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ETHAN BERKOVE AND ALEXANDER D. RAHM
(WITH AN APPENDIX BY AUREL PAGE)

Abstract. We extend the Torsion Sub-complex Reduction technique that has recently been
introduced in [11] to the case where the kernel of a group action is non-trivial. For this purpose,
we excise the non-central torsion sub-complex from the equivariant spectral sequence. This new
method of excision in equivariant cohomology is elaborated in a general setting in section 4 .
We demonstrate the power of the method by establishing general dimension formulae for the
second page of the equivariant spectral sequence of the action of the SL2 groups over imaginary
quadratic integers on their associated symmetric space in section 7 .

1. Introduction

The objects on which we demonstrate the power of this article’s refinement of Torsion Sub-
complex Reduction, are the Bianchi groups: SL2 over the ring of integers in an imaginary
quadratic number field. Also their central quotients PSL2, on which the technique under refine-
ment has originally been developed, are called Bianchi groups. Philosophically, the cohomology
of the Bianchi groups can be thought of as coming from two different places. Since the Bianchi
groups act on a 2-dimensional retract of hyperbolic 3-space H

3, the Bianchi groups have virtual
(co)homological dimension 2. Consequently, in dimensions 2 and below, many of the cohomology
classes in Bianchi groups come from the topology of the quotient space and are detected with
rational coefficients [14]. Above the virtual cohomological dimension, all cohomology classes are
torsion and originate from finite subgroups. In particular, one can use the equivariant spectral
sequence to determine the (co)homology of Bianchi groups.

Results of the second author made this precise. The article [9] introduced the ℓ-torsion
subcomplex and proved that the homology above dimension 2 of a Bianchi group is determined
by this sub-complex; in particular, that this homology is a direct sum over generic modules
associated to the homeomorphism types of connected components of the sub-complex.

In this work, we are going to show how to extend the results from the projective special
linear group to the linear group. We give general dimension formulae for the second page of
the equivariant spectral sequence with Z/2–coefficients of the action of the SL2 groups over
imaginary quadratic integers on their associated symmetric space in section 7 . The last piece of
information that we need in order to know the mod–2 cohomology of the SL2 Bianchi groups, is
the rank of the second page differential; and we explain in section 8 how to read it off from the
numerical data collected in the appendix.
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2. The non-central torsion sub-complex

In this section we recall the ℓ-torsion sub-complexes theory of [11] and compare it with the
non-central ℓ-torsion sub-complexes we are going to study.

We require any discrete group Γ under our study to be provided with a cell complex on which
it acts cellularly. Let X be a finite-dimensional cell complex with a cellular action of a discrete
group Γ, such that each cell stabilizer fixes its cell point-wise. Let ℓ be a prime number.
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Definition 1. The ℓ-torsion sub-complex of a Γ-cell complex X consists of all the cells of X
the stabilizers in Γ of which contain elements of order ℓ.

We further require that the fixed point set XG is acyclic for every non-trivial finite ℓ-subgroup
G of Γ. Then Brown’s proposition X.(7.2) [3] specializes as follows.

Proposition 2. There is an isomorphism between the ℓ-primary parts of the Farrell cohomology

of Γ and the Γ-equivariant Farrell cohomology of the ℓ-torsion sub-complex.

Definition 3. The non-central ℓ-torsion sub-complex of a Γ-cell complex X consists of all the
cells of X the stabilizers in Γ of which contain elements of order ℓ that are not in the center
of Γ.

This yields a correspondence between the non-central ℓ-torsion sub-complex for a group and

the ℓ-torsion sub-complex for its central quotient group.

We can reduce the ℓ-torsion sub-complex in a way that proposition 2 still holds.

Condition A. In the ℓ-torsion sub-complex, let σ be a cell of dimension n − 1, lying in the
boundary of precisely two n-cells τ1 and τ2, the latter cells representing two different orbits.
Assume further that no higher-dimensional cells of the ℓ-torsion sub-complex touch σ; and that
the n-cell stabilizers admit an isomorphism Γτ1

∼= Γτ2 .

Where this condition is fulfilled in the ℓ-torsion sub-complex, we merge the cells τ1 and τ2
along σ and do so for their entire orbits, if and only if they meet the following additional
condition. Here, we use Zassenhaus’s notion for a finite group to be ℓ-normal, if the center of
one of its Sylow ℓ-subgroups is the center of every Sylow ℓ-subgroup in which it is contained.

Condition B. The group Γσ admits a (possibly trivial) normal subgroup Tσ with trivial mod ℓ
homology and with quotient group Gσ; and the group Γτ1 admits a (possibly trivial) normal
subgroup Tτ with trivial mod ℓ homology and with quotient group Gτ making the sequences

1→ Tσ → Γσ → Gσ → 1 and 1→ Tτ → Γτ1 → Gτ → 1

exact and satisfying one of the following.

• Either Gτ
∼= Gσ ,

• or Gσ is ℓ-normal and Gτ
∼= NGσ(center(Sylowℓ(Gσ))),

• or both Gσ and Gτ are ℓ-normal and there is a (possibly trivial) group T with trivial
mod ℓ homology making the sequence

1→ T → NGσ(center(Sylowℓ(Gσ)))→ NGτ (center(Sylowℓ(Gτ )))→ 1

exact.

Here, we write NG for taking the normalizer in G; and Sylowℓ for picking an arbitrary Sylow
ℓ-subgroup. This is well defined because all Sylow ℓ-subgroups are conjugate.

By a “terminal vertex”, we will denote a vertex with no adjacent higher-dimensional cells and
precisely one adjacent edge in the quotient space, and by “cutting off” the latter edge, we will
mean that we remove the edge together with the terminal vertex from our cell complex.

Definition 4. The reduced ℓ-torsion sub-complex associated to a Γ-cell complex X is the cell
complex obtained by recursively merging orbit-wise all the pairs of cells satisfying conditions A
and B; and cutting off edges that admit a terminal vertex together with which they satisfy
condition B.

Using Swan’s extension [15, final corollary] to Farrell cohomology of the Second Theorem of
Grün [5, Satz 5], the following theorem has been proven in [11].

Theorem 5. There is an isomorphism between the ℓ-primary parts of the Farrell cohomology

of Γ and the Γ-equivariant Farrell cohomology of the reduced ℓ-torsion sub-complex.
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3. Spectral sequences and Central Extensions

Our calculations involve two spectral sequences. We use the Lyndon-Hochschild-Serre spectral
sequence to determine cohomology of groups via group extensions. We also use the equivari-
ant spectral sequence since many of the groups we consider act cellularly on low-dimensional
contractible complexes. We introduce both of them briefly in this section; more details can be
found in [1], [3], and [7].

For the development of the Lyndon-Hochschild-Serre spectral sequence we follow the approach
in [1]. Given a short exact sequence of groups

(1) 1→ H → Γ→ Γ/H → 1

there is an induced surjection of classifying spaces Bρ : BΓ −→ BΓ/H . The mapping cylinder
of Bρ is homotopy equivalent to BH . One can then apply the Leray-Serre spectral sequence
([7], Chapters 5 and 6) to the resulting fibration. The spectral sequence that emerges has

Ei,j
2
∼= Hi(Γ/H; Hj(H;M)) for untwisted coefficients M and converges to Hi+j(Γ;M). We note

that this spectral sequence can also be developed more algebraically, like in [3], VII.5.
In the short exact sequence of groups in equation 1, when the normal subgroup H is central in

Γ, it is possible to say more. These are central extensions, and in such cases Γ/H acts trivially
on the homotopy fiber BH . Then with field coefficients M , the E2-term of the resulting spectral
sequence has the form

Ei,j
2
∼= Hi(Γ/H;M) ⊗Hj(H;M).

Furthermore, Lemma IV.1.12 in [1], identifies a unique cohomology class k, called the k-invariant,
which generates the kernel of B∗

π : H2(Γ/H) → H2(Γ). The k-invariant is also the cohomology
class associated to the extension.

The Leray-Serre spectral sequence, of which the Lyndon-Hochschild-Serre spectral sequence is
just one example, has many useful properties. It is compatible with cup products, for example.
We will also use the fact that the action of the Steenrod algebra commutes with the differentials
in the spectral sequence. That is, for a cohomology class u on the Er page, dr(Sq

Iu) = SqIdr(u).
For the equivariant spectral sequence, we follow the development in [3, Chapter VII]. Let the

group Γ act cellularly on a space X in such a way that the stabilizer of a cell σ fixes the cell
pointwise. Consider the equivariant cohomology groups H∗(Γ, C•(X)) with coefficients in the
cochain complex C•(X). We define these groups by taking a projective resolution, F , of F2Γ
over F2, then setting H∗(Γ, C•(X)) = H∗(HomF2

(F,C•(X))). When X is a contractible space,
the equivariant cohomology groups can be identified with the cohomology of Γ, as

H∗(Γ, C•(X;F2)) ∼= H∗(Γ, C•(pt;F2)) ∼= H∗(Γ;F2).

