
HAL Id: hal-00769164
https://hal.science/hal-00769164

Submitted on 29 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Evaluation of Acceleration Strategies for
Speeding up the Development of Dialog Applications
Luis Fernando d’Haro, Ricardo de Córdoba, Rubén San Segundo, Javier

Ferreiros, José Manuel Pardo

To cite this version:
Luis Fernando d’Haro, Ricardo de Córdoba, Rubén San Segundo, Javier Ferreiros, José Manuel Pardo.
Design and Evaluation of Acceleration Strategies for Speeding up the Development of Dialog Appli-
cations. Speech Communication, 2011, �10.1016/j.specom.2011.05.008�. �hal-00769164�

https://hal.science/hal-00769164
https://hal.archives-ouvertes.fr

Accepted Manuscript

Design and Evaluation of Acceleration Strategies for Speeding up the Devel‐

opment of Dialog Applications

Luis Fernando D’Haro, Ricardo de Córdoba, Rubén San Segundo, Javier

Ferreiros, José Manuel Pardo

PII: S0167-6393(11)00073-2

DOI: 10.1016/j.specom.2011.05.008

Reference: SPECOM 1997

To appear in: Speech Communication

Received Date: 2 August 2010

Revised Date: 13 May 2011

Accepted Date: 15 May 2011

Please cite this article as: Fernando D’Haro, L., de Córdoba, R., Segundo, n.S., Ferreiros, J., Manuel Pardo, J.,

Design and Evaluation of Acceleration Strategies for Speeding up the Development of Dialog Applications, Speech

Communication (2011), doi: 10.1016/j.specom.2011.05.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.specom.2011.05.008
http://dx.doi.org/10.1016/j.specom.2011.05.008

1

Paper title: Design and Evaluation of Acceleration Strategies for

Speeding up the Development of Dialog Applications

Authors: Luis Fernando D‟Haro, Ricardo de Córdoba, Rubén San

Segundo, Javier Ferreiros, José Manuel Pardo

Affiliations:

Grupo de Tecnología del Habla, Universidad Politécnica de Madrid, Madrid, Spain

{lfdharo|cordoba|lapiz|jfl|pardo}@die.upm.es

Contact information:

Mailing address:

Luis Fernando D‟Haro (corresponding author)

ETSI Telecomunicación

Ciudad Universitaria s/n

28040-MADRID

SPAIN

Telephone: +34-91-453 35 43

Fax: +34-91-3367323

e-mail: lfdharo@die.upm.es

Keywords: Development tools, Automatic Design, VoiceXML, Data Mining,

Speech-based Dialogs.

http://ees.elsevier.com/specom/viewRCResults.aspx?pdf=1&docID=2047&rev=3&fileID=48179&msid={FF092220-C750-4F49-A2B1-C80179BF042B}

1

Design and Evaluation of Acceleration Strategies for Speeding up the

Development of Dialog Applications

Luis Fernando D’Haro, Ricardo de Córdoba, Rubén San Segundo, Javier

Ferreiros, José M. Pardo

Grupo de Tecnología del Habla, Universidad Politécnica de Madrid, Madrid, Spain

{lfdharo|cordoba|lapiz|jfl|pardo}@die.upm.es

Abstract

In this paper, we describe a complete development platform that features different

innovative acceleration strategies, not included in any other current platform, that

simplify and speed up the definition of the different elements required to design a

spoken dialog service. The proposed accelerations are mainly based on using the

information from the backend database schema and contents, as well as cumulative

information produced throughout the different steps in the design. Thanks to these

accelerations, the interaction between the designer and the platform is improved, and in

most cases the design is reduced to simple confirmations of the “proposals” that the

platform dynamically provides at each step.

In addition, the platform provides several other accelerations such as configurable

templates that can be used to define the different tasks in the service or the dialogs to

obtain or show information to the user, automatic proposals for the best way to request

slot contents from the user (i.e. using mixed-initiative forms or directed forms), an

assistant that offers the set of more probable actions required to complete the definition

of the different tasks in the application, or another assistant for solving specific

modality details such as confirmations of user answers or how to present them the lists

of retrieved results after querying the backend database. Additionally, the platform also

allows the creation of speech grammars and prompts, database access functions, and the

possibility of using mixed initiative and over-answering dialogs. In the paper we also

describe in detail each assistant in the platform, emphasizing the different kind of

methodologies followed to facilitate the design process at each one.

Finally, we describe the results obtained in both a subjective and an objective

evaluation with different designers that confirm the viability, usefulness, and

functionality of the proposed accelerations. Thanks to the accelerations, the design time

is reduced in more than 56% and the number of keystrokes by 84%.

Keywords: Development tools, Automatic Design, VoiceXML, Data Mining,

Speech-based Dialogs.

1. Introduction

The current increasing demand of automatic dialog systems for different domains

and user requirements has resulted in several companies and academic institutions

working on the development of fully integrated platforms that need to provide the

maximum number of features to designers and final users, a high level of portability,

standardization and scalability in order to minimize design time and costs. Moreover,

these platforms have to enable the rapid development and maintenance of automatic

dialog services, as well as being flexible enough to allow the creation of a wide range of

services and to be adapted to the special characteristics of each one. In general, these

platforms are made up of different and independent assistants that allow collaborative

role-based development so that different developers teams can work on the same project

at the same time. Finally, the usability of these platforms is increased thanks to a clear

2

and fully integrated graphical user interface, as well as the incorporation of built-in

libraries and out-of-the-box dialog components that allows previous knowledge to be

reused and an easy deployment of the service.

1.1. Strengths and Weaknesses of Commercial and Academic

Platforms

In their effort to speed up the design of dialog applications, most of the commercial

platforms (e.g., Nuance V-builder1, IBM Web-Sphere2, Audium Studio3, Envox4, etc.)

include state-of-the-art modules such as speech recognizers, high quality speech

synthesizers, language identification modules, etc., as well as using widespread

standards such as VoiceXML, SALT, CCXML, etc. These platforms also include a

large number of predefined libraries for typical dialogs such as requesting addresses or

social security numbers. In addition, they incorporate assistants for debugging and

logging the service. Finally, these platforms provide user-friendly graphical interfaces

that simplify the development of very complex applications. On the other hand, a large

drawback they present is that the behavior of the service may change across different

platforms because of the use of attributes or features not supported in most platforms

(e.g. including non-standard tags in the VoiceXML script to allow sending faxes or

playing videos) or because they use advanced runtime modules (e.g. automatic speech

recognizers, text-to-speech, language identification or speaker identification) that can

reduce the necessity of coding many actions in the scripts. In addition, it is difficult to

integrate proprietary modules and they do not provide automatic proposals for defining

the dialog flow. Finally, it is difficult to integrate new modalities, create the service in

multiple languages, adapt the service according to predefined user profiles, or obtain the

same functionalities on different operating systems.

In contrast to commercial platforms, academic and research platforms (e.g. CSLU-

RAD
5
, DialogDesigner

6
, Trindikit

7
, RavenClaw

8
, etc.) do not necessarily incorporate all

of the aforementioned features. However, they allow more complex dialog interactions

(e.g. incorporating the possibility of changing the dialog goal at any moment and then

recovering it later [Bohus and Rudnicky, 2009], allowing users to interact with the final

system using several different modalities at the same time [Tsai, 2006], or allowing

complex confirmation strategies for error handling [McTear et al, 2005]); in addition,

some of them are available as open source and can be extended using third party

modules. The main drawback is that they may have serious limitations such as a low

portability level as they are tied to specific runtime platforms which make them difficult

to integrate with other systems and/or architectures; besides, many of their interesting

features are not easily available, therefore they are only used by advanced developers.

The number of different services and capabilities that they can offer to the final users

and programmers is also usually low. They also require the designer to know several

programming languages and non-standard formats thus reducing their usability. Finally,

they may present limitations for implementing dialog strategies that take into account

the user experience, different modalities, and languages required by the service.

1
 http://www.nuance.com

2
 http://www-01.ibm.com/software/voice/

3
 http://www.audiumcorp.com/Audium_Studio/

4
 http://www.nuxiba.com/envox.html

5
 http://cslu.cse.ogi.edu/toolkit/

6
 http://spokendialog.dk/DialogDesigner/

7
 http://www.ling.gu.se/projekt/trindi/trindikit/

8
 http://wiki.speech.cs.cmu.edu/olympus/index.php/RavenClaw

http://www.nuance.com/
http://www-01.ibm.com/software/voice/
http://www.audiumcorp.com/Audium_Studio/
http://www.nuxiba.com/envox.html
http://cslu.cse.ogi.edu/toolkit/
http://spokendialogue.dk/DialogDesigner/
http://www.ling.gu.se/projekt/trindi/trindikit/
http://wiki.speech.cs.cmu.edu/olympus/index.php/RavenClaw

3

In spite of these features, interestingly, both kinds of platform lack accelerations (i.e.

mechanisms to automate or simplify the design of the dialog service) based on basic

business intelligence and data mining methodologies applied to the contents of the task

database and from the data model structure (i.e. the set of object-oriented classes and

attributes that model the database tables and fields and their relationships). To cope with

this issue, our objective was to define and use dynamic and intelligent acceleration

strategies so that we can, among other things, predict the necessary information required

to complete the definition of a state, accelerate the specification of the application flow,

the definition of the database access functions, and to help designers with built-in

solutions, not forcing them to define all this information from scratch. For a more

detailed description of the capabilities provided by current commercial and academic

platforms please refer to section 2.1 and Appendix B in [D‟Haro, 2009].

1.2. Incorporation of database contents information in the design

Although the database content or structure is rarely used for accelerating the

definition of the dialog flow, in the literature we can find examples of use in other

stages in the design.

In [Polifroni and Walker, 2006] a rapid development environment for speech dialogs

from online resources is described. Here the goal is to reduce the need to specify a pre-

defined dialog flow. Therefore, the flow is dynamically built based on an analysis of the

retrieved data at every turn, as the user provides new constraints. For instance, here the

database contents are used to create clusters of numeric fields in order to establish

subjective ranges that the users can use in their answers such as “near” or

“cheap/expensive”, in the domain of a hotel reservation, that change depending on the

city. This way, if the database contains information about the average price of a room

for each hotel and for different cities, it is possible to automatically classify which

hotels are “cheap” from those that are “expensive” and include this information in the

database. At each turn the system also uses the retrieved results to generate and select,

on the fly, the prompts to summarize the retrieved results or to suggest new constraints.

