z/2 2
287 | 287 | 2| 0|0]0|21 Z/297/3 7/2 Z/A®D7Z/3 1
291 [ 201 | 1|2|0]|0]|17 Z/267Z/3 0 Z]267/3 0
292 |73 |[0|1|1]|0]16 (Z/2)? Z/3 (Z/2)? 0
295 [ 295 | 1|0|0]0|19 Z/2 Z/3 Z/4 0
296 |74 |00 |1]|0|19| (Z/2)*®zZ/3 Z/3 (z/2)*®7/3 0
299 | 299 | 1[0|0]|0]|18 (7./3)? 7)2® (7./3)? (7./3)? 1
303 [ 303 |1]0|0]|0]|22 Z/2@7/3 0 Z/A®7/3 0
308 |77 | 3|0|0]|0]|23]| (z/2%?®Z/3 Z/2®7/3 (z/2)?aZ/3 1
311 [ 311 |1]|0]|0]|o0]|23 7/2®7/3 0 Z/A® )3 0
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A lm Jo|c|o]p] B PSL; (O—m)2b. image d2 ,(PSL) SLa (O—m)AP. rkdy"
312 | 78 3/o0flo]o0]|22 (z/2)?®Z/3 Z/267Z/3 (z/2)?®z/3 1
319 | 319 |[1]|0|0|0]|20 Z/2 Z/3 Z/4 0
323 |323 |[1]|2|0|0]|16 7/3 7/2 Z/3 1
327 |327 |[1]0]|0]|0]|24 Z/2®7/3 0 Z/AD7/3 0
328 | 82 1(1(1|0]17 (z/2)3 7/3 (z/2)3 0
335 |335 |[1]|0|0|0]|26 Z/2®7/3 0 Z/A7/3 0
340 | 85 0[0|2]0]|23 (Z/2)* (Z/3)? (z/2)* 0
344 | 86 111]0]|0]|21 (Z/2)2®7/3 0 (Z)2)2 ®7/3 0
355 |355 | 1][0|0|0]|20 0 Z/2®Z/3 0 1
356 | 89 0[1]1]0]24 (z/2)? ©7/3 0 (z/2)*2/3 0
359 |359 [ 3]|0|0|0]|25 (z/2)*oZ/3 Z/2 (z/2 dZ/4Z/3 1
367 | 367 |[1]0|0|0]|20 7/2 ® (Z/3)? Z/3 7/4® (Z/3)? 0
371 | 371 |[1]|0|0|0|22 Z/3 Z/2 Z/3 1
372 | 93 3/0{0]o0]27 (z/2)? ©7/3 Z/207/3 (z/2)*2/3 1
376 | 94 210[0]0]22 Z/2 Z/2®7/3 Z/2 1
383 | 383 |1]|0|0|0]|25 Z/2®7/3 0 Z/AD7/3 0
388 | 97 of1]1]0]21 (z/2)? Z/3 (Z/2)? 0
391 | 391 |[2]|0|0|0]|25 Z/2 Z/207/3 Z/4 1
395 395 |[1]0[0|0]|24 (Z/2)>7/3 7/2 (Z/2)? e Z/3 1
399 399 |[4]|0|0|0]|33 (zZ/2)? ©7/3 (z/2)?®2/3 Z/20Z/4DL)3 2
403 | 403 |[1]|0|0|0|19 0 Z/2 0 1
404 | 101 |2]|0|1]0|28 (z/2)% o 7/3 Z/2 (z/2)°e7/3 1
407 | 407 [ 1|00 |0|29 Z/2®7/3 Z/3 Z/ADZ/3 0
408 | 102 |2]2|0]0|27 Z/2 ® (Z/3)? Z/2® (Z/3)* 7/2® (Z/3)? 1
415 | 415 |1|0|0|0] 28 Z/2 Z/3 Z/4 0
420 | 105 | 8|0 |0 |0 41 (z/2)?®Z/3 (z/2)5 & (2/3)3 (z/2)?®z/3 6
424 | 106 |00 |1]0] 23 (z/2)* Z/3 (z/2)* 0
427 | 427 |3]|0|0 |0 |21 7/2 (Z./2)? 7/2 2
431 | 431 |1]|0|0]|0|29 (Z/2)*®7/3 0 Z)2®Z/ADZ/3 0
435 | 435 |2|0|0|0] 31 7/3 (z/2)? ® (z/3)° Z/3 2
436 | 109 0|0 |1|0|25 (z)2)* 0 (z./2)* 0