Using the horizontal and vertical filtrations of the double complex HomF2
(F,C•(X)) we get a

spectral sequence with

Ei,j
1
∼= Hj(Γ, Ci(X;F2))

converging to H i+j(Γ;F2). Let Xi be a set of representatives of i-cells in X and let Γσ be the
stabilizer in Γ of a cell σ. Then

Ci(X) =
⊕

σ∈Xi

F2
∼=

⊕

σ∈ Γ\Xi

CoindΓΓσ
F2

Once we apply Shapiro’s Lemma and sum over the representatives of i-cells in Γ\Xi, the spectral
sequence takes the form

Ei,j
1
∼=

⊕

σ ∈ Γ\Xi

Hj(Γσ;F2).

The equivariant spectral sequence has a number of additional desirable properties that we
will use in the sequel.

(1) There is a product on the spectral sequence, Epq
r ⊗Est

r → Ep+s,q+t
r , which is compatible

with the standard cup product on H∗(Γ) ([3, VII.5])

(2) On the E2–page, the products in E0,∗
2 , the vertical edge, are compatible with the products

in
∏

σ∈Σ0
Hq(Γσ). ([3, X.4.5.vi]).
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(3) The differential d1 is a difference of restriction maps (cohomology analogon of [3, VII.8])

⊕

σ∈ Γ\Xi

Hj(Γσ;F2)
di,j
1−−−→

⊕

σ ∈Γ\Xi+1

Hj(Γσ;F2).

We remark that when Γ\X is a line segment or a single edge and vertex loop, then the spectral
sequence consists of only two columns and collapses at the E2 term to give a Wang sequence
where the appropriate map is the d1 differential. This observation allows for the straightforward
calculations for cohomology of amalgamated products and HNN extensions.

4. Excision in equivariant cohomology

Let Γ be a discrete group, ℓ be a prime number, n and q be integers. Let X be a cellular
Γ-complex on which the cell stabilizers fix their cells pointwise and the center Z of Γ acts trivially.

Definition 6. The non-central ℓ-torsion sub-complex of (X,Γ), which we denote by T , consists
of the cells admitting elements of order ℓ in their stabilizer which are not contained in Z.

Throughout this section, we exclusively consider the polynomial part of cohomology with
trivial Fℓ-coefficients; furthermore let us write Γσ for the stabilizer in Γ of a cell σ.

Hypothesis 7. We require that for any cell τ ∈ T , the inclusion Z →֒ Γτ into the cell
stabilizer of τ induces a monomorphism on the polynomial parts of the cohomology rings,
H∗

poly(Γτ ) →֒ H∗
poly(Z). Furthermore, for any cell σ ∈ X not in T , we require that the inclu-

sion Z →֒ Γσ induces an isomorphism H∗
poly(Γσ)→ H∗

poly(Z).

Denote by Γ\X
n a system of representatives of the n-cells of X under the action of Γ, and

analogously Γ\T
n. Consider the cokernel of the map of Γ-equivariant co-chain complexes

(2) 0→
⊕

τ∈Γ\Tn

Hq
poly(Γτ ) →֒

⊕

τ∈Γ\Tn

Hq
poly(Z)→ Cokernqn → 0.

Consider the below short exact sequence of co-chain complexes, where the involved polynomial
parts of cohomology groups have trivial mod ℓ coefficients:

(3)

...
...

...

0
⊕

σ∈Γ\X2

Hq
poly(Γσ)

⊕

σ∈Γ\X2

Hq
poly(Z) Cokernq2 0

0
⊕

σ∈Γ\X1

Hq
poly(Γσ)

⊕

σ∈Γ\X1

Hq
poly(Z) Cokernq1 0

0
⊕

σ∈Γ\X0

Hq
poly(Γσ)

⊕

σ∈Γ\X0

Hq
poly(Z) Cokernq0 0

0 0 0 0 0.

d2,q
1 δ2,q ∂2,q

d1,q
1 δ1,q ∂1,q

d0,q
1 δ0,q ∂0,q
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Here, the differentials δn,q are given by the topological co-boundary maps of the cell complex X,
and the maps ∂n,q are induced by the short exact sequence (2).

Applying the snake lemma, this yields the long exact sequence

. . .

poly(E2,q
2 (X,Γ)) poly(E2,q

2 (Γ\X,Z)) ker ∂2,q/image ∂1,q

poly(E1,q
2 (X,Γ)) poly(E1,q

2 (Γ\X,Z)) ker ∂1,q/image ∂0,q

0 poly(E0,q
2 (X,Γ)) poly(E0,q

2 (Γ\X,Z)) ker ∂0,q

Here, poly(En,q
2 (X,Γ)) is the polynomial part of the (n, q)-th term of the second page of the

spectral sequence converging to the Γ-equivariant cohomology of X and poly(En,q
2 (Γ\X,Z)) the

one for the trivial action of Z on Γ\X.

5. The input in the case of the Bianchi groups

The enumeration of the finite subgroups of SL2(C) is a classical result, and the list of finite
subgroups which appear in the Bianchi groups PSL2(Od) is also well known [14]: They are the
cyclic groups 1, Z/2 and Z/3, the Klein four group D2, the symmetric group on three letters
S3, and the alternating group on four letters A4. The preimages of these groups in SL2(Od) are
the cyclic groups Z/2, Z/4, Z/6, the quaternion group Q8 of order 8 the dicyclic group Di of
order 12, and the binary tetrahedral group Te of order 24.

We start by recalling some mod-2 cohomology rings. In what follows, F2 represents the field
of two elements.

Theorem 8. [1] The cohomology rings for finite subgroups of Bianchi groups are given below,

where a subscript denotes the degree of the generator.

H∗(Z/2)∼=H∗(S3) ∼= F2[x1]

H∗(Z/3)∼=H∗(1) ∼= F2

H∗(D2) ∼=F2[x1, y1]

H∗(A4) ∼=F2[u2, v3, w3]/(u
3
2 + v23 + w2

3 + v3w3)

We use the Lyndon-Hochschild-Serre spectral sequence to determine the cohomology rings of
the finite subgroups of SL2(Od). In particular, for each finite subgroup G of SL2(Od), there is
a corresponding finite subgroup Q of PSL2(Od) which fits into the central extension

1→ Z/2 −→ G −→ Q→ 1

where Z/2 is the subgroup of SL2(Od) containing {±I}. We note that all finite subgroups of
SL2(C) also sit inside SU(2) and act freely on it. Since SU(2) can be identified with the 3 sphere,
the cohomology rings for the finite subgroups of SL2(Od) are periodic of period dividing 4 [3].
In particular, the cohomology rings can all be expressed as a tensor product of a polynomial
ring on one generator with an exterior algebra.

Theorem 9. The following are the mod-2 cohomology rings of the finite subgroups of SL2(Od).

H∗(Z/4)∼=H∗(Di) ∼= F2[e2](b1)

H∗(Z/2)∼=H∗(Z/6) ∼= F2[e1]

H∗(Q8) ∼=F2[e4](x1, y1, x2, y2, x3)

H∗(Te) ∼=F2[e4](b3)
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Proof. The cohomology results for cyclic group results are straightforward, and the calculation
of the other cohomology rings (and a classification for all periodic groups) are contained in
[1]. However, we briefly review the derivations here as the descriptions will be useful when we
determine restriction maps.

The dicyclic group Di is a semidirect product and fits into the short exact sequence

1→ Z/3 −→ Z/3⋊ Z/4 −→ Z/4→ 1.

Since H∗(Z/3) has trivial mod-2 homology, in the Lyndon-Hochschild-Serre spectral sequence
the only non-trivial cohomology is occurs on the x-axis and is isomorphic to H∗(Z/4).

For Z/4, Q8 and Te, we again use the Lyndon-Hochschild-Serre spectral sequence for central
extensions. In the spectral sequence of the extension, let F2[e1] be the cohomology ring cor-
responding the central subgroup Z/2. On the E1 page of the spectral sequence, the image of
d1(e1) can be identified with the k-invariant. In addition, the Lyndon-Hochschild-Serre spectral
sequence is compatible with the Steenrod squaring operation, and so the Kudo transgression
theorem describes the images of d2n((e1)

2n).
We start with the calculation of H∗(Z/4). Let H∗(Z/2) ∼= F2[x1], and consider the spectral

sequence associated to the central extension. In this case, the k-invariant d1(e1) = x21, and in

particular d1(e1x
k
i ) = xk+2

i and d1(e
2
1) = 0. As the result, the spectral sequence collapses at

the E2 page with classes in even rows and in columns 0 and 1 only. The class e21 represents the

polynomial class in H2(Z/4), and the class in E0,1
2 is the one-dimensional exterior class.

We next calculate H∗(Q8). Since the extension is central, Ep,q
1
∼= Hp(D2) ⊗ Hq(Z/2), and

by ([1] Proposition 2.8), the k-invariant d1(e1) = x21 + x1y1 + y21 ∈ H∗(D2). On the E2 page,
this implies that all classes in odd dimensional rows vanish. Next, by the Kudo transgression
theorem,

d2
(

Sq1(e1)
)

= d2(e
2
1) = x21y1 + x1y

2
1 = Sq1(x21 + x1y1 + y21).