In [Pargellis et al, 2004] the dialog flow is dynamically modified through a set of

templates adapted to the final user of the system, as well as with the available

information and services. The system uses the dynamic contents of the database to

create, on the fly, new grammars and prompts, as well as the dialog flow for presenting

information to the user, or for solving errors, through predefined templates and

according to the user profile.

In [Chung, 2004] the database is used together with a simulation system in order to

generate thousands of unique dialogs that can be used to train the speech recognizer and

the understanding module, as well as diagnosing the system behavior against

problematic user interactions or for unexpected user answers. In [Wang and Acero,

2006] the system generates a large number of artificial sentences using the database

contents and sentences from other domains by applying syntactic and semantic

information that are used to improve and create new language models for the speech

recognition system.

[Feng et al, 2003] proposes a very different approach, not using a database but

mining the contents of corporate websites for automatically creating spoken and text-

based dialog applications for customer care. After analyzing the content and structure of

the website, the dialog manager, at runtime, will identify the focus or expectations of

the user question and will provide a concise answer. Although the dialog flow is not

4

defined using any GUI, the paper proves that important knowledge can be extracted

from well-designed contents as we have done.

In [D‟Haro et al, 2006], we described our initial steps to include several acceleration

strategies to the design, based mainly on exploiting the structure of the backend

database and with a special emphasis in proposing accelerations for the assistant used to

define the dialog flow at a high level (i.e. modality and language independent, see

section 3.5). In the current paper, we describe new strategies that exploit the database

contents and schema incorporating them in diverse ways. For instance: a) For creating

different kind of templates that can be used to define the dialog flow (section 3.4.2) or

the actions to be done at each state (section 3.5). b) To propose which slots should be

requested at the same time to the users or one by one considering mainly the difficulty

of the speech recognizer to correctly recognize them (section 3.4.3). c) To reduce the

information displayed to the designer in the different assistants of the platform (section

3.2). d) To simplify the process of debugging the database access functions used by the

real-time system and automatically proposed by the platform (section 3.3.2).

1.3. Platform Background and Limitations

Taking into account the limitations of the best commercial and research platforms,

the scant use of database content information in the design, as well as the limited

number of research projects for creating, accelerating, and improving these design

platforms, we undertook the GEMINI European Project [GEMINI, 2010]. The final

result was a complete, flexible, and highly automated development platform consisting

of a set of tools and agents that guide the design process and allow the definition of the

different levels of knowledge needed to complete and run the state-of-the-art speech and

Web-based services. The platform allows the creation of a wide range of applications to

access database centered services such as the ones provided in banking transactions,

transport reservations, information kiosks, etc. through a Web browser or a telephone.

In [D‟Haro et al, 2006] and [D‟Haro et al, 2004] we describe in detail the initial

platform, our efforts in separating the general and high-level definition of the dialog

flow from the specific details imposed by each modality, language and user profile, as

well as the differences between operating systems and runtime platforms by using

several standard languages. Finally, we also describe our first attempts to accelerate the

design using only information from the data model structure and by proposing different

kinds of actions for completing the dialog flow.

After finishing the project, we decided to continue working on the platform in order

to propose new accelerations strategies and improving its capabilities. The main new

improvements described in this paper can be summarized as follows:

1) Incorporation of heuristic information extracted from analyzing the contents of

the backend database. This information is used later on to speed up the design

of the database schema (section 3.2), or to suggest when two or more data

(slots) should be requested to the users together or one by one (section 3.4.3).

2) Incorporation of two new wizard windows to help designers to

automate/eliminate repetitive or common procedures in the design. The first

one allows the creation of complex classes and attributes when defining the

database schema (section 3.2), and the second one provides automatic

proposals of SQL queries to access the backend database at runtime (section

3.3.2). Finally, we have also redesigned the GUI of the assistant used to define

the application flow, including also some algorithms and strategies to improve

5

the visualization of the workspace used to show the states and transitions in the

dialog application (section 3.4.1).

3) Integration of the runtime system into a distributed platform allowing the use

of third party modules for the ASR, TTS, or voice browser (section Error!

Reference source not found.).

4) Finally, we have also incorporated new several configurable templates based

on the database schema and access functions to accelerate the creation of the

states in the dialog flow (section 3.4.2).

It is important to mention that we have focused a lot on proposing generic strategies

that could be useful for a great variety of services and tasks where the users can modify

or obtain information stored in a database. For example, the platform allows the creation

of applications such as a banking application, a travel agency, a remote access to an

agenda or phone directory, a command control device, or for appointment reservation,

among others. In general, these are the kind of services that can be created considering

the capabilities and limitations of the VoiceXML and xHTML standards generated by

the platform. On the other hand, since many of the new strategies are based on using

heuristic information from the backend database contents, it is clear that these strategies

will be limited by the number of tables and records available in the database. In order to

increase the robustness of the proposed accelerations, some of them allow the

configuration of different parameters that the designer can adjust according to the

requirements of each task (e.g. number of relevant tables, capabilities and expected

performance of the speech recognizer, vocabulary size, etc.). Finally, we want to

mention one current limitation of our platform is that we do not consider the possibility

of using key semantic terms (such as “cheap”, “near”, etc, as used in [Polifroni and

Walker, 2006]). As we describe in Section 3.1 this limitation can be solved in a future

version of the platform.

1.4. Relevant Definitions

Throughout this paper we are going to use some terms that we want to clarify

beforehand from the perspective of our platform since they do not necessarily present a

generally accepted definition.

Slot: This term will refer to any compulsory information that the system requests

from the user.

Action: This term will refer to any kind of procedure (e.g. calls to other dialogs, calls

to database access functions, arithmetic or string operations, programming constructs,

etc.) required to complete the „states‟ in the application.

Dialog: This term will refer, as in VoiceXML, to the specific form or turn where the

information is provided or requested to/from the user.

State: This term will refer, like in the dialog and automata theory, to one of all the

possible nodes or states in a finite state based dialog system. However, in our platform

we have extended this concept considering that a state does not represent a single dialog

or action but that it is a group of dialogs or actions. This extension to the concept allows

us to reduce the complexity of understanding and visualizing the whole application flow

to a reduced number of „states’ instead of hundreds or thousands of actions.

Acceleration: This term will refer to the different methodologies implemented in the

assistants of the platform in order to reduce the design time and facilitate the definition

of the different actions required to design and run the service.

6

Mixed-initiative and Over-answering: Following the definition of the VoiceXML

standard [McGlashan et al, 2004], the term mixed initiative will indicate the system‟s

ability to ask for two or more compulsory data from the user simultaneously, and, if the

user‟s answer is incomplete or wrong new sub-dialogs are started in order to obtain the

corresponding data. Over-answering will indicate the user‟s ability to provide additional

data – not compulsory at the current state – to the system.

1.5. Paper organization

The paper is organized as follows: in section 2 we present an overall description of

the platform architecture, the main assistants and layers that makes it up, its scope and

limitations. Section 3 describes the main accelerations in the platform and the assistants

that include them; then, in section 4 we will show the results of a subjective and

objective evaluation of the platform carried out with different designers. Finally we will

show our conclusions and future work in section 5.

2. Platform structure

Figure 1 shows the architecture and main assistants and tools that make up the

Application Generation Platform (AGP). The platform consists of three main layers

integrated into a common graphical user interface (GUI) that guides the designer step-

by-step and lets him go back and forth. The three layers separate the aspects that are

service specific (general characteristics of the application, database structure and

access), those corresponding to the high level dialog flow of the application (modality

and language independent), and the specific details imposed by each modality and

language. This distribution also helps the designer to create several versions of the same

service (for different modalities and languages) in a single step at the intermediate level.

In the figure, the assistants in yellow are those that have been recently modified or

extended in relation to previous versions of the platform, described in [D‟Haro et al,

2006], and in those white have not been modified at all. Detailed information will be

provided for the former.

In order to ease the communication and sharing of information between all the

assistants, the platform uses an object oriented abstract language called GDialogXML
9

(Gemini Dialog XML)(see [Schubert et al, 2005] and [Hamerich et al, 2003]). This

XML language allows the definition of all the application data, e.g. database access

functions, variables and actions needed in each dialog, prompts and grammars, user

models, Web graphical interfaces, etc. After finishing the design, the platform uses all

the generated XML files to convert them into the languages used for the runtime scripts

according to the modality (VoiceXML and/or xHTML).

Before starting to describe the layers and assistants in detail, we want to emphasize

their goal and the current limitations. As we mentioned in the introduction, the main

objective of the platform is to allow the construction of dialog applications for multiple

modalities and languages at the same time. The generated applications can be used to

access services based on database queries/modification (e.g., banking transactions,

transport reservations, information kiosks, etc.) through a Web browser or telephone

separately, although it should be possible to execute them simultaneously by

incorporating new code elements for synchronization in our XML syntax and a new

code generator (e.g. for X+V). It is also also important to consider the limitations

imposed mainly by the VoiceXML 2.0 and xHTML scripts generated by the platform.

9
 http://www-gth.die.upm.es/projects/gemini/

http://www-gth.die.upm.es/projects/gemini/

7

Figure 1. Platform architecture

2.1. Framework Layer

In the framework layer, the designer specifies the overall aspects related to the

application and the data involved. This layer includes the Application Description

Assistant (ADA) that is used to define the overall aspects of the service such as the

number of modalities and languages, the database connection settings (e.g. total number

of connection errors, timeouts, URL of the database server). For the speech modality the

following information is defined: the timeout values for events such as no input, default

confidence levels for speech recognition, maximum number of repetitions/errors before

transferring the call to the operator, etc.; and for the Web modality, handling of errors

such as page not found, non-authorized, or timeouts. Finally, the designer specifies the

libraries that will be used throughout the design process, e.g. database access functions,

list of prompts and grammars for each language.