439 | 439 |5]|0|0]0| 26 (z/2)3 (z/2)? (z/2)?®z2/4 2
440 | 110 [3]0|0|0| 32 (Z/2)?>®7/3 Z]267/3 (Z)2)2®7/3 1
443 | 443 |1]|1|0 |0 |21 Z/2®Z/3 0 Z/2®7/3 0
447 | 447 |10 |0 |0 32 Z/207/3 0 Z/A®Z/3 0
452 | 113 |0 |1|1|0] 27 (z/2)*®Z/3 0 (z/2)*®z/3 0
455 | 455 |2]0|0|0 |39 (z/2)* o 7/3 Z/3 (Z/2° e 72/407/3 0
456 | 114 |22 |0]0] 32 (z/2)* ®Z/3 Z/2® (Z/3)3 (z/2)*®7/3 1
463 | 463 | 1]|0|0|0|23 Z/2 0 Z/4 0
471 | 471 |1]|0|0|0| 34 Z/2®Z/3 0 Z/A®Z/3 0
472 | 118 |1]1]|0|0| 25 (z/2)3 7/3 (z/2)3 0
479 | 479 |1]0|0]0] 33 Z/2® (Z/3)3 0 Z/A® (Z/3)3 0
483 | 483 | 2|0 /0|0 |33 Z/3 (z/2)? ©7/3 7/3 2
487 | 487 |1]|0|0|0| 24 Z/2 @ (Z/13)? 0 Z/4® (Z/13)? 0
488 | 122 |[0|O0|1|0| 28 (Z/2)*®7/3 7/3 (Z/2)* ®7/3 0
499 499 |2|1|0]0] 22 (z/2)? ® (2/3)? 0 (z/2)? @ (z/3)? 0
520 | 130 | 0|0 |2 |0 |32 (z/2)8 (z2/3)? (z/2)¢ 0
532 | 133 |3]|0|0]|0|33 (z/2)? Z/2 ® (Z/3)? (Z/2)? 1
555 | 555 | 2]0|0|0]|39 Z/3 (z/2)?®2/3 Z/3 2
568 [ 142 |6 |0| 0|0 29 (Z/2) ©Z/4 (z/2)3 o Z/3 (z/2) ®zZ/4
595 | 595 [ 2]0]|0]|0]37 Z/3 (Z/2)? @ (z2/3)° Z/3 2
667 | 667 | 1][0|0|0]|32 0 Z/2®Z/3 0 1
696 | 174 | 3|00 |0 |50 Z/2®7/3 (Z/2)%? @ (2/3)? Z/287/3 2
715 | 715 | 2|0|0|0]43 0 (z/2)? ® (z/3)? 0 2
723 | 723 | 1|2]0]|0]41 (Z/2)?>®7/3 7)2 (Z)2)2®7/3 1
760 | 190 |3 [0 |0 |0 |46 (Z/2)* Z/2 D (Z/3)? (z/2)* 1
763 | 763 | 1]|0|0|0|38 0 Z/2®7/3 0 1
795 | 795 | 2][0|0|0|55 Z/3 (z/2)? ® (2/3)? Z/3 2
955 | 955 | 1[0|0]|0]|50 (Z)2)* @ (Z2/3)? Z)2®7/3 (Z/2)* @ (2/3)? 1
1003 | 1003 | 1|2 |0 |0 | 48 7)2 @ (Z/3)? 7/3 Z/2 & (Z/3)? 0
1027 | 1027 | 1[0 |0 | 0| 48 (z/2)? ® (2/3)3 Z/2 (Z)2)* ® (2/3)3 1
1227 [ 1227 [ 1|2 | 0| 0| 69 Z/ABTZ/SDL)3 0 Z/ADZ/8DL/3
1243 | 1243 |1 [ 2 |0 | 0| 58 (z/3)* Z/287/3 (z/3)* 1
1387 | 1387 | 1|2 |0 |0 |62 | Z/2®(Z/3)%?® (Z/167)? 7/3 7/)2® (Z/3)% @ (Z/167)2 0
1411 | 1411 | 1|2 |0 | 0| 64 | Z/26 (Z/16) & (Z/43)? Z/3 Z)2 ® (Z/16)? @ (Z/43)?
1507 | 1507 | 1 |2 [0 |0 | 70 (Z/3)? @ (Z/5)* 7)2®17)3 (z/3)? @ (Z/5)* 1
1555 | 1555 [ 1 |0 |0 | 0 | 80 (z/4)8 ® (2/11)? Z]2®Z/3 (Z/0)8 @ (Z/11)?
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