By careful accounting one can show that the classes that remain in E3 are in columns 0 through 3,
and that the spectral sequence has non-zero terms in rows congruent to 0 mod 4. Consequently,
all higher differentials vanish and E3

∼= E∞. The only classes left correspond to 1, x1, y1, x
2
1,

y21 , and x21y1 = x1y
2
1 and the product of these classes with powers of e41. The result follows.

Finally, we consider the calculation of H∗(Te), which proceeds in a similar manner as the
case for H∗(Q8), except now the quotient group is A4 and H∗(A4) ∼= F2[u2, v3, w3] /(u

3
2 + v23 +

w2
3 + v3w3). Briefly, d1(e1) = u2, and d2(e

2
1) = v3 = Sq1(u2) [2]. Once again, after a careful

check, the spectral sequence collapses at the E3 page and the only classes left correspond to 1,
w3 ∈ E3,0

3 , and the products of these classes with powers of e41. �

Given the following commuting diagram of groups,

Z/2 −−−−→ G1 −−−−→ Q1
∥

∥

∥





y

i2





y

i1

Z/2 −−−−→ G2 −−−−→ Q2

if one knows the induced map i∗1 : H∗(Q2) −→ H∗(Q1), it is possible to calculate the effect of
i∗2 : H∗(G2) −→ H∗(G1). The commutative diagram gives rise to two Lyndon-Hochschild-Serre
spectral sequences, one for each extension, and the two are compatible via the isomorphism on
the fiber. Specifically, the maps between the spectral sequences are given by i∗1 along the x-axis
and the identity along the y-axis. Once the spectral sequences converge, the result gives the
effect of the restriction map resG2

G1
= i∗2.
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Theorem 10. The following are the non-trivial restriction maps on cohomology generators for

finite subgroups of SL2(Od):

res
Z/4
Z/2(e2) = e21

resDi
Z/2(e2) = resDi

Z/6(e2) = e21

resQ8

Z/4(e4) = e22, res
Q8

Z/4(x1) = (b1)

resQ8

Z/2(e4) = e41
resTe

Z/6(e4) = resTe
Z/2(e4) = e41

resTe
Z/4(e4) = e22

In addition, res
Z/6
Z/2 and resDi

Z/4 are isomorphisms.

Proof. The isomorphism cases follow as Z/6 ∼= Z/2⊕ Z/3 and H∗(S3) ∼= H∗(Z/2). For the rest
of the restriction maps, we can prove the results concerning the polynomial classes using the
Lyndon-Hochschild-Serre spectral sequence calculation in cohomology associated to the central
extension

1→ Z/2 −→ G −→ Q→ 1.

In every calculation, the polynomial class of H∗(G) arises from the 0 column of the spectral
sequence, so it corresponds to some power of ek1 . The choice of k invariant of the extension
determines when d2n vanishes; at this point, e2n1 survives to E∞ and represents the polynomial
class in the abutment. The result follows since the map between spectral sequences on the fiber
(the y-axis) is the identity.

To calculate resQ8

Z/4(x1), recall that H∗(D2) = F2[s1, t1], and that if s1 and x1 ∈ H∗(Z/2)

represent the same group element in D2, then resD2

Z/2(s
j
1) = xj1 and resD2

Z/2(s
j
1t

k
1) = 0 when k > 0.

After the Lyndon-Hochschild-Serre spectral sequence is applied, resQ8

Z/4(s1) surjects onto the

stated class in H1(Z/4). We note that the other exterior classes of H∗(Q8) in dimensions 2 and
3 must restrict to 0, since from Theorem 9, the E2 page for the calculation of H∗(Z/4) is zero
from the second column and to the right.

Finally, we need to show that resTe
Z/4(b3) = 0. We recall from Theorem 9 that in the calculation

of H∗(Te), the exterior class b3 ∈ E3,0
∞ . However, in the calculation of H∗(Z/4), Ei,j

∞ = 0 and
i > 1. Therefore, the restriction map must send b3 to 0. �

Remark 11. We note that the restriction map is natural with respect to cup products, so
the results of Theorem 10 can be used to determine the effect of the restriction map on any
cohomology class. In particular, the only non-trivial restriction map on classes with exterior

components is resQ8

Z/4(e
i
4x1) = e2i2 b1. In addition, in the cohomology of the groups we consider,

only pure polynomial classes restrict non-trivially to pure polynomial classes.

We will use the cohomology and restriction information from finite groups to determine the
cohomology of the reduced non-central 2-torsion sub-complexes. The key observation is that
these sub-complexes correspond to groups which can be described as amalgamated products
and HNN extensions. We recall the definition of an HNN extension.

Definition 12. Let θ : G2 → G1 be a injection of G2 into G1. An HNN extension of G1 is a
group with presentation

G1∗G2
=< t,G1 | t

−1gt = θ(g), g ∈ G2 > .

The element t is often referred to as the free letter.

We note that the notation G1∗G2
is not completely descriptive, since there may be many

choices in G1 for (G2)
t.

Via Bass-Serre theory, it is known that amalgamated products and HNN extensions both act
on trees. In the amalgamated product G = G1 ∗H G2, there is an action where the fundamental
domain is given by two vertices with stabilizers G1 and G2, connected by an edge with stabilizer
H. In the HNN extension G = G1∗G2

, the fundamental domain is a single vertex with a loop
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where the vertex stabilizer is G1 and the edge stabilizer is G2. We can calculate the cohomology
of HNN extensions and amalgamated products using the next result.

Theorem 13. Let σ0 and σ1 be 0-cells and 1-cells in a fundamental domain, and let Gv and Ge

be the vertex and edge stabilizers respectively. Then there is a long exact sequence in cohomology

(4) · · ·
α
→

⊕

e∈σ1

H i−1(Ge)
δ
→ H i(G)

β
→

⊕

v∈σ0

H i(Gv)
α
→

⊕

e∈σ1

H i(Ge)
δ
→ · · ·

The direct sum is over one edge and two vertices if G is an amalgamated product, and over one

edge and one vertex if G is an HNN extension.

The following is another result from Bass-Serre theory.

Proposition 14. In the long exact sequence of Theorem 13, the map β is the restriction map.

In an amalgamated product, α = resG1

H − resG2

H . In an HNN extension, α = resG1

G2
− θ∗, where

θ∗ is the map induced by conjugating G2 by the free letter.

In fact, when the equivariant spectral sequence only has two non-zero columns, the E1 page
degenerates into a Wang sequence which is precisely the long exact sequence (4) in Theorem 13 .
Furthermore, the map α is the d1 differential. We note that although we are primarily inter-
ested in an additive calculation of the cohomology, the long exact sequence can also be used to
determine ring information, as ker(α) = im(β), and this is a ring isomorphism.

We will use the results above to determine the cohomology for the four observed non-central
reduced 2-torsion sub-complex types. These sub-complexes correspond to the four groups in the
following list, determined by the edge stabilizers, the vertex stabilizers, and the way the former
inject into the latter.

Type of group
Quotient of non-central

reduced 2-torsion sub-complex

(1) HNN extension Z/4∗Z/4
b

(2) Amalgamated product Te ∗Z/4 Te b b

(3) Double HNN extension
((

Q8 ∗Z/4 Q8

)

∗Z/4
)

∗Z/4 b

b

(4) Iterated construction (Q8∗Z/4) ∗Z/4 Te
b b

We will use the equivariant spectral sequence to carry out our cohomology calculations, where
we consider G acting on a tree with quotient spaces and stabilizers given by the sub-complexes in
the list. However, it is also possible to determine the cohomology using the long exact sequence 4.
We recall Remark 11 which states that in terms of restriction maps on cohomology, polynomial
classes and exterior classes only restrict to like classes. As a result, we are able in our calculations
to distinguish cohomology in the abutment of the spectral sequence which originates solely from
polynomial classes, which we denote by Hpoly, from cohomology classes which contains exterior
components, Hext.

(1) Lemma 15. Let G = Z/4∗Z/4. Then the polynomial and exterior components of H∗(G)
are:

Hq
ext(G) ∼= F2, q > 0; Hq

poly(G) ∼= F2, q ≥ 0

Proof. The non-central reduced 2-torsion sub-complex has shape
b
, with vertex and edge sta-

bilizers both isomorphic to Z/4. Using the restriction maps from Theorem 10 we set up the E1

and E2 pages of the equivariant spectral sequence for this HNN extension below. Classes on the
E2 page which arise from polynomial classes are boxed on the right side diagram.
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E1 page E2 page

4 F2 −→ F2

3 F2 −→ F2

2 F2 −→ F2

1 F2 −→ F2

0 F2 −→ F2

0 1

d1−→

4 F2 F2

3 F2 F2

2 F2 F2

1 F2 F2

0 F2 F2

0 1

The arrows in the spectral sequence are the d1 differentials given by d1 = res
Z/4
Z/4 − θ∗. Since

both maps have identical effects on H∗(Z/4), d1 = 0. The polynomial classes occur in the
even rows, and the exterior classes are in the odd rows. Passing to the abutment, there are
polynomial classes originating in all dimensions starting in dimension 0; exterior classes start in
dimension 1. �

(2) Lemma 16. Let G = Te ∗Z/4 Te. Then the polynomial and exterior components of H∗(G)
are:

Hq
ext(G) ∼=































0, q = 0

F2, q = 4k, k > 1;

0, q = 4k + 1;

F2, q = 4k + 2;

(F2)
2, q = 4k + 3

Hq
poly(G) ∼=



















F2, q = 4k;

0, q = 4k + 1;

0, q = 4k + 2;

F2, q = 4k + 3

Proof. The non-central reduced 2-torsion sub-complex has shape b b . Both vertex stabilizers
are isomorphic to Te, and the edge stabilizer is isomorphic to Z/4. Theorems 9 and 10 allow us
to build the E1 and E2 pages of the equivariant spectral sequence for this amalgamated product.
Both pages are below.