In the Data Model Assistant (DMA) the designer defines the data structure (i.e. data

model or schema) of the service specifying the classes, including inheritance, attributes

and types that make up the database; the assistant also extracts heuristic information

from the database contents. The objective of these classes is to provide information

about which tables and fields in the database are relevant for the service and how the

fields can be grouped together into classes. Therefore, we can think that the attributes in

8

a class correspond to the possible database fields that can be requested or presented to

the user, as well as how these attributes relate to the actual database tables and fields.

Figure 2. Graphical details of data model classes and attributes

Figure 2 shows an example of some classes and attributes defined for a banking

application. As we can see, the attributes can be of several types: a) atomic (e.g., strings,

Boolean, float, integer, date, time, etc.), b) full embedded objects or pointers to existing

classes, or (c) lists of atomic attributes or complex objects. Here, the Transaction class

has been defined with one basic attribute: TransactionAmount and two object type

attributes from the class Account: DebitAccount to specify the source account and

CreditAccount to specify the destination account. In addition, the class Account has two

atomic type attributes (i.e. AvailableBalance and AccountNumber) and two complex

ones (i.e. AccountHolder and LastTransactionsList).

Finally, the Data Connector Model Assistant (DCMA) is used to specify the

database access functions needed for the real-time system to provide the information to

the user. These functions are specified as interface definitions including only their input

and output parameters allowing their use by dialog designers, without needing to know

much about database programming, and leaving the dialog flow to any changes in the

system backend unaffected as long as the interface remains stable. For instance, a

function that performs a money transfer between two accounts, the designer can indicate

here as input arguments two integer variables for storing the account numbers and a

float variable for the amount to transfer, and as output argument a Boolean variable to

know if the operation was successful. Another example, in this case for the domain of a

travel agency, could be a function to make a reservation; in this case, the input

arguments could be two “String” variables, one for the departure city and the other for

the arrival city, as well as two “Date” variables for storing the corresponding departure

and returning dates. The returning variable for this function could be an “Integer” that

stores the number of available flights retrieved by the search and an array with all

flights information.

2.2. Retrieval Layer

In the retrieval layer, the general flow of the application - in a language and modality

independent way - is modeled, including all the actions that make it up (transitions and

calls between dialogs, input/output information, procedures, etc.). It includes the State

Flow Model Assistant (SFMA) and the Retrieval Model Assistant (RMA).

9

The Flow Model Assistant is used to create the dialog flow at an abstract level, by

specifying the states of the application, plus the slots to ask to the user and the

transitions among states. It is also possible to specify which slots are optional (for over-

answering) and which ones can be asked for by using mixed-initiatives (see section

3.4.3). For instance, in the case of a banking application, the designer specifies the

different tasks that can be accomplished in the service (e.g. welcome state, initial menu

state to access available items in the service, a state for performing transactions between

accounts, for providing information about account movements, and so on). Then, the

designer specifies as slots the credit and debit account numbers and the amount to

transfer in the transaction state.

The Retrieval Model Assistant is used afterwards to include all the low-level

detailed actions (e.g., conditions for making transitions between states, definition of

variables and assignments, math or string operations, calls to dialogs to provide/obtain

information to/from the user) to be done in each state defined in the previous assistant.

For example, for the state where the user performs the transaction between accounts, the

designer can define the following sequential actions (see example in section 3.5):

1) A call to a sub-dialog for requesting the account numbers and the amount to be

transferred,

2) An access to the database in order to perform the transaction,

3) Then, report to the user if the transfer was successful or not,

4) Finally, a jump to the next state in the application.

The assistant allows the designer to include complex actions such as making

conditional transitions, performing mathematical or string operations, creation of

variables, inclusion of programming loops (useful in case of requiring a user

authentication procedure), as well as the possibility of using different kind of form

templates (e.g. menu-based or sequential). Since this layer is modality and language

independent all the input/output data provided by/to the user are managed using

concepts.

2.3. Dialog Layer

Finally, the dialog layer contains the assistants that complete the application flow

specifying the details that are modality and language dependent for each dialog. The

platform includes the following assistants:

The User Modeling Assistant (UMA) that allows the specification of different user

levels and settings for each dialog in the application. Here, the designer specifies, for

instance, the system behavior at runtime for confirming the users‟ answers. This way, if

the speech recognizer returns a low confidence in the recognition result then the system

could request an explicit confirmation through a direct question or by asking a new one.

On the other hand, the possibility of modifying the confidence levels according to the

user profile allows the designer to change the behavior of the system to 1) permit

advanced users to interact more naturally with the system by allowing additional

confirmation strategies (e.g. implicit confirmations and not only the explicit

confirmations available to the novice users), or 2) impose a stricter confirmation for

critical data such as the amount in a banking transaction.

The Modality Extension Retrieval Assistant for Speech (MERA-Speech, see

section 3.6) adds special sub-dialogs that complete the dialogs already defined for the

application considering the specific issues of using speech. Thus, the designer can create

10

a complex dialog flow in order to deal with modality specific problems. Here we have

dealt with the two basic problems that are specific to the speech modality: 1) the

presentation of list of results retrieved from the database to the users in several steps

depending on the number of retrieved items (i.e. zero, one, from two up to a maximum

number, or more items than the maximum allowed, and 2) handling recognition errors

by using different confirmation strategies (i.e. none, implicit, explicit, and repeat) in the

dialogs that obtain information from the user. In the first case, the assistant allows the

designer to define the different dialogs to show or request information to the user as

well as the dialog flow for each of the four situations; in the second case, the assistant

analyzes the dialog flow and automatically creates the sub-dialogs to provide the four

kind of confirmation strategies and it also analyzes when each confirmation can be used

or not (e.g. it is not possible to do an implicit confirmation if the next action in the flow

is the access to the database since the system will not have the opportunity to confirm

the information in the next turn).

In the Modality and Language Extension Assistant (MEA) the language dependent

aspects of the service are specified for each modality and language. For the speech

modality, the extensions consist of links to the grammar and prompts for each language

and dialog defined in the previous assistants for obtaining or presenting information to

the user, while for the Web modality they are links to the input and output objects to

interact with the user (e.g. textboxes, radio buttons, lists of results).

The Dialog Model Linker (DML) is the responsible for generating one file for each

selected modality where all the information from previous assistants is automatically

linked together, i.e. dialogs, actions, input/output concepts, prompts and grammars, etc.

by filling in different sections of GDialogXML dialog units. Then, the unified file for

each language and modality is converted into the corresponding runtime script using the

script generators of the next step.

The Script Generators convert the file generated by the dialog model linker into

the execution scripts needed for each modality (VoiceXML and xHTML). Therefore,

these modules solve the problems and limitations of each standard [Hamerich et al,

2003] and manage those issues regarding the handling of multilinguality [López-Cozar

and Araki, 2005], database access, preparation of prompts or Web text, etc.

Finally, there are three other assistants that complement the platform. The first one is

the Vocabulary Builder which prepares the vocabularies that will be used by the

speech recognizer (i.e. the phonetic transcriptions of each word and phonetic

alternatives for each language). The second one is the Language Modeling Toolkit that

allows the designer to specify and debug the grammar files (in JSGF format or n-gram

based) that will be used in the runtime system for recognition and for prompt generation

using the Natural Language Generation (NLG) module [Georgila et al, 2004].

Finally, the third assistant, called Diagen, allows the manual creation from scratch or

the fine tuning edition of all the different GDialogXML models and libraries generated

by the assistants of the AGP. In contrast to most current editors available in other

platforms, this assistant allows the possibility of creating any section of the

GDialogXML specification with minimum effort [Hamerich, 2008]. In this case, instead

of forcing the designer to type in the XML tree (i.e. all the nodes and attributes), the

assistant uses a set of pop-up windows that are sequentially displayed according to the

information that the designer needs to specify. This way, in case the designer needs to

create a state, the assistant shows a form window for obtaining the name of the state and

the system strategy at that state (i.e. mixed initiative or system initiative), then several

consecutive windows for defining the information (e.g. name, type) about each slot to

ask in that state, then another pop-up window for defining the information about the

11

transitions, and finally optional windows for defining help prompts, etc. Thanks to these

features, the designer does not need to memorize the whole XML specification and

thanks to the simple mechanism for defining the information the process is made easy.

2.4. Runtime system

Finally, another important component in order to run the VoiceXML script generated

by the AGP is the interpreter or browser that executes the script and performs the

connections with the other modules (recognizer, synthesizer, database access, telephonic

interface, etc.). The selected interpreter for our platform was the open source library

OpenVXI [Eberman et al, 2002] supported by Vocalocity Inc. The platform includes

basic telephony functionalities, an XML parser to process VoiceXML and JavaScript

files, processing user input, a complete implementation of the Form Interpretation

Algorithm (FIA), debugging functionalities, simulated speech recognition, etc. Since the

source files are available, there were no restrictions in adapting, mainly, the TTS and

ASR interfaces to our proprietary modules and platform (see [Cordoba et al, 2004] and

[Hamerich et al, 2003] for detailed information).

As a mechanism for allowing the use of third party modules instead of ours (e.g. TTS

or ASR), we worked on the integration of the runtime system into a distributed platform

developed during the EDECAN
10

and SD-TEAM
11

projects. The platform is made up of

seven modules that carry out the different processes in a dialog system. The current

modules are Automatic Speech Recognition (ASR), Audio server, Text-To-Speech

(TTS), Natural Language Understanding (NLU), Natural Language Generator (NLG),

the Dialog Manager (DM), and the hub. The architecture defines different messages that

the modules can use to share information between them. Since all information is passed

between modules using XML messages via a central hub, it is possible to include new

modules or new messages as required for new modalities or system capabilities.

3. Smart Strategies to Accelerate the Design and Improve Human-

Computer Interaction

In this section, all the strategies and mechanisms to accelerate the dialog design and

improve the interaction between the platform and the designer are explained in detail.

The main goal is to reduce the design time by simplifying the definition of the different

dialogs, actions, and elements required to specify and run the service. Moreover, the

proposed mechanisms help to guarantee that the generated models are well formed and

optimized, as well as contributing to minimizing mistakes in the design.