E1 page E2 page

6 0 −→ F2

5 0 −→ F2

4 (F2)
2 −→ F2

3 (F2)
2 −→ F2

2 0 −→ F2

1 0 −→ F2

0 (F2)
2 −→ F2

0 1

d1−→

6 F2

5 F2

4 F2

3 (F2)
2

F2

2 F2

1 F2

0 F2

0 1

On the E1 page, the polynomial classes appear in rows 4k in the zeroth column and 4k + 2 in
the first column, and the only non-zero restriction maps are the ones between these classes. �

(3) Lemma 17. Let G =
((

Q8 ∗Z/4 Q8

)

∗Z/4
)

∗Z/4. Then the polynomial and exterior compo-
nents of H∗(G) are:

Hq
ext(G) ∼=































0, q = 0

(F2)
3, q = 4k, k > 1;

(F2)
2, q = 4k + 1;

(F2)
5, q = 4k + 2;

(F2)
2, q = 4k + 3

Hq
poly(G) ∼=



















F2, q = 4k;

(F2)
2, q = 4k + 1;

0, q = 4k + 2;

(F2)
3, q = 4k + 3

Proof. The non-central reduced 2-torsion sub-complex has shape b

b

. The two vertex stabilizers
are isomorphic to Q8, and the three edge stabilizers are all isomorphic to Z/4. Therefore, the E1

page of the spectral sequence has two copies of H∗(Q8) in column 0 and three copies of H∗(Z/4)
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in column 1. Our main concern is to determine the action of the d1 differential from E0,1
1 to

E1,1
1 .

By Theorem 10, we know that in dimension 1, a non-zero restriction resQ8

Z/4 can be traced back

to a non-zero restriction resD2

Z/2
. In cohomology, let b11, b12, and b13 denote the exterior classes in

⊕3H
1(Z/4) corresponding to the three edge stabilizers, and let x11, y11, x12, y12 be the exterior

classes in H1(Q8) ⊕H1(Q8) corresponding to the two vertex stabilizers. Further, assume that
x11 and x12 both restrict isomorphically to b11 via the correspondence from Theorem 10, and
that y11 and y12 both restrict isomorphically to b12. In D2, the product of any two non-zero
elements is the final non-zero element. Therefore, in cohomology, x11, y11, x12 and y12 all restrict
to b13. That is,

d0,11 (x11) = b11 + b13
d0,11 (y11) = b12 + b13
d0,11 (x12) = b11 + b13
d0,11 (y12) = b12 + b13.

So d0,11 has rank 2. The only other non-zero differential is between polynomial classes in rows 4k.
Let e41 and e42 be the polynomial generators of H4(Q8) ⊕H4(Q8), and let e221, e

2
22, e

2
23 be the

squares of the two-dimensional polynomial generators in ⊕3H
4(Z/4). Based on the geometry of

the sub-complex, we have

d1(e41) = d1(e42) = e221 + e222 + e223.

This implies that both the kernel and image of d1 are 1-dimensional. We can now completely
determine the E1 and E2 pages of the equivariant spectral sequence.

E1 page E2 page

6 (F2)
4 −→ (F2)

3

5 (F2)
4 −→ (F2)

3

4 (F2)
2 −→ (F2)

3

3 (F2)
2 −→ (F2)

3

2 (F2)
4 −→ (F2)

3

1 (F2)
4 −→ (F2)

3

0 (F2)
2 −→ (F2)

3

0 1

d1−→

6 (F2)
4 (F2)

3

5 (F2)
2

F2

4 F2 (F2)
2

3 (F2)
2 (F2)

3

2 (F2)
4 (F2)

3

1 (F2)
2

F2

0 F2 (F2)
2

0 1

�

(4) Lemma 18. Let G = (Q8∗Z/4) ∗ Te. Then the polynomial and exterior components of
H∗(G) are:

Hq
ext(G) ∼=































0 q = 0

(F2)
2, q = 4k, k > 1;

F2, q = 4k + 1;

(F2)
3, q = 4k + 2;

(F2)
2, q = 4k + 3;

Hq
poly(G) ∼=



















F2, q = 4k;

F2, q = 4k + 1;

0, q = 4k + 2;

(F2)
2, q = 4k + 3

Proof. The non-central reduced 2-torsion sub-complex has shape
b b

. The vertex stabilizer
incident to the loop is isomorphic to Q8. The other vertex stabilizer is isomorphic to Te, and
the two edge stabilizers are isomorphic to Z/4. This is the most complicated case, since the
fundamental domain for G consists of two vertices and two edges, and the restriction maps
arising from the edges have to be taken into account.

We follow the approach used for a similar mod-2 calculation in Lemma 3.1 of [2]. We start
with an analysis of the component of d1 : H

∗(Q8)→ H∗(Z/4) where the Z/4 is the stabilizer of
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the loop. Referring back to the long exact sequence given in Equation 4, this component of d1 is

the difference resQ8

Z/4−θ∗, where the restriction map is induced by subgroup injection on one side

of the loop and by the twisting from the HNN extension on the other. We tweak the notation
for classes from Theorem 9 by denoting by b11 ∈ H1(Z/4) the class in the loop stabilizer and
b12 ∈ H1(Z/4) the class from the edge stabilizer. (We use the same convention for polynomial
classes.) Recalling the mod-2 calculation referenced above we have

resQ8

Z/4(x1) = b11, but resQ8

Z/4(y1) = 0.

That is, the restriction only detects the subgroup on one side of the HNN extension. The map
on cohomology induced by θ, on the other hand, detects the subgroup on both sides.

θ∗(x1) = θ∗(y1) = b11.

Consequently, the component of d1 mapping to the loop sends x1 to 0 and y1 to b11. In addition,

as resQ8

Z/4(e4) = θ∗(e4) = e221, the same component of d1 sends e4 to 0. The map resQ8

Z/4 to

the unlooped edge with Z/4 stabilizer is given by Theorem 10, although we need to determine
whether the exterior class with a non-trivial restriction is x1, y1, or x1 + y1. In fact, a basis for

H∗(Q8) can be chosen so that resQ8

Z/4 sends x1 to 0 and y1 to b12. Summarizing,

resQ8

Z/4⊕Z/4(y1) = b11 + b12

resQ8

Z/4⊕Z/4(e4) = e222

and all other classes are sent to 0. The rest of d1 is given by the restriction map resTe
Z/4, and

this map is non-trivial only on the polynomial class. We have now completely determined the
d1 differential, so we can write down the E1 and E2 pages.

E1 page E2 page

6 (F2)
2 −→ (F2)

2

5 (F2)
2 −→ (F2)

2

4 (F2)
2 −→ (F2)

2

3 (F2)
2 −→ (F2)

2

2 (F2)
2 −→ (F2)

2

1 (F2)
2 −→ (F2)

2

0 (F2)
2 −→ (F2)

2

0 1

d1−→

6 (F2)
2 (F2)

2

5 F2 F2

4 F2 F2

3 (F2)
2 (F2)

2

2 (F2)
2 (F2)

2

1 F2 F2

0 F2 F2

0 1

�

6. Splitting the exterior components of the cohomology of Bianchi groups

Now, we decompose the exterior part of the cohomology of SL2(Od).

Theorem 19. The exterior components of the four cohomology rings from Section 5 appear as

summands in H∗(SL2(Od)) with the same multiplicity as their corresponding components in the

quotient of the non-central 2-torsion sub-complex.

Proof. An argument in Section 6 of [11] explains why the mod-2 cohomology of PSL2(Od)
splits into a direct sum above the virtual cohomological dimension. The argument references the
calculations in [2], and notes that classes that arise in one component of the 2-torsion subcomplex
do not restrict to subgroups in others. This implies that products between classes that come
from distinct components multiply trivially in cohomology.

We need to extend this result from the projective special linear group to the linear group.
In other words, we need to make sure that the result is compatible with the central extension
of PSL2(Od) by Z/2. This follows by an analysis of the 2-torsion sub-complex. We note first
that all edge fusions which happen during the construction of the subcomplex remove a vertex
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with stabilizer Z/2 or S3. The adjacent edges which are fused both have stabilizer Z/2. Since
H∗(S3) ∼= H∗(Z/2) and this is an isomorphism of rings, the mod-2 cohomology of the component
corresponding to the 2-torsion subcomplex is ring- isomorphic to the mod-2 cohomology coming
from the original component.