The proposed accelerations can be classified into four classes: Heuristic-based, Rule-

based, Context-based, and Wizards for simplifying the design process.

The first one corresponds to accelerations that use the database contents and data

model structure. These accelerations are used to reduce the information displayed to the

designer in the assistant for creating the database schema (section 3.2), for proposing

the SQL statements to access the database at real time (section 3.3.2), for defining the

database function prototypes (section 3.3.1), and for automatically proposing states and

dialogs templates that can be use to define the application flow (sections 3.4.2 and 3.5).

Rule-based accelerations correspond to the application of the configurable domain

knowledge rules that we have incorporated from our experience in designing dialog

10

 http://www.edecan.es/
11

 http://www.sd-team.es/all/Welcome.html

http://www.edecan.es/
http://www.sd-team.es/all/Welcome.html

12

systems. Here, we use configurable rules that allow the assistant to propose which slots

should be requested together, using mixed initiative dialogs or one by one using

directed dialogs; the proposals are made depending on the difficulty of the data to

request according to some configurable rules and the heuristic information from the

database associated to each slot (sections 3.1 and 3.4.3).

Context based accelerations correspond to strategies that use the information

generated from previous assistants throughout the design. For instance, the relationships

between the input/output arguments of the prototypes of the database functions with the

attributes and classes in the database schema (section 3.3.1) are used later on to

automatically create state templates (section 3.4.2) or dialog templates (section 3.5). In

addition, we use the high-level definition of the flow states and slots in order to propose

the set of most probable actions required to complete the definition of each state

(section 3.5 point 3). In addition, the assistant uses the sequence of actions defined for

each state in order to detect when it is possible to use implicit confirmations or not at

real-time for the speech modality (section 3.6).

Finally, the fourth one corresponds to accelerations mainly based on the

incorporation of different wizard windows that automate/eliminate repetitive or

common procedures in the design. For instance, we have included different form

windows to define the dialog variables, for including conditional structures in the dialog

flow (e.g. for, if-else, while), for creating mixed-initiative dialogs, for automatically

proposing SQL statements (section 3.3.2), or for defining the dialog flow used to show

lists of retrieved results to the user when using the speech modality (section 3.6).

Most of these accelerations are innovative and do not exist, to the best of our

knowledge, in any commercial or research platform. When a similar acceleration is

available, we have tried to go one-step further by incorporating new automation

mechanisms. For instance, currently there are some development platforms that include

assistants for defining and debugging SQL statements, but none of them propose the

SQL statement to use; In addition, our platform is unique since it allows the creation of

dialogs with over-answering, and over-answering plus mixed-initiative (section 3.5),

which are not included in the VoiceXML specification but that were accomplished by

using standard elements at the expense of generating a more elaborated final script.

3.1. Heuristic Information

Since many of the accelerations rely on using heuristic information from the database

contents, we have implemented a new module that automatically extracts this

information from the backend database. These heuristic features are obtained using an

open SQL query that retrieves all the information from every table and field in the

database. The system automatically collects information regarding the name and the

number of the different tables and fields, and the number of records for every table. In

addition, for each field the following numerical features are also collected:

a. The average length in characters

b. The average number of words

c. The vocabulary size (number of words that are different)

d. The proportion of values that are different

e. The field type

f. The number of empty values

13

g. The number of different values

h. Whether the field is language dependent or not

These features, grouped or individual, are used in different ways to improve the

assistants and the design. For instance: (e) and (h) are used to accelerate the creation of

the data model structure (section 3.2) and to create and debug SQL statements (section

3.3.2), (f) is used in the wizard window to define the data model classes (section 3.2), in

order to reduce and sort by relevance the fields that can be used to define the class

attributes and when proposing dialogs to retrieve information from the user in the RMA

(section 3.5). Finally, (a), (b), (c), (d) and (g) have been used to detect candidate slots

that can be requested using mixed-initiative dialogs or one-by-one (section 3.4.3); here

the idea was to use these heuristic features in combination with predefined configurable

rules in order to improve the performance of the speech recognition system by avoiding

difficult data to be asked simultaneously (e.g. two long number or dates, or two string

fields with a high vocabulary).

During the extraction of the heuristic features, we have incorporated a correction

mechanism based on regular expressions in order to change the type returned by the

metadata information in the SQL query for a given field. Thus, if the designer of the

database defined a field using a generic type such as string or float when they actually

corresponded, for instance, to dates or integers, then the system sets the right type.

Besides, the analysis of each field is used to avoid or warn the designer about using

mostly empty fields since they do not provide relevant information. One current

limitation in our approach, as we mentioned in section 1.3, is that we only collect

numerical values for the heuristic information, instead of grouping them using

associated key semantic terms (e.g., cheap, expensive, high, far, etc.). The possibility of

including them in a future work would increase the robustness of the accelerations, as

well as their understanding. The required modifications would be to implement some

kind of automatic clustering in topics or ranges of the database contents and then

introduce modifications in the different assistants in order to replace the semantic term

for the corresponding threshold value.

3.2. Strategies Applied to the Data Model Assistant (DMA)

In this assistant the data model structure or scheme of the service is created through

the definition of object oriented classes. As we have mentioned before, the objective of

these classes is to provide information about the information in the database that are

relevant for the service. Therefore, using as example the database schema depicted in

Figure 2, we can see that the designer defines two classes: Transaction and Account,

and several attributes that are related between them and with the database (i.e.

information about the relationship between each attribute and tables and fields).

Considering the organization of the class Transaction, it is possible to infer that in order

to perform a transaction three elements are required: the TransactionAmount, the

DebitAccount and the CreditAccount. Since the last two are not atomic attributes but

object references (ObjRefr to the class Account), we are required to go one level deeper

into the class Account in order to find the corresponding atomic attribute that the system

will request from the user (i.e, the attribute AccountNumber). Additionally, other dialog

goals could be possible from analyzing these two classes, e.g. obtaining information

about the last account movements (using the attribute LastTransactionList), to access

the information about the account owner (through the class Person), information

regarding the available balance, etc.

14

Figure 3. Form fill-in window that allows the creation of custom classes (from the

database and classes from the current model) in the DMA.

The main acceleration in this assistant is the incorporation of a wizard window that

uses the heuristic features to propose full custom classes and attributes that the designer

can use when creating the structure (see Figure 3). The wizard uses the heuristic (e), the

field type, for correctly setting the corresponding information in the window. The

assistant also sorts the most important or relevant fields for each table in the database by

relevance, using the heuristic (f), i.e. the number of empty values. Thus, if the heuristic

is high (i.e. there are a large number of empty values), then the system considers that it

is unlikely that it will be used to request information from the user and it will be placed

at the bottom of the list. Moreover, the assistant accelerates the design proposing

automatic names when a new class or attribute is being created. Finally, the assistant

allows already defined classes to be used for creating new ones. There are also other

interesting accelerations such as:

a) Re-utilization of libraries with previously created models, which can be copied

totally or partially. In this way, it would be possible to take advantage from previous

models of the same application in order to add a new goal or service. Besides, the

assistant allows the possibility of creating new libraries by selecting several classes and

attributes in the current model.

b) Automatic creation of a non-existing class when it is referenced as an attribute

within another one. For instance, consider the case that the designer is starting the

definitions of the complex attributes for the class Transaction in the schema shown in

Figure 2. In this case, when the complex attribute DebitAccount is included into the

class, the assistant automatically searches the referenced object class, i.e. the class

Account, in the internal list of already defined classes. If this class has not been defined

previously, the assistant automatically creates it as an empty class that can be edited

afterwards to include the attributes that belong to it (i.e. a top-down design). In the

15

example, the same process can be done for the referenced class TransactionDescription

when the LastTransactionList attribute is defined.

c) Definition of classes inheriting the attributes of a base class (i.e. parent classes). In

this case, when defining a new class, the designer can specify all the classes required to

be used as base classes. Then, the assistant automatically displays all the attributes

defined in the selected base classes and include the selected ones into the new class.

This way, the platform uses concepts inherited from object-oriented programming.

3.3. Strategies Applied to the Data Connector Model Assistant (DCMA)

The goal of this assistant is to allow the definition of the prototypes (i.e. the input

and output parameters) of the database access functions that are called from the runtime

system. Although the platform only requires the prototypes, we take advantage of this

assistant in order to create the actual implementation of these functions and to include

meta-information to accelerate the dialog design in subsequent assistants.

3.3.1. Definition of Relationship between Arguments and Data Model

The main acceleration strategy included in this assistant is the possibility of defining

the relationship between the input/output arguments of the database access functions

and the attributes and classes defined in the data model.

Figure 4 shows an example of the GDialogXML code generated by the assistant for a

database access function in the domain of the banking application. In this case, the

function PerformTransaction has three input argument variables that collect the

information regarding the account numbers and the quantity to transfer, and one

returning variable defined as Float. In the code, the tag xArgumentVars (highlighted in

yellow color) contains the information regarding the input parameters: the debit account

number (DebitAccountNumber, letter A), the destination account

(CreditAccountNumber, letter B), the amount to transfer (TransactionAmount, letter C),

and the tag xReturnValueVars (highlighted in yellow color) contains the return

argument AvailableAmount (in this case, the available amount after performing the

transaction). In the figure, we can also see the information about the dependencies with

the classes and attributes of the database schema defined in the previous assistant (i.e.

with the tag XDataMAttr, highlighted in blue color) and the dependencies with the

database tables and fields (i.e. with the tag xDBAttr, highlighted in green color). The

usefulness of this acceleration is that these dependencies will be used in subsequent

assistants (i.e., SFMA and RMA) to create state proposals (section 3.4.2) and the

automatic proposal of actions at each state (section 3.5). As acceleration, during the

definition of the arguments, the assistant automatically proposes the class and attribute

which is more likely to be related to the given argument, as well as the database table

and field. The mechanism is to use the name of the argument being edited to search for

similar classes or attributes in the data model structure, whereas the table and field of

the database is extracted from the data model since this information has been already

defined in the previous assistant.