Since the central Z/2 acts trivially on the retracted cell complex, the non-central 2-torsion
subcomplex for SL2(Od) is identical to the 2-torsion subcomplex for PSL2(Od). The stabi-
lizers for SL2(Od) are the Z/2 extensions of the stabilizers of PSL2(Od). In particular, at
vertices where there was an edge fusion in the 2-torsion subcomplex in the PSL2(Od) case,
there will also be an edge fusion in the non-central 2-torsion subcomplex in the SL2(Od) case,
since H∗(Di) ∼= H∗(Z/4). In addition, these are isomorphic as rings. Therefore, the non-central
2-torsion subcomplex can be reduced as in the PSL2(Od) case presented in [9]. �

7. Application of the technique to the Bianchi groups at the prime 2

We make use of a tessellation X := H of hyperbolic three-space by a Bianchi group
Γ := SL2 (O−m) in which each cell stabilizer fixes its cell pointwise. We are going to apply the
method of section 4 in order to obtain the following dimension formula at the prime number
ℓ = 2. Our main result is the following.

Theorem 20. The polynomial part of the En,q
2 –page of the equivariant spectral sequence with

F2–coefficients associated to the action of Γ on H is concentrated in the columns n ∈ {0, 1, 2}
with the following dimensions over F2.

q = 4k 1 β1(Γ\H) β2(Γ\H)
q = 4k + 3 0 β0(Γ\T )− 1 + β1(Γ\H)− β1(Γ\T ) β2(Γ\H)
q = 4k + 2 1− sign(v) β1(Γ\H) + v − sign(v) β2(Γ\H)
q = 4k + 1 0 β0(Γ\T )− 1 + β1(Γ\H)− β1(Γ\T ) β2(Γ\H)

n = 0 n = 1 n = 2

Here, βi stands for the i–th Betti number of the orbit space in question; and v denotes the number

of conjugacy classes of subgroups of quaternionic type Q8 in SL2 (O−m), never mind if they are

contained in a binary tetrahedral group.

Note that there is a formula for v in terms of the prime divisors of the discriminant of the ring
O−m of integers [6]. Also, recall that for O−m not the Gaussian or Eisensteinian integers, the
naive Euler characteristic β0(Γ\H)− β1(Γ\H) + β2(Γ\H) vanishes, so β2(Γ\H) = β1(Γ\H)− 1.

Proof in odd degrees q. We note that since T is non-central, it admits no cell stabilizers of type
Z/2, so by Theorem 9, no cell stabilizer of T admits polynomial classes in odd degrees q of
its cohomology ring. Then for q odd, the short exact sequence (2) becomes an isomorphism of
cochain complexes

0→ 0→
⊕

τ∈Γ\Tn

Hq
poly(Z/2)→ Cokernqn → 0,

which makes the short exact sequence (3) become

0→
⊕

σ∈Γ\Hn

Hq
poly(Γσ)→

⊕

σ∈Γ\Hn

Hq
poly(Z/2)→

⊕

σ∈Γ\Tn

Hq
poly(Z/2)→ 0.

From this, the snake lemma provides us the following long exact sequence, which is concentrated
as specified because of the cohomological dimensions of the orbit spaces.

poly(E2,q
2 (H,Γ)) H2(Γ\H; F2) 0 . . .

poly(E1,q
2 (H,Γ)) H1(Γ\H; F2) H1(Γ\T ; F2)

0 poly(E0,q
2 (H,Γ)) H0(Γ\H; F2) H0(Γ\T ; F2)
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Since T ⊂ H, we immediately see that there is a natural inclusion H0(Γ\H; F2) →֒ H0(Γ\T ; F2)

yielding poly(E0,q
2 (H,Γ)) = 0.

Furthermore, since rotation axes can be quotiented into loops only by infinite-order-elements
of the Bianchi groups, there can be no facets of the Bianchi fundamental polyhedron filling in
such a loop. Thus, every loop in Γ\T comes from a loop in Γ\H; and we have a surjection
H1(Γ\H; F2) ։ H1(Γ\T ; F2). For this reason, we can conclude that

poly(E2,q
2 (H,Γ)) ∼= H2(Γ\H; F2);

and we read off the claimed formula for the dimension of poly(E1,q
2 (H,Γ)) from the remaining

terms of the long exact sequence. �

Proof in degrees q = 4k. By Theorem 10, there is an isomorphism H4k
poly(Γτ ) ∼= H4k

poly(Z/2) for

all τ ∈ T , so Cokern4kn = 0 for all n; and the short exact sequence (3) reduces to an isomorphism
of cochain complexes

0→
⊕

σ∈Γ\Hn

H4k
poly(Γσ)→

⊕

σ∈Γ\Hn

H4k
poly(Z/2)→ 0→ 0.

Taking the homology of the cochain complexes yields an isomorphism

poly(En,4k
2 (H,Γ)) ∼= Hn(Γ\H).

�

Proof in degrees q = 4k + 2. Consider the reduced non-central 2–torsion sub-complex T of a

Bianchi group SL2 (O−m). We split T into the union U of connected components of type
b
and

the remaining graph W without connected components of type
b
. Denote by e, respectively

v, the number of edges, respectively vertices, of W . Then we observe

⊕

τ∈Γ\W 0

H4k+2
poly (Γτ ) = 0 and

⊕

τ∈Γ\W 1

H4k+2
poly (Γτ ) ∼= (F2)

e;

whilst we find an isomorphism H4k+2
poly (Γτ ) ∼= H4k+2

poly (Z/4) ∼= H4k+2
poly (Z/2) for all τ in U . Then in

degrees q = 4k + 2, the short exact sequence (2) of Γ-equivariant co-chain complexes becomes
concentrated in the two rows n = 0 and n = 1; reading as follows.

0
⊕

τ∈Γ\U1

H4k+2
poly (Z/2)⊕ (F2)

e
⊕

τ∈Γ\U1

H4k+2
poly (Z/2)⊕ (F2)

e 0 0

0
⊕

τ∈Γ\U0

H4k+2
poly (Z/2)⊕ 0

⊕

τ∈Γ\U0

H4k+2
poly (Z/2)⊕ (F2)

v Cokern4k+2
0 0,

δ0,4k+2|
Γ\T ∂0,4k+2

id⊕ 0 0⊕ id

so we have Cokern4k+2
0

∼= (F2)
v and Cokern4k+2

1 = 0.
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Therefore, the short exact sequence (3) becomes

0 0 0

0
⊕

σ∈Γ\H2

F2
⊕

σ∈Γ\H2

F2 0 0

0
⊕

σ∈Γ\H1

H4k+2
poly (Γσ)

⊕

σ∈Γ\H1

F2 0 0

0
⊕

σ∈Γ\H0

H4k+2
poly (Γσ)

⊕

σ∈Γ\H0

F2 (F2)
v 0

0 0 0 0 0.

d2,4k+2

1 δ2,4k+2 ∂2,4k+2

d1,4k+2

1 δ1,4k+2 ∂1,4k+2

d0,4k+2

1 δ0,4k+2 ∂0,4k+2

Applying the snake lemma, this yields the long exact sequence with non-trivial first connect-
ing map

poly(E2,4k+2
2 (H,Γ)) H2(Γ\H) 0 . . .

poly(E1,4k+2
2 (H,Γ)) H1(Γ\H) 0

0 poly(E0,4k+2
2 (H,Γ)) F2 (F2)

v

So,

poly(E2,4k+2
2 (H,Γ)) ∼= H2(Γ\H).

As ∂0,4k+2 is the zero map, the isomorphism
⊕

τ∈Γ\W 0

H4k+2
poly (Z/2)→ Cokern4k+2

0

induces for W 6= ∅ an inclusion of the kernel of δ0,4k+2 into ker ∂0,4k+2 ∼= (F2)
v by composi-

tion with the restriction map given by the connected component inclusion W ⊂ H. Hence,

poly(E0,4k+2
2 (H,Γ)) = (F2)

1−sign(v), where we use the fact that sign(v) takes the same value as
the indicator function of {W 6= ∅}. Therefore, the first connecting map is of rank v − sign(v).
So to yield

dimF2
poly(E1,4k+2

2 (H,Γ)) = β1(Γ\H) + v − sign(v).

�

Note that a matrix for the map δ0,4k+2|
Γ\T is given by the matrix block

(

1 1 1
1 1 1

)

on the connected

components of type b

b

; by the matrix block
(

0 1
0 1

)

on the connected components of type
b b

and by the zero block on Γ\U
0. However, note that we do not need this explicit form of the

map.
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7.1. Example. m = 2, Γ\T =
b b

. For Γ = SL2 (O−m) with m = 2, the orbit space Γ\H is
homotopy equivalent to a cylinder, so we obtain the following polynomial part of the E2–page
for the equivariant spectral sequence of (H,Γ).