16

Figure 4. Example of GDialogXML code for a Database access function

3.3.2. Automatic Generation of SQL Queries

Figure 5 shows the wizard window that generates the SQL query automatically for a

given function. The assistant allows the inclusion of several constraints supported by the

SQL language such as math functions (average, max, min, ln, exp, etc.), sorting,

selection (Top or Distinct), clustering (Group By), Boolean operators (AND, OR) for

combining the query restrictions, among others. In order to create the query

automatically, the assistant uses the input arguments (defined in the function prototype,

see number 2) as constraints for the WHERE clause, and the information of the output

arguments as returned fields for the SELECT clause (number 1). The wizard also uses

the heuristic (e), the field type, in order to create and debug the SQL statement

correctly. New input or output arguments can be added if the function prototype is not

complete or if the designer wants to test new argument combinations. The proposed

SQL query is presented in a textbox (number 3) that the designer can edit. In addition,

the assistant has a debug window (number 5) that allows a pre-viewing of the retrieved

records when using the proposed query. In order to debug the query, the assistant first

asks for specific values for the input arguments of the function (see number 4)

proposing the value that appears the most in the database by default.

17

Figure 5. Form fill-in window for the automatic creation and testing of SQL queries.

3.4. Strategies Applied to the State Flow Model Assistant (SFMA)

In this assistant the designer defines the state transition network that represents the

dialog flow at an abstract level. The main accelerations are the automatic generation of

state proposals, the possibility of specifying the slots through attributes offered

automatically from the data model, the automatic unification of the slots to be requested

to the user using mixed initiative dialogs, and the possibility of editing or generating

new rules for controlling the unification. In addition, a new GUI allows the definition of

new states using wizard driven steps and a drag-and-drop interface.

3.4.1. Functionalities Included in the Graphical User Interface

One of the first conditions imposed to be successful in the interaction with the

designer is a clear, intuitive, and flexible GUI. This is especially relevant in this

assistant since it has to allow several editing and visualization capabilities such as the

possibility of creating the flow diagram easily. Basically, there are two visualization

strategies: tree-based form-filling object modeling (e.g. like that used by VoiceObjects

Desktop
12

) or state-based dialog modeling (e.g. like that used by the CSLU RAD toolkit

or the Avaya Dialog Designer
13

). In our case, we have used the state-based dialog

modeling or tree-structured description. In this kind of representation, each leaf and

branch represents a state and a corresponding transition. Our main motivation for

selecting this kind of visual representation was twofold: it is common in most

commercial and research platforms [McTear, 1998], and it simplifies the visualization

of the flow thanks to its different states and transitions. Although it is limited by the

complexity of the task, since as the number of states grows the visualization degrades,

several strategies have been proposed to solve this problem. In our case, we have

followed two solutions: a) Allowing the designer to show detailed or minimum

12

 http://developers.voiceobjects.com/
13

 http://www.avaya.com/usa/product/dialog-designer

http://developers.voiceobjects.com/
http://www.avaya.com/usa/product/dialog-designer

18

information on the states, as well as some degree of encapsulation using libraries and

complex dialogs, and b) Implementing an automatic algorithm that helps the designer to

place the objects on the canvas avoiding the creation of a confusing network of crossed

lines between the states, and that reduces the visualization problems by using connector

symbols so the designer is not forced to follow long lines beyond the area of

visualization of the canvas (see Figure 6). Finally, the main window also allows the

creation of new states just dragging and dropping them from the floating window with

the proposal of states, or using contextual right click commands. At the same time, it

allows the creation of several connections (N:1, 1:M or N:M states) in few steps.

Figure 6. Appearance of the SFMA main window: states, connectors, and proposals of

states

3.4.2. Automatic State Proposals for Defining the Dialog Flow

This is one of the most important accelerations in the assistant. Here, the system

automatically generates an automatic proposal for the dialog states that include the slots

to be requested to the user. The advantage of these proposals is that they can be used

directly by the designer with little or no modification. In order to create these proposals,

the assistant uses the information from the database structure and the prototypes of the

access functions from the database. The proposed states are available as a sidebar for

the workspace (see Figure 7). The following sub-sections explain these state proposals.

A. Class dependent states: For each class defined in the DMA, the assistant creates

a class template in which the designer can drag and drop into the workspace. The pop-

up window, on the left-hand side of the figure, allows the designer to select the

attributes to be used as slots in the new state. The assistant allows the selection of

multiple templates/classes in order to create the new state. In this case, the pop-up

window shows all atomic attributes that belong to the selected class. The assistant

expands the complex attributes (with inheritance and objects) allowing only the

selection of atomic attributes since only these attributes can be asked to the user in the

real time system (number 3 and 4). A proposed name for the new state is automatically

generated from the selected classes, but the designer can change it. Finally, the new

19

state is inserted into the workspace allowing the designer to define the transitions to

other states. During this process, the mechanism for proposing the unification of slots

for mixed-initiative or form filling dialogs is applied (see section 3.4.3).

B. States from attributes with database dependency: This kind of state is created

from any attribute defined in the database model (DMA) that refers to a database field

and also used as an input argument in any database access function. For instance,

considering the database schema of Figure 2 and the input arguments of the database

access function depicted in Figure 4, the assistant would create three state proposals:

one for the attribute TransactionAmount, one for the attribute CreditAccountNumber,

and another one for the attribute DebitAccountNumber (see the marked states with

ellipses in Figure 7).The proposed states contain only one slot and its name corresponds

to the name of the attribute in the data model. However, the designer can select several

states before making the drag & drop allowing the creation of states with multiple slots.

Figure 7. Generation of new states using a pop-up window with state proposals and slots

from classes defined in the data model structure (DMA)

C. States from database access functions: In this case, the system analyzes all the

prototypes of the database functions containing input arguments defined as atomic

types. Then, the system uses the name of the function as a proposal for the name of the

state, and the input arguments as slots for that state. The main motivation for proposing

these states is that they are likely to be asked to the user since, in general, the arguments

of the database functions will be filled in with the information provided by the users in

real-time. For instance, in the case of the database access function PerformTransaction,

the assistant detects that it contains three input arguments (CreditAccountNumber,

DebitAccountNumber, and TransactionAmount), therefore it creates three states, one for

each input argument. and adds them to the list in the dock window. Moreover, the

platform allows the designer to select several of these proposed states in order to create

a unified state. The proposed states are available to the designer in the main window

through the second tab in Figure 7 (named “States from DCMA”).

D. Empty state template and already created states: The first one allows the

creation of a new empty state, with no defined slots inside, that the designer can

completely define afterwards. Thus, we allow a top-down design. The second one

20

allows the designer to re-use already defined states to create new ones (e.g. to create a

new state based on our example Transaction state where the user has to provide the

credit and debit account numbers but instead of returning the available amount, in this

case the system will return the available credit or the new amount of monthly

installments).

Example. In order to demonstrate the usefulness of the proposed states, consider the

following case (all numbers refer to Figure 7): the designer needs to create a state where

the user will be able to perform a money transfer between two accounts (i.e.,

Transaction in number 1). Here, it will be necessary to define three slots: two for

requesting the credit and debit accounts, and another one for the amount to be

transferred. As we can see in Figure 7, the assistant proposes this state through the

template Transaction created from the corresponding class in the database schema (i.e.

class Transaction in Figure 2). From this proposed state, the designer could select the

attributes TransactionAmount (number 2) and AccountNumber (number 4, from the

attribute CreditAccount) (the debit account number is specified in the same way from

the attribute DebitAccount, but it is not shown in the figure) to be used as slots in the

new state Transaction. After closing the pop-up window, the system will analyze the

three defined slots and will decide which ones should be asked together based on the

heuristic information and unification rules described in the next section. In this case, the

system will propose to ask them one by one (because three long numbers asked together

would be very difficult to recognize). Finally, the system will create the new state and

draw it into the workspace where the designer can edit the transitions. On the other

hand, if instead of selecting the templates proposed in (A), the designer selects the three

states marked with ellipses in Figure 7 (i.e. proposals type (B)) or selects the template

created from the SQL function PerformTransaction defined in the previous assistant

(proposals type (C)), the system will create the state and analyze the slot unification as

before, and the result would be the same.

3.4.3. Automatic Unification of Slots for Mixed-Initiative Dialogs

This acceleration helps the designer to decide when two or more slots are good

candidates to be requested at the same time (using mixed-initiative forms) or one by one

(using direct dialogs) only when a mixed-initiative is not advisable. This is an

interesting and innovative feature that we offer and distinguish our platform from

others, where they leave this decision up to the designer. Since this functionality relies

on using heuristic information it is only available when the slots in a given state have

been related to a field/table in the backend database.

The assistant uses the average length, the vocabulary size, the proportion of different

values, and the field type as main heuristic features obtained for the candidate fields

(section 3.1) and applies a set of customizable rules to decide which slots can be unified

and which ones cannot. The rules included in the platform were defined from our

knowledge on deploying dialog applications and from known guidelines in this area

[Balentine and Morgan, 2001]. In total, we provide a list of 30 different rules (16 for

allowing mixed-initiative and 14 for using directed forms) that ranges from analyzing

combinations of more than two slots with different field types (e.g. three strings, one

string and one integer, two dates, two floats). Table 1 shows some examples of rules

provided for allowing Mixed-Initiative (MI) or Directed-Form (i.e. one by one, DF). In

the table, the terms long, short, high, etc. are defined according to the thresholds set by

the designer for each heuristic.

For instance, according to the predefined rules included in the platform, the system

does not propose using mixed-initiative dialogs if: a) there are two slots defined as

21

strings and the sum of the average length of both is longer than 30 characters. In this

case, the system tries to avoid the recognition of very long sentences, b) One of the slots

is defined as a string with an average length greater than 10 characters, and the other

slot is an integer/float number greater than 4 digits. The rule tries to avoid the

recognition of long strings, e.g. an address plus long numeric quantities, e.g. phone or

social security numbers, etc., in the same sentence, which again is very likely to fail, or

c) there are two numeric slots with a proportion of different fields for a given attribute

which is close to one, and the vocabulary size of both fields is high (configurable

value). Again, there is a high probability of misrecognition. Therefore, in all three cases,

the system decides that it is better to ask one slot at a time using direct dialogs.