4 H0(Γ\H) H1(Γ\H)
3 0 0
2 0 F2 ⊕ F2

1 0 0
0 H0(Γ\H) H1(Γ\H)

0 1

Adding the exterior classes

exterior(Totq(E
n,∗
2 (H,Γ))) ∼= exterior(Totq(E

n,∗
2 (T,Γ))) ∼=































0 q = 0

(F2)
2, q = 4k, k > 1;

F2, q = 4k + 1;

(F2)
3, q = 4k + 2;

(F2)
2, q = 4k + 3;

in the columns n = 0 and n = 1, we obtain the E2-page of (H,Γ) concentrated in these two
columns. This allows us to conclude that

Hq(SL2 (O−2) ; F2) ∼=







































(F2)
2, q = 5,

(F2)
3, q = 4,

(F2)
4, q = 3,

(F2)
3, q = 2,

(F2)
2, q = 1,

F2, q = 0.

7.2. Example. Let Γ = SL2 (O−m) with m = 7. Then Γ\T =
b
. Making use of the fact

that in our case the quotient space Γ\H is homotopy equivalent to a Möbius strip, the above
theorems and considerations yield

poly(En,q
2 (H,Γ)) ∼=

{

F2, q even and n = 0 or 1,

0, otherwise.

Adding the exterior classes, that are concentrated in the columns n = 0 and n = 1 and subject
to the module types

exterior(En,q
2 (H,Γ)) ∼= exterior(En,q

2 (T,Γ)) ∼=

{

F2, q odd,

0, q even,

we obtain the E2-page of (H,Γ) concentrated in these two columns with En,q
2 (H,Γ) ∼= F2 for

all q. This allows us to conclude that

Hq(SL2 (O−7) ; F2) ∼=

{

(F2)
2, q > 0,

F2, q = 0.

7.3. Example. Let Γ = SL2 (O−m) with m = 11. Then Γ\T = b b . Making use of the fact
that in our case the quotient space Γ\H is homotopy equivalent to a Möbius strip, the latter
poly(En,q

2 (H,Γ))–page becomes

q = 4k F2 F2 0
q = 4k + 3 0 F2 0
q = 4k + 2 0 F2 ⊕ F2 0
q = 4k + 1 0 F2 0

n = 0 n = 1 n = 2
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Adding the exterior classes Hq
ext(

b b ) ∼=































0, q = 0

F2, q = 4k, k > 1;

0, q = 4k + 1;

F2, q = 4k + 2;

(F2)
2, q = 4k + 3,

we obtain

Hq(SL2 (O−11) ; F2) ∼=































(F2)
3, q = 4k + 4,

(F2)
4, q = 4k + 3,

(F2)
2, q = 4k + 2,

F2, q = 4k + 1,

F2, q = 0.

The last three examples have been checked in HAP [4] with the cellular complex imported from
Bianchi.gp [12]; and the example m = 2 additionally by a paper-and-pencil calculation by the
first author using classical methods. We also observe that our last three examples are compatible
with the homology with Steinberg coefficients calculated in [14] up to a minor typo that has
infiltrated the case m = 2 of the publisher’s version probably during the manual re-typesetting
process of the era.

7.4. Example. Consider a Bianchi group Γ = SL2 (O−m) with sign(v) = 1. Then the polyno-
mial part of the En,q

∞ –page of the equivariant spectral sequence with F2–coefficients associated to
the action of Γ on H is concentrated in the columns n ∈ {0, 1, 2} with the following dimensions
over F2.

q = 4k + 4 1− rank(d2) β1(Γ\H) β2(Γ\H)
q = 4k + 3 0 β0(Γ\T )− 1 + β1(Γ\H)− β1(Γ\T ) β2(Γ\H)− rank(d2)
q = 4k + 2 0 β1(Γ\H) + v − 1 β2(Γ\H)
q = 4k + 1 0 β0(Γ\T )− 1 + β1(Γ\H)− β1(Γ\T ) β2(Γ\H)
q = 0 1 β1(Γ\H) β2(Γ\H)

n = 0 n = 1 n = 2

This yields

dimF2
Hq

poly(Γ; F2) ∼=































− rank(d2) + β0(Γ\T ) + β1(Γ\H)− β1(Γ\T ) + β2(Γ\H), q = 4k + 4,

β1(Γ\H) + v − 1 + β2(Γ\H), q = 4k + 3,

β0(Γ\T )− 1 + β1(Γ\H)− β1(Γ\T ) + β2(Γ\H), q = 4k + 2,

β1(Γ\H) + β2(Γ\H)− rank(d2), q = 4k + 1,

β1(Γ\H), q = 1.

More specifically, let Γ\T = b b . Then adding the exterior classes we obtain

dimF2
Hq(Γ; F2) ∼=































2− rank(d2) + β1(Γ\H) + β2(Γ\H), q = 4k + 4,

3 + β1(Γ\H) + β2(Γ\H), q = 4k + 3,

1 + β1(Γ\H) + β2(Γ\H), q = 4k + 2,

β1(Γ\H) + β2(Γ\H)− rank(d2), q = 4k + 1,

β1(Γ\H), q = 1.

The type Γ\T = b b is taken for Γ = SL2 (O−m) with m ∈ {19, 43, 67, 163}. In these cases, we
can let HAP run, producing the results

dimF2
Hq(SL2 (O−m) ; F2) ∼=































2 + β1(Γ\H) + β2(Γ\H), q = 4k + 4,

3 + β1(Γ\H) + β2(Γ\H), q = 4k + 3,

1 + β1(Γ\H) + β2(Γ\H), q = 4k + 2,

β1(Γ\H) + β2(Γ\H), q = 4k + 1,

β1(Γ\H), q = 1,
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where the Betti numbers are
m 19 43 67 163

β1(Γ\H) 1 2 3 7
β2(Γ\H) 0 1 2 6.

Compatibility with our theoretical result is reached for rank(d0,4k2 ) = 0.

8. The second page differential

The last piece of information that we need is the second page differential of the spectral
sequence. For this purpose, we compute the d2–differential of the equivariant homology spectral
sequence associated to the action of Γ := PSL2(O−m) on hyperbolic 3–space H with integral
coefficients. We use the cell structure which is subdivided until each cells σ is fixed pointwise by
its stabilizer Γσ. The E2

p,q–page of this spectral sequence is concentrated as follows in the three
columns p ∈ {0, 1, 2}.

q > 1 2-torsion⊕ 3-torsion 2-torsion⊕ 3-torsion 0

q = 1 Farrell supplement 2-torsion⊕ 3-torsion 0

q = 0 Z H1(Γ\H; Z) H2(Γ\H; Z)

d2
2,0

llY
Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

where the “Farrell supplement” is the cokernel of the map

⊕

σ ∈ Γ\H0

H1(Γσ;Z)
d11,1
←−−−

⊕

σ∈ Γ\H1

H1(Γσ ;Z).

induced by inclusion of cell stabilizers. The Farrell supplement and H1(Γ\H; Z) have been
computed on a database of Bianchi groups [13].

For the cases in this database for which the origin of d22,0 is non-trivial and its target contains

2–torsion, Aurel Page has computed the Abelianization Γab ∼= H1(Γ; Z), i.e. the commutator
factor subgroup, of Γ = PSL2(O−m). As the above spectral sequence converges to the group
homology of Γ with integer coefficients, we obtain a short exact sequence

0→ Farrell supplement/image d2
2,0
→ PSL2(O−m)ab → H1(Γ\H; Z)→ 1;

and we deduce the image of d22,0 from it in the appendix.

Observation 21. Within the scope of the database, the dimension over F2 of the 2–primary
part of the image of the d22,0–differential is at most the number of connected components of

type
b
in the 2–torsion subcomplex quotient. It is clear from H1(A4; Z) ∼= Z/3 that the

target of d22,0 has no 2–torsion on the connected components of type b b ; and the same property

follows for connected components of type
b b

by a lemma in [9] specifying the matrix block
induced in the d11,1–differential by the inclusions into D2. The connected components on which

our observation is backed only by the numerical results, are the ones of type b

b

.

Appendix A. Numerical results

The program [8] computes a presentation of the Bianchi groups. Aurel Page has carried this
out and calculated the commutator factor groups (Abelianizations) in the cases that we needed
for the deduction of the image of d22,0 described in section 8 and that we have achieved in the

below tables. We insert the quotient of the reduced non-central 2–torsion sub-complex from [11]

and [12]: Let A denote the number of connected components of homeomorphism type
b
, let
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B the one for b b , C for b

b

and D for
b b

.

−discriminant m PSL2 (O−m)ab SL2 (O−m)ab image d22,0 A B C D

35 35 3 ∗ Z⊕ Z/3 3 ∗ Z⊕ Z/3 Z/2 1 0 0 0
40 10 3 ∗ Z⊕ 2 ∗ Z/2 3 ∗ Z⊕ 2 ∗ Z/2 Z/3 0 0 1 0
47 47 5 ∗ Z⊕ Z/2⊕ Z/3 5 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
52 13 3 ∗ Z⊕ 2 ∗ Z/2 3 ∗ Z⊕ 2 ∗ Z/2 0 0 0 1 0
55 55 5 ∗ Z⊕ Z/2 5 ∗ Z⊕ Z/4 Z/3 1 0 0 0
56 14 5 ∗ Z⊕ Z/2⊕ Z/3 5 ∗ Z⊕ Z/2 ⊕ Z/3 Z/2 1 1 0 0
68 17 5 ∗ Z⊕ 2 ∗ Z/2⊕ Z/3 5 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 0 0 1 1 0

79 79 6 ∗ Z⊕ 2 ∗ Z/2 6 ∗ Z⊕ Z/2 ⊕ Z/4 Z/2 3 0 0 0
84 21 7 ∗ Z⊕ 2 ∗ Z/2⊕ Z/3 7 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2⊕ Z/3 3 0 0 0
87 87 8 ∗ Z⊕ Z/2⊕ Z/3 8 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
88 22 5 ∗ Z⊕ Z/2 5 ∗ Z⊕ Z/2 Z/3 1 1 0 0
91 91 5 ∗ Z 5 ∗ Z Z/2 1 0 0 0
95 95 9 ∗ Z⊕ Z/2⊕ Z/3 9 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
103 103 7 ∗ Z⊕ Z/2 7 ∗ Z⊕ Z/4 0 1 0 0 0
104 26 8 ∗ Z⊕ 2 ∗ Z/2⊕ Z/3 8 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/3 0 0 1 0
111 111 10 ∗ Z⊕ Z/2 ⊕ Z/3 10 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
115 115 7 ∗ Z 7 ∗ Z Z/2⊕ Z/3 1 0 0 0
116 29 9 ∗ Z⊕ 2 ∗ Z/2⊕ Z/3 9 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 0 0 0 1 0
119 119 11 ∗ Z⊕ Z/2 ⊕ Z/3 11 ∗ Z⊕ Z/4 ⊕ Z/3 Z/2 2 0 0 0
120 30 10 ∗ Z⊕ Z/2 ⊕ Z/3 10 ∗ Z⊕ Z/2 ⊕ Z/3 (Z/2)2 ⊕ (Z/3)2 3 0 0 0
127 127 8 ∗ Z⊕ Z/2 8 ∗ Z⊕ Z/4 0 1 0 0 0
132 33 10 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 10 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2⊕ (Z/3)2 3 2 0 0
136 34 8 ∗ Z⊕ 2 ∗ Z/2 8 ∗ Z⊕ 2 ∗ Z/2 (Z/2)2 ⊕ Z/3 2 0 0 2
143 143 12 ∗ Z⊕ Z/2 ⊕ Z/3 12 ∗ Z⊕ Z/4 ⊕ Z/3 Z/3 1 0 0 0
148 37 8 ∗ Z⊕ 3 ∗ Z/2 8 ∗ Z⊕ 3 ∗ Z/2 Z/2 2 0 1 0
151 151 10 ∗ Z⊕ Z/2 10 ∗ Z⊕ Z/4 0 1 0 0 0
152 38 10 ∗ Z⊕ Z/2 ⊕ Z/3 10 ∗ Z⊕ Z/2 ⊕ Z/3 0 1 1 0 0
155 155 10 ∗ Z⊕ Z/3 10 ∗ Z⊕ Z/3 Z/2 1 0 0 0
159 159 14 ∗ Z⊕ Z/2 ⊕ Z/3 14 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
164 41 12 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 12 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 0 0 1 1 0
167 167 13 ∗ Z⊕ Z/2 ⊕ Z/3 13 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
168 42 13 ∗ Z⊕ Z/2 ⊕ Z/3 13 ∗ Z⊕ Z/2 ⊕ Z/3 (Z/2)2 ⊕ Z/3 3 0 0 0
183 183 14 ∗ Z⊕ Z/2 ⊕ Z/3 14 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
184 46 11 ∗ Z⊕ Z/2 11 ∗ Z⊕ Z/2 Z/2⊕ Z/3 2 0 0 0
191 191 15 ∗ Z⊕ Z/2 ⊕ Z/3 15 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
195 195 15 ∗ Z⊕ Z/3 15 ∗ Z⊕ Z/3 (Z/2)2 ⊕ Z/3 2 0 0 0
199 199 13 ∗ Z⊕ Z/2 13 ∗ Z⊕ Z/4 0 1 0 0 0
203 203 12 ∗ Z⊕ Z/3 12 ∗ Z⊕ Z/3 Z/2 1 0 0 0
212 53 14 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 14 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 0 0 0 1 0
215 215 18 ∗ Z⊕ Z/2 ⊕ Z/3 18 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
219 219 13 ∗ Z⊕ Z/3 13 ∗ Z⊕ Z/3 Z/2 1 2 0 0
223 223 15 ∗ Z⊕ Z/2 15 ∗ Z⊕ Z/4 (Z/2)2 3 0 0 0
228 57 16 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 16 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 (Z/2)2 ⊕ Z/3 3 2 0 0
231 231 21 ∗ Z⊕ Z/2 ⊕ Z/3 21 ∗ Z⊕ Z/4 ⊕ Z/3 Z/2⊕ Z/3 2 0 0 0
232 58 12 ∗ Z⊕ 2 ∗ Z/2 12 ∗ Z⊕ 2 ∗ Z/2 Z/3 0 0 1 0
235 235 13 ∗ Z⊕ Z/2 13 ∗ Z⊕ Z/2 (Z/2)2 ⊕ Z/3 3 0 0 0
239 239 18 ∗ Z⊕ Z/2 ⊕ Z/3 18 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
244 61 15 ∗ Z⊕ 2 ∗ Z/2 15 ∗ Z⊕ 2 ∗ Z/2 0 0 0 1 0
247 247 14 ∗ Z⊕ Z/2 14 ∗ Z⊕ Z/4 0 1 0 0 0
248 62 16 ∗ Z⊕ Z/2 ⊕ Z/3 16 ∗ Z⊕ Z/2 ⊕ Z/3 Z/2 2 0 0 0
255 255 23 ∗ Z⊕ Z/2 ⊕ Z/3 23 ∗ Z⊕ Z/4 ⊕ Z/3 Z/2⊕ (Z/3)2 2 0 0 0
259 259 14 ∗ Z 14 ∗ Z Z/2⊕ Z/3 1 0 0 0
260 65 20 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 20 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 Z/2⊕ Z/3 1 0 2 0

263 263 18 ∗ Z⊕ Z/2 ⊕ Z/3 18 ∗ Z⊕ Z/4 ⊕ Z/3 Z/2⊕ Z/3 1 0 0 0
264 66 20 ∗ Z⊕ Z/2 ⊕ Z/3 20 ∗ Z⊕ Z/2 ⊕ Z/3 Z/2⊕ (Z/3)2 2 2 0 0
271 271 17 ∗ Z⊕ Z/2 17 ∗ Z⊕ Z/4 0 1 0 0 0
276 69 23 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 23 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2⊕ Z/3 3 0 0 0
280 70 19 ∗ Z⊕ Z/2 19 ∗ Z⊕ Z/2 (Z/2)2 ⊕ (Z/3)2 3 0 0 0
287 287 21 ∗ Z⊕ Z/2 ⊕ Z/3 21 ∗ Z⊕ Z/4 ⊕ Z/3 Z/2 2 0 0 0
291 291 17 ∗ Z⊕ Z/2 ⊕ Z/3 17 ∗ Z⊕ Z/2 ⊕ Z/3 0 1 2 0 0
292 73 16 ∗ Z⊕ 2 ∗ Z/2 16 ∗ Z⊕ 2 ∗ Z/2 Z/3 0 1 1 0
295 295 19 ∗ Z⊕ Z/2 19 ∗ Z⊕ Z/4 Z/3 1 0 0 0
296 74 19 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 19 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 Z/3 0 0 1 0
299 299 18 ∗ Z⊕ 2 ∗ Z/3 18 ∗ Z⊕ 2 ∗ Z/3 Z/2⊕ (Z/3)2 1 0 0 0
303 303 22 ∗ Z⊕ Z/2 ⊕ Z/3 22 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
308 77 23 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 23 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2⊕ Z/3 3 0 0 0
311 311 23 ∗ Z⊕ Z/2 ⊕ Z/3 23 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
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−disc. m PSL2 (O−m)ab SL2 (O−m)ab image d22,0 A B C D

312 78 22 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 22 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2⊕ Z/3 3 0 0 0
319 319 20 ∗ Z⊕ Z/2 20 ∗ Z⊕ Z/4 Z/3 1 0 0 0
323 323 16 ∗ Z⊕ Z/3 16 ∗ Z⊕ Z/3 Z/2 1 2 0 0
327 327 24 ∗ Z⊕ Z/2 ⊕ Z/3 24 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
328 82 17 ∗ Z⊕ 3 ∗ Z/2 17 ∗ Z⊕ 3 ∗ Z/2 Z/3 1 1 1 0
335 335 26 ∗ Z⊕ Z/2 ⊕ Z/3 26 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0