Description and Justification Float Int String Date MI DF

Two or more “Date” slots: Since Dates include too many

words we avoid to recognize them together

Two “Strings”, with a high number of characters or

words, and related to fields with a high vocabulary size:

e.g. name of airports or cities and states

One single “String” and one long “Integer”: Avoids the

recognition of a long sentence generated by expanding

the number into words

Two “Floats” with a high number of different values

(ratio) and a high total number of values: Since both are

floats, we have to consider the recognition of the

decimal part.

Three “String” slots each one with more than two words

length and a medium vocabulary size: We avoid the

recognition of long sentences

One short “Integer” and one “String” with low

vocabulary size: e.g. channel and number in a TV

recorder system

Two “Strings” with low vocabulary size: e.g. play the

cassette

Two small “Integers” with low or medium ratio and low

vocabulary size: e.g. asking for a year, day, and month

Two low vocabulary “Strings” and one short “Integer”:

E.g. two currencies and the amount in a currency

conversion system

One short “Float” and one “String”: Allows asking for a

command and quantity (e.g. “set cursor position to three

point five)

Table 1. Example of default rules for unification or separation of slots provided by the

platform (ranges and thresholds are application dependent)

The configuration window, Figure 8, allows the creation (number 2), edition,

deletion, or activation of the rules and conditions (number 3). It is also possible to create

rules for detecting direct dialogs (number 1).

22

Figure 8. Configuration window for creating or editing rules for automatic detection of

direct or mixed-initiative dialogs

3.5. Strategies Applied to the Retrieval Model Assistant (RMA)

This is the most complex assistant in the platform since this is where the designer

describes each dialog in detail, i.e. all the actions (e.g., variables, loops, if-conditions,

math or string operations, conditions for making transitions between states, calls to

dialogs to provide/obtain information to/from the user) to be done in each state defined

previously. The assistant is highly automated and intuitive, so it reduces the designer

effort. In [D‟Haro et al, 2006] and [D‟Haro et al, 2004], we describe all the available

acceleration strategies and capabilities in detail. Briefly, the most important ones are:

1. Automatic creation of configurable and generic dialogs for obtaining or showing

information from/to the user (with prefix DGet and DSay respectively for easy

identification). These dialog templates are created for each class and attribute

defined in the data model. For instance, using the database schema in Figure 2,

the system will automatically propose a configurable DSay dialog for the class

Account and another for class Transaction.

Figure 9 shows the form window to customize the proposed DSay dialog

template allowing the selection of which information is going to be provided

using it: the AvailableBalance and TransactionAmount in this example. Then, the

resulting dialog can be set as the posterior turn in the dialog flow after

performing the transaction, in order to inform the user about how much money

was transferred and what is the available balance in the credit account. The figure

also shows that the assistant allows the selection of other inherited attributes

mentioned in the data model (in this case, from the class Person in Figure 2).

On the other hand, the assistant generates additional DSay and DGet dialogs for

all the atomic attributes defined in the database schema (e.g. two dialogs: one to

show and another one for obtaining the AvailableBalance, two more for the

AccountNumber attribute, and two more for the TransactionAmmount). Finally,

other common dialogs are also available such as Welcome, Goodbye, Transfer to

operator, etc.

23

Figure 9. Example of an edited DSay dialog that provides the user the available balance

and the transaction transferred amount.

2. Automate the process of passing information between actions/dialogs by

proposing the variables that best match the connections or allowing the creation

of new variables where no match exists. Since it is very common in dialog

applications that several actions and states have to be „connected‟ as they use the

information from the preceding dialogs, we considered a highly valuable

acceleration. In general, most current design platforms allow the same kind of

functionality, offering the user a selectable list of all the available variables in the

dialog. In other cases, especially considering the connections with database

access functions, some platforms only allow the designer to define the matching

by modifying the script code by hand. In our platform, we provide a better

solution by automating the connection through automatic proposals.

For example, suppose that the designer is defining a state to perform a transaction

between two accounts and then to inform the user about the available amount. In

case that the designer had previously defined a database function to perform this

action, and that the function prototype requires three input arguments (i.e. credit

account number, debit account number, and amount) and returns a float value

(i.e. the available amount), the designer here needs to connect the current state

variables containing the two accounts (e.g. debitAccountNumber and

creditAccountNumber) and the transfer amount provided by the user (e.g.

TransactionAmount), as well as the variable to save the final available amount,

with the input and output arguments of the database function. In this case, the

assistant detects the input/output variables required and offers the designer the

most suitable already defined variable of a compatible type; if there is more than

one candidate variable to be shown, the assistant sorts them according to the

name similarity between function argument and current variables. If there is no

compatible variable to offer, the assistant allows the creation of a new

local/global variable. Since the system automatically proposes the values and

options presented in the forms, the designer only needs to click the accept button

24

and continue with the design. Additionally, the assistant includes a window

where all the matching can be edited.

3. Automatically propose the actions required for completing the information for

each state of the dialog flow; the assistant proposes the dialogs to ask information

from the user, the database access functions, and the dialogs to show information

to the user. Figure 10 shows an example of the proposals for a dialog where

given a currency name the system provides its specific information (e.g. buy and

sell price, general information, etc.) in the context of a banking application.

Using the proposal window, all the designer would need to do is to select the

corresponding dialog to ask the currency name (i.e.

DGet_CurrencyName_IN_CLASS_Currency), then the database access function

for retrieving the information (i.e. GetCurrencyByName), and finally the dialog

to show the information to the user about the currency (i.e.

DSay_ATTR_BuyPrice_IN_CLASS_Currency). To provide these proposals the

assistant uses the information of the relationships between slots and arguments of

the database functions and the attributes and classes in the data model. When

there is no relationship specified, we apply relaxed filters such as matching in

types, similarity of names, or same number of arguments and slots in the state.

Figure 10. Example with automatic dialogs and database access function proposals

4. The platform provides five basic dialog types that cover the usual possibilities in

programming: based on a loop, based on a sequence of actions (e.g. calls to sub-

dialogs), a switch construct based on information input by the user (i.e. menu-

based dialog), a switch construct based on the value of a variable, or empty

dialogs, with no action within, that can be edited afterwards.

25

5. The platform allows the quick creation of mixed-initiative dialogs, dialogs with

over-answering (that do not exist in any current development platform), the quick

view of dialog actions using tooltips, among others.

6. Finally, the platform allows the quick creation/deletion of dialog variables and

constants, the creation of if-then-else or loop (for, while) structures that allow the

designer to test one or more conditions before doing other actions or proceeding

with the dialog (e.g. to ask the user a pin code and then try to obtain it until a

defined number of tries is reached, in case the pin is incorrect the system can

provide an error message and finish the service), selection structures (switch-

case), assignments between simple and complex (objects) variables, and

assistants for carrying out mathematical or string operations. In all these cases,

the assistant uses form-fill windows to allow the designer to define them and then

to include the corresponding embedded code to perform them at real time.

3.6. Strategies Applied to the Modality Extension Retrieval Assistant for

Speech

In this assistant we considered solutions for two important and specific problems for

the speech modality: a) the presentation of results to the user after accessing the

database, and b) the confirmation of the user‟s answers. The common mechanism

offered by current platforms to deal with these problems is to force the designer to

specify the complete dialog flow or to leave the problem to some predefined actions

provided by the ASR engine. These solutions are not satisfactory since they imply the

codification of too many situations and conditions by hand, and because there will be

restrictions on the confirmation handling that the designer could not take into account.

Our solution relies on providing automatic proposals for the different data that the

designer has to specify, by automatically generating all the dialog flow according to the

designer selections, and by using predefined configurable templates and built-in dialogs

(please refer to section 4.6 and Appendix C in [D‟Haro, 2009] for further information).

For the dialogs that provide the list of retrieved results after a database query, the

assistant allows to specify the dialog flow for showing the information depending on the

size of the list. Four cases were considered: a) when there is no retrieved result, b) when

the list has only one item, c) when the number of items lies within a defined range, or d)

when there are too many items, so it is difficult to say all of them using speech.

On the other hand, for the dialogs to obtain information from the users, the assistant

automatically generates the flow for confirmation handling (i.e. what to do when the

user does not provide an answer after a system query, to ask direct questions, etc.). We

consider the following cases: a) confirmation for dialogs with one slot, b) dialogs with

mixed-initiative, c) dialogs with one compulsory slot plus slots with over-answering,

and d) the most complex case, dialogs with mixed-initiative and over-answering slots.

3.7. Strategies applied to the Script Generator

As we mentioned in the description of the platform structure, the platform

automatically generates a standard compliant VoiceXML script required to run the

service. However, several tasks were carried out, both in the platform and the runtime

system, in order to support and overcome some of the limitations of VoiceXML and to

increase the portability and functionality of the platform. Below, we briefly describe our

efforts in this area. For further information please refer to [D‟Haro et al, 2006][D‟Haro,

2009] and [Hamerich et al, 2003].

26

It is well known that the current VoiceXML standard specification limits the

naturalness of the interaction of the user with the system. One of the main problems

happens when the speaker wants to go back in the flow. In this case, the VoiceXML

allows the designer to introduce a dialog to ask if the user wants to try again or repeat

the same action. In our platform, we have applied a more general solution to this

problem by using a “switch-case” dialog that the designer can use to reset the

corresponding slots in the state and jump back to a previous state to allow the user to

repeat the process. Since we use global variables to keep the information of each slot, it

is easy to reset them according to the user selection at any state.

Finally, another problem occurs if the user wants to change an earlier piece of

information before querying the database. In this case, the VoiceXML standard does not

define an easy mechanism to implement this kind of behavior; therefore, it is

responsibility of the designer to design it. In this case, the platform allows the designer

to select the following options: a) to use a confirmation sub-dialog just before retrieving

the results from the database, or b) to use a special token word such as: “abort” in order

to allow the user to restart the state or “agent” in order to redirect the call to a human

agent. As future work, we plan to include an automatic dialog template for confirming

the dialog slots that the designer can easily use.

4. Evaluation

In order to estimate the performance of the platform, its assistants, and the different

acceleration techniques, two evaluations were carried out: a) an objective evaluation,

where different designers, using our platform, carried out predefined typical tasks when

designing dialog applications, and then compared the same tasks but carried out with an

alternative assistant with fewer accelerations, and b) a subjective evaluation where the

designers rated the assistants and accelerations after using the platform.

In order to understand the scope and goals of the current evaluation, it is important to

mention that right at the end of the GEMINI project, we carried out a subjective and an

objective evaluation with more than 40 developers, where we tested the level of

functionality of each assistant and their integration in the platform. During this

evaluation, a complete dialog application was carried out, allowing us to know the

amount of time the evaluators spent on using and learning the application, as well as

different recommended improvements in terms of accelerations and GUI (for further

details please refer to [D‟Haro et al, 2006]). Besides, as part of the project, the

development platform was used for successfully creating two complex applications: 1) a

banking application for a commercial product by a Greek bank (one of our partners),

and 2) an application called CitizenCare to offer a voice information retrieval system in

the context of public authorities available in both German and English languages, as

part of a government supported application. It is important to highlight that both

applications were evaluated with actual callers, showing that the resulting dialog

application and the design platform worked properly. In the next section, we will

provide a short description of the evaluation results for both applications. For additional

details please refer to [GEMINI, 2010], in the section “Public test evaluation report”.

4.1. Evaluation results for the runtime platform

For the banking application, a total number of 143,653 calls (with more than 2,000

different customers) were answered by the VoiceBanking system. The calls were

recorded for a total of 6 months with an average of 22 thousand calls per month. The

distribution of the population using the service was: Male: 70.5% and Female: 29.5%,

27

without any limitation on age or profession. The users‟ language was Greek with the

following dialect variations: Northern, Aegean, and Cretan. One of the most important

results from the evaluation was that the percentage of customers that actually chose to

be served by the automatic system was almost 45%, although they knew, from the first

prompt, that they could reach the human operator at any time. In addition, from the total

number of calls, more than 40% of them were served totally by the system without any

operator intervention. On the other hand, dialog performance in terms of transaction

success was 92.23%. The task completion rate was 93.51%, and the average duration of

the interaction was 107.4 s considering the 9 main tasks available in the application (the

result also includes the time spent on performing the user authentication and the

prompts used to provide the information to the users). The hang-up rate was 22.08%

(where 20.08% of them occurred before the 1
st
 answer), the average number of turns

was 6.35, and the operator fallback was 2.81%. Finally, a subjective survey about the

system was done among a users control group, i.e. bank employees and call centre

agents. The results show that 74% of the young users (20-40 years old) were willing to

use the automatic system in comparison with the 60% of older users. Moreover, 76% of

the young users changed the way of speaking in order to increase the quality of system-

user interaction and only 60% of older people accepted such a change.

Regarding the CitizenCare application, the evaluation was carried out on 7 male and

3 female German subjects with ages ranging from 27 to 44. When asked about their user

experience with automatic systems, three considered themselves as „novices‟ while the

other 7 considered themselves as „intermediate‟ users. The results showed that most of

the subjects (80%) rated the system easy to use, and 30% stressed the system‟s

capability to react on shortcuts. 10% rated the system „partly easy to use‟ since it

sometimes presented too much information at once (when selecting all information).

Finally, 10% did not find easy to get the desired information, mainly due to the poor

recognition rate of the ASR used. 70% of the subjects had no complaints about the

dialog flow. The other 30% criticized mainly the recognition failures of single words

and the overall poor recognition quality.

Finally, we want to highlight that many aspects of the runtime behavior of the

application were not considered in this evaluation for the following reasons: 1) because

the final result for the voice modality is a VoiceXML compliant script that can be run at

any voice browser, therefore the quality of the final script was assumed to be right,

except for minor bugs or mistakes made by the designers, and 2) because the final

dialog application is constrained by the self-limitations of the VoiceXML standard,

although some of them, such as incorporating over-answering dialogs by using a more

elaborated flow logic with standard elements, using global variables for allowing

transitions between different states and keeping the dialog information available to all

the states, using a special switch dialog in order to be able to go back in the dialog flow,

or the ones described in section 3.7, were tested during the creation of the GEMINI

applications (for further details about the improvements made to the VoiceXML

standard please refer to [D‟Haro et al, 2004]).

4.2. Experimental setup

The evaluation was made in two sessions of 4 hours each by 9 testers which were

classified into three levels: 4 novices, 3 intermediates, and 2 experts. All the evaluators

had some experience in at least one programming language but little experience in

designing dialog applications. Most of the evaluators were undergraduate students at

28

our university. The average age for all testers was 27. From this group, only three

participants had some knowledge of the platform.

During the first session, the evaluators received a complete explanation of the whole

platform, the goals of the evaluation, and the interface used to obtain the statistics.

Finally, they also received instructions and evaluated the three first assistants: DMA,

DCMA, and SFMA. During the second session, the evaluators learnt how to use and

evaluate the RMA and MERA-Speech assistants. In general, each assistant evaluation

was divided into three main blocks: a) the evaluators received instructions on the

capabilities and accelerations included in the corresponding assistant through examples

of use, b) the evaluators were asked to carry out an example task in order to consolidate

the knowledge and to answer questions. c) Finally, the evaluation was carried out and

the evaluators were later requested to fill in the subjective survey to measure the

acceptance, usability, intuitiveness, and most interesting features of each assistant.

4.3. Objective Evaluation

The goal was to evaluate the proposed accelerations in our platform against using a

similar tool with different or less accelerations. In order to do so, we collected a set of

quantitative measures obtained by the testers when they were requested to carry out

different tasks using the platform and a parallel tool. Although there are currently no

standard metrics for making the comparison, in [Jung et al, 2008], for a similar

evaluation, they proposed different tasks that the evaluators had to carry out using their

platform and an open text editor chosen by each participant. Here, different metrics

were collected such as mouse clicks, keystrokes, and elapsed time. [Agah and Tanie,

2000] carried out a similar evaluation, proposing the same metrics when evaluating their

intelligent interface. Given both cases, we decided to use these metrics too but

proposing a new one: the number of times the user presses the delete key when typing.

The goal of this new metric was to provide an additional measure of the difficulty of

introducing information into the assistants or writing the GDialogXML code. Besides,

since the assistants reduce the number of keystrokes needed, this fact could also be

reflected in the number of mistakes made by the designers.

For our evaluation, we followed a similar approach than [Jung et al, 2008], i.e.

proposing different tasks for each assistant and comparing the quantitative measures in

each case with those obtained when annotating the same tasks using the semi-automatic

editor included in the platform called Diagen. Like the other tools in the platform,

Diagen also includes interesting accelerations to facilitate the process of writing or

editing the GDialogXML models. The most important features are: a) The XML is

automatically created and pasted onto the workspace by using of a set of pop-up

windows that are sequentially displayed according to the information that the designer

needs to specify, thus it is not necessary to type in all the tags nodes and children, b)

Incorporation of a large number of templates for defining the whole set of possible

actions and information allowed by the XML syntax for each kind of model and

assistant, and c) the visualization and validation of the data. For further details see

[Hamerich, 2008] and [D‟Haro, 2009].

The reasons for using Diagen, instead of allowing the evaluators to use any text

editor of their liking, were: a) to make the fairest comparison between both evaluations.

It is well known that writing any information in any XML-based language is a tedious

and difficult task; b) Diagen reduces the need to memorize the XML specification, c)

almost all developers and development platforms use some kind of tool for writing from

scratch or fine-tuning the code generated by the main application, and Diagen is a

29

representative example of this kind of application, and d) because we could not find any

commercial or academic platform comparable to ours. For instance, most of the

platforms create only VoiceXML applications instead of multimodal services as in our

case (Speech using VoiceXML and Web using xHTML pages), or they do not take into

account the Database information nor include the accelerations that we needed to

evaluate. Finally, most of the commercial platforms have an advanced graphical

interface which we did not want to evaluate as it is well known that the appearance of

the GUI has a great influence on the evaluators.

Finally, it is also important to mention that the database used during the evaluation

was a modified version of the database used for developing the Greek bank application

at the end of the GEMINI project. The reason for not using the original one was because

of the sensible data about the customers contained on it. In this case, the critical

information such as names, account numbers, pin codes, etc. were completely modify

by similar ones; however, the database schema was preserved without any modification.

In addition, the selection of the same database for all the participants was considered as

necessary in order to compare the different metrics obtained for each evaluator.

4.3.1. Description of the evaluated tasks

In general, for each of the evaluated assistants we defined a set of two or three

different tasks that were carefully chosen to test the different possibilities and

accelerations allowed by the assistants, as well as the different kinds of problem that a

designer could find when developing a real application. Below, we provide a brief

description of each of the evaluated tasks as well as information about the time the

evaluators spent on completing them. For a complete description, please refer to

[D‟Haro, 2009].

To evaluate the creation of the data model structure (DMA, section 3.2), we asked

the evaluators to test two different sub-tasks:

a) In the assistant for creating complex classes: The definition of the class Account

with two atomic attributes (i.e. account number and available balance, both

related to the corresponding database fields).

b) In the automatic creation of non-existing classes (see section 3.2): The creation of

a mixed class structure (in this case, the class Person) including two atomic

attributes (i.e. first name and last name, both related to the corresponding

database fields and with language dependency) and one complex attribute (i.e. a

list of accounts defined as an embedded class).

For the first task, the average elapsed time was 45 seconds. For the second task, it

was 65 seconds.

To evaluate the creation of the database access functions (DCMA, section 3.3), we

proposed the creation of a function with two input arguments and one output argument,

as well as to check the results retrieved for the proposed SQL statement (section 3.3.2).

In this case, the function proposed for testing had to return the account number given

the authentication code and account alias. The average time needed in the evaluation

was 125 seconds.