340 85 23 ∗ Z⊕ 4 ∗ Z/2 23 ∗ Z⊕ 4 ∗ Z/2 (Z/3)2 0 0 2 0
344 86 21 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/3 21 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/3 0 1 1 0 0
355 355 20 ∗ Z 20 ∗ Z Z/2⊕ Z/3 1 0 0 0
356 89 24 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 24 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 0 0 1 1 0
359 359 25 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 25 ∗ Z⊕ 3 ∗ Z/2⊕ Z/4⊕ Z/3 Z/2 3 0 0 0
367 367 20 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/3 20 ∗ Z⊕ Z/4 ⊕ 2 ∗ Z/3 Z/3 1 0 0 0
371 371 22 ∗ Z⊕ Z/3 22 ∗ Z⊕ Z/3 Z/2 1 0 0 0
372 93 27 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 27 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2⊕ Z/3 3 0 0 0
376 94 22 ∗ Z⊕ Z/2 22 ∗ Z⊕ Z/2 Z/2⊕ Z/3 2 0 0 0
383 383 25 ∗ Z⊕ Z/2 ⊕ Z/3 25 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
388 97 21 ∗ Z⊕ 2 ∗ Z/2 21 ∗ Z⊕ 2 ∗ Z/2 Z/3 0 1 1 0
391 391 25 ∗ Z⊕ Z/2 25 ∗ Z⊕ Z/4 Z/2⊕ Z/3 2 0 0 0
395 395 24 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 24 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2 1 0 0 0
399 399 33 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 33 ∗ Z⊕ Z/2⊕ Z/4⊕ Z/3 (Z/2)2 ⊕ Z/3 4 0 0 0
403 403 19 ∗ Z 19 ∗ Z Z/2 1 0 0 0
404 101 28 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/3 28 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/3 Z/2 2 0 1 0
407 407 29 ∗ Z⊕ Z/2 ⊕ Z/3 29 ∗ Z⊕ Z/4 ⊕ Z/3 Z/3 1 0 0 0
408 102 27 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/3 27 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/3 Z/2⊕ (Z/3)4 1 2 0 0
415 415 28 ∗ Z⊕ Z/2 28 ∗ Z⊕ Z/4 Z/3 1 0 0 0
420 105 41 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 41 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 (Z/2)6 ⊕ (Z/3)3 8 0 0 0
424 106 23 ∗ Z⊕ 4 ∗ Z/2 23 ∗ Z⊕ 4 ∗ Z/2 Z/3 0 0 1 0
427 427 21 ∗ Z⊕ Z/2 21 ∗ Z⊕ Z/2 (Z/2)2 3 0 0 0
431 431 29 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 29 ∗ Z⊕ Z/2⊕ Z/4⊕ Z/3 0 1 0 0 0
435 435 31 ∗ Z⊕ Z/3 31 ∗ Z⊕ Z/3 (Z/2)2 ⊕ (Z/3)5 2 0 0 0
436 109 25 ∗ Z⊕ 4 ∗ Z/2 25 ∗ Z⊕ 4 ∗ Z/2 0 0 0 1 0
439 439 26 ∗ Z⊕ 3 ∗ Z/2 26 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/4 (Z/2)2 5 0 0 0
440 110 32 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 32 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2⊕ Z/3 3 0 0 0
443 443 21 ∗ Z⊕ Z/2 ⊕ Z/3 21 ∗ Z⊕ Z/2 ⊕ Z/3 0 1 1 0 0
447 447 32 ∗ Z⊕ Z/2 ⊕ Z/3 32 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
452 113 27 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 27 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 0 0 1 1 0
455 455 39 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 39 ∗ Z⊕ 3 ∗ Z/2⊕ Z/4⊕ Z/3 Z/3 2 0 0 0
456 114 32 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/3 32 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/3 Z/2⊕ (Z/3)3 2 2 0 0
463 463 23 ∗ Z⊕ Z/2 23 ∗ Z⊕ Z/4 0 1 0 0 0
471 471 34 ∗ Z⊕ Z/2 ⊕ Z/3 34 ∗ Z⊕ Z/4 ⊕ Z/3 0 1 0 0 0
472 118 25 ∗ Z⊕ 3 ∗ Z/2 25 ∗ Z⊕ 3 ∗ Z/2 Z/3 1 1 0 0
479 479 33 ∗ Z⊕ Z/2 ⊕ 3 ∗ Z/3 33 ∗ Z⊕ Z/4 ⊕ 3 ∗ Z/3 0 1 0 0 0
483 483 33 ∗ Z⊕ Z/3 33 ∗ Z⊕ Z/3 (Z/2)2 ⊕ Z/3 2 0 0 0
487 487 24 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/13 24 ∗ Z⊕ Z/4⊕ 2 ∗ Z/13 0 1 0 0 0
488 122 28 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 28 ∗ Z⊕ 4 ∗ Z/2 ⊕ Z/3 Z/3 0 0 1 0
499 499 22 ∗ Z⊕ 2 ∗ Z/2 ⊕ 2 ∗ Z/3 22 ∗ Z⊕ 2 ∗ Z/2 ⊕ 2 ∗ Z/3 0 2 1 0 0
520 130 32 ∗ Z⊕ 6 ∗ Z/2 32 ∗ Z⊕ 6 ∗ Z/2 (Z/3)2 0 0 2 0
532 133 33 ∗ Z⊕ 2 ∗ Z/2 33 ∗ Z⊕ 2 ∗ Z/2 Z/2⊕ (Z/3)2 3 0 0 0
555 555 39 ∗ Z⊕ Z/3 39 ∗ Z⊕ Z/3 (Z/2)2 ⊕ Z/3 2 0 0 0
568 142 29 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/4 29 ∗ Z⊕ 3 ∗ Z/2 ⊕ Z/4 (Z/2)3 ⊕ Z/3 6 0 0 0
595 595 37 ∗ Z⊕ Z/3 37 ∗ Z⊕ Z/3 (Z/2)2 ⊕ (Z/3)3 2 0 0 0

667 667 32 ∗ Z 32 ∗ Z Z/2⊕ Z/3 1 0 0 0
696 174 50 ∗ Z⊕ Z/2 ⊕ Z/3 50 ∗ Z⊕ Z/2 ⊕ Z/3 (Z/2)2 ⊕ (Z/3)2 3 0 0 0
715 715 43 ∗ Z 43 ∗ Z (Z/2)2 ⊕ (Z/3)2 2 0 0 0
723 723 41 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 41 ∗ Z⊕ 2 ∗ Z/2 ⊕ Z/3 Z/2 1 2 0 0
760 190 46 ∗ Z⊕ 4 ∗ Z/2 46 ∗ Z⊕ 4 ∗ Z/2 Z/2⊕ (Z/3)2 3 0 0 0
763 763 38 ∗ Z 38 ∗ Z Z/2⊕ Z/3 1 0 0 0
795 795 55 ∗ Z⊕ Z/3 55 ∗ Z⊕ Z/3 (Z/2)2 ⊕ (Z/3)2 2 0 0 0
955 955 50 ∗ Z⊕ 4 ∗ Z/2 ⊕ 2 ∗ Z/3 50 ∗ Z⊕ 4 ∗ Z/2 ⊕ 2 ∗ Z/3 Z/2⊕ Z/3 1 0 0 0
1003 1003 48 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/3 48 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/3 Z/3 1 2 0 0
1027 1027 48 ∗ Z⊕ 2 ∗ Z/2 ⊕ 3 ∗ Z/3 48 ∗ Z⊕ 2 ∗ Z/2 ⊕ 3 ∗ Z/3 Z/2 1 0 0 0
1227 1227 69 ∗ Z⊕ Z/4 ⊕ Z/8⊕ Z/3 69 ∗ Z⊕ Z/4⊕ Z/8⊕ Z/3 0 1 2 0 0
1243 1243 58 ∗ Z⊕ 4 ∗ Z/3 58 ∗ Z⊕ 4 ∗ Z/3 Z/2⊕ Z/3 1 2 0 0
1387 1387 62 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/3 ⊕ 2 ∗ Z/167 62 ∗ Z⊕ Z/2⊕ 2 ∗ Z/3⊕ 2 ∗ Z/167 Z/3 1 2 0 0
1411 1411 64 ∗ Z⊕ Z/2 ⊕ 2 ∗ Z/16 ⊕ 2 ∗ Z/43 64 ∗ Z⊕ Z/2⊕ 2 ∗ Z/16⊕ 2 ∗ Z/43 Z/3 1 2 0 0
1507 1507 70 ∗ Z⊕ 2 ∗ Z/3 ⊕ 4 ∗ Z/5 70 ∗ Z⊕ 2 ∗ Z/3 ⊕ 4 ∗ Z/5 Z/2⊕ Z/3 1 2 0 0
1555 1555 80 ∗ Z⊕ 8 ∗ Z/4 ⊕ 2 ∗ Z/11 80 ∗ Z⊕ 8 ∗ Z/4⊕ 2 ∗ Z/11 Z/2⊕ Z/3 1 0 0 0
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