For the definition of the states, slots and transitions at a high-level (using the SFMA),

we proposed three sub-tasks:

a) The creation of a state with one slot related to the database (using the proposal of

automatic states with slots or the empty state template and then define the slot,

section 3.4.2). The objective of the proposed state was to ask the user for the

30

target service and to define the transitions to the next dialog. The average time

for this task was 33 seconds.

b) The definition of a state with two slots, where both slots had to be set as a mixed

initiative, and the transition to other state (using the automatic unification of slots

to be requested using mixed-initiative dialogs and the automatic creation of an

undefined state when it is referred as a transition state, section 3.4.3). The

proposed task was to create a state for requesting the pin code and alias of the

account and then to make the transition to a new state where the user would be

asked to select the available tasks after performing the authentication step (e.g.

transactions, obtain account information, and buy or sell shares). The time spent

on this evaluation was 58 seconds in average.

c) The creation of a connection between two states (in this case, this task was

included for evaluating some of the functionalities included in the graphical user

interface). The average time was 10 seconds.

For the complete definition of the actions to be carried out in each state (RMA), we

proposed three tasks:

a) The creation of a menu-based dialog where users are required to select between

three options (i.e. personal information, general information, and transactions),

and according to the user selection to jump to a different state. In this case, the

dialog flow was designed in less than 90 seconds thanks to the different kinds of

dialogs provided by the platform (section 3.5), the action proposals window, and

the automatic DGet dialog templates.

b) The creation of a dialog with over-answering and an IF-Then-Else condition. The

proposed task was to use a DGet dialog to obtain the alias of the account to make

a transfer and optionally to provide the transfer amount. Then, depending on the

selected account (i.e. if it was the favorite one or not) to jump to the dialog to ask

the transfer amount or to another dialog to request additional information about

the account to be used. Here, the designers spent less than 2½ minutes thanks to

the dialog proposals window, the automatic matching of arguments between

actions, the procedure for including compulsory and optional slots, and the

possibility of defining programming structures.

c) Finally, the creation of a mixed-initiative dialog to perform a transfer between

two accounts (requesting the aliases of the debit and credit accounts), then calling

the dialog that asks for the amount, then calling the function that accesses the

database and, finally, confirming the user if the transfer was successful or not.

This task allowed testing the accelerations provided by the assistant for defining

mixed-initiative dialogs, matching variables, the action proposals window, and

the assistant for defining local/global variables. The average time spent on this

task was close to 90 seconds.

Finally, for the MERA-Speech assistant, we proposed two tasks. In this case, thanks

to the available accelerations, the assistant automatically proposes the strategy to be

followed and automatically creates all the internal actions for handling the speech

recognizer errors.

a) The definition of a dialog for presenting a list of retrieved results. In this case, for

providing information on the rates for buying or selling different international

currencies. The elapsed time was in this case nearly 1½ minutes.

31

b) Finally, to automatically fill-in the confirmation handling for all the dialogs to

ask for information from the user included in the design. Here, the time spent was

only 4 seconds, since all the evaluators used the automatic proposal of the

application, although, as it was expected, the expert developers spent a little more

time (around 7 seconds) on reviewing the proposals.

4.3.2. Evaluation Results and Observations

During the evaluation we observed some factors that must be considered in order to

understand the results. The first one was that in some cases the time that experts and

novices/intermediates spent on solving the same task was very different since the

former used the available strategies and accelerations but the latter used an alternative

method, not using the accelerations but a manual method. In order to avoid this

behavior, we reinforced the explanation of the accelerations and spent some more time

solving questions; b) considering the increasing complexity of the XML language for

coding the more complex tasks, we should expect greater improvements in the elapsed

time when using the assistants instead of Diagen. However, as the testers used Diagen

continuously during all of the tasks they soon got used to its interface and therefore

worked faster with it; c) Finally, we also saw that the evaluators, when using the

assistants, spent a lot of time reviewing the final result to check whether it corresponded

to the expected result, however when using Diagen, since a lot of XML text was

generated, they did not spend so much time on the revision.

In general, all tasks using the assistants or Diagen were carried out in just a few

seconds to two minutes (Diagen being, on average, two or three times slower). The

exception were the tasks for the RMA, where the average time elapsed using Diagen

was 1,493 seconds (around 25 minutes), in comparison to the 140 seconds (2½ minutes)

using the platform. In this case, the time elapsed is one order of magnitude greater than

that using the assistant. The main reasons for these values are the extensive complexity

of the GDialogXML syntax when codifying the optional and compulsory slots, and the

low number of accelerations included in Diagen to codify the conditional actions.

Figure 11 shows an overview of the average improvements, in percentage, of using

the assistants instead of Diagen, for each quantitative measure and the average

improvement considering all the metrics and evaluators. In the figure, a positive value

means that the assistants perform better than Diagen, and a negative value means the

opposite. As we can see, the accelerations proposed in this paper produce an average

improvement of 65.5% for defining the data model structure, 16.6% for defining the

prototypes of the database access functions, 42.2% in the definition of the finite state

model of the application (SFMA), and 84.8% for defining all the actions of each state of

the dialog flow. Thus, we obtained an overall average improvement of 52.3% which

corresponds to 56.5% improvement in the time elapsed, 13.4% for the number of clicks,

84% in the number of keystrokes, and 55.2% in the number of keystroke errors. These

results are consistent with the number and scope of the accelerations provided by each

assistant. Besides, the improvements are greater in the assistants where the more

complex structures and actions are required; thus, we accelerate the design and guide

the designer in the steps where it is more necessary.

32

Figure 11. Chart with the average improvement by assistant considering all tasks for the

objective evaluation

4.4. Subjective survey

At the end of the two sessions of the objective evaluation, the evaluators were

requested to fill in a subjective survey regarding the different assistants and

accelerations. They were asked to answer a 4-item questionnaire per assistant with

general questions about the appearance of the assistant, its level of intuitiveness, how

fast it took to learn it, and whether the functionality of the assistant was enough. Then,

they also answered to a 12-item questionnaire with specific questions about the

accelerations included in the AGP. In most questions the users had to rate the relevant

attribute or characteristic using a 10-point scale (1=minimum, 10=maximum). Finally,

the survey also included open questions to provide comments and suggestions.

The left-hand side of the chart in Figure 12 shows the results of the general questions

on the different assistants evaluated. In this case, we observed that these results confirm

the designer-friendliness of the assistants, as well as their usability, since all the

assistants obtained an overall score of more than 8.0, which is a satisfactory result. It is

important to mention that although Diagen was easy to use for the first tasks, it got a

bad qualification of 4.5, probably because the generation of the final tasks was too

cumbersome in comparison to using the platform assistants.

Figure 12. Average results of the subjective evaluation for general questions on the

assistants (left) and for the accelerations (right)

33

The right-hand side of the chart in Figure 12 corresponds to the results for the

accelerations used during the objective evaluation. Thus, the participants had the

possibility of using and experimenting with them, therefore their results are relevant

since they are given in the heat of the moment. In this case, evaluators scored the

automatic states in the SFMA with 9.3, the SQL generation and the unification of slots

for mixed initiative with 9.0, and the class proposals for the DMA with 8.9. As regards

the RMA, the passing of information between actions/dialogs and the proposal of

actions to define the states obtained 9.8 and 8.6 respectively.

5. Conclusions and Future Work

In this paper, we have described the main accelerations included in a multimodal and

multilingual design platform in order to speed up the design and guide the designer

through all the steps required to create dialog services. The proposed accelerations are,

in most cases, innovative without a direct correspondence to those offered by any of the

current commercial and research platforms. Different types of accelerations have been

proposed according to the requirements, capabilities, and available information at each

assistant that makes up the platform. Most of these accelerations take advantage of

heuristic information extracted from the contents of the backend database and from an

object-oriented representation of the data model structure, in order to generate different

kinds of proposals that simplify the process of creating and completing the dialog flow.

Other accelerations consist of different wizard windows or simplified processes that

help designers to complete, create, or debug models required by the design and runtime

platform in order to provide the service.

In order to study the usability and acceptability of the assistants, as well as the

proposed accelerations we carried out both subjective and objective evaluations with

designers with different levels of experience in programming dialog applications. The

results showed that the proposed accelerations improve the interaction with the

platform, help to generate better services, reduce the design time by more than 56%, and

were highly appreciated (between 8.0 to 9.0) by the designers as proved by the

subjective evaluation. In addition, the whole platform was rated with an average score

of 8.0 that also confirmed the high performance of the platform and its assistants.

In spite of the good results that we obtained during the subjective and objective

evaluations, several interesting ideas can be considered in order to extend the

functionalities of the platform, as well as increasing the usability of the information

extracted from the database contents:

 DMA: Allows the automatic creation of complex data model structures created

for each table in the database, allowing the possibility of including complex

attributes using the relationships defined in the database between different fields

and tables. The assistant could also use the heuristic features in order to select the

most probable tables and fields to be used as attributes in the new classes.

 DCMA: Extends the capabilities of generating SQL statements and improve the

process of defining the input/output parameters of the function prototypes

through a graphical interface.

 UMA: Incorporation of an innovative methodology for proposing the default

values for the confidence levels to ask for information from the users. In this

case, we will use the heuristic information of the database and a set of rules to

modify the default values specified by the designer in the first stages of the

design. Another idea is to extend the user profiles (for instance to young/old

34

people), in order to modify the values of several parameters for

confirmation/presentation of information following the results reported in

[Wolters et al, 2009].

 MEA: Extends the generation of vocabulary files for the speech recognizer by

automatically creating them from the database contents and heuristic information.

 General: Finally, we also consider important to improve the evaluation by

incorporating new tasks and databases from other domains such as a travel

agency or tourism information kiosk.

6. Acknowledgements

This work has been supported by ROBONAUTA (DPI2007-66846-c02-02) and SD-

TEAM (TIN2008-06856-C05-03). We want to thank the following people for their

contribution in the coding of the platform and runtime system: to Rosalía Ramos, José

Ramón Jimenez, Javier Morante, Ignacio Ibarz, and Rubén Martín from the Universidad

Politécnica de Madrid, and to all the members of the GEMINI project for making

possible the creation of the platform described in this paper.

7. References

[Agah and Tanie, 2000] Agah, A., and Tanie, K. 2000. Intelligent graphical user interface

design utilizing multiple fuzzy agents. Interacting with Computers, Vol 12 (5), pp. 529-

542.

[Balentine and Morgan, 2001] Balentine, B., and Morgan, D.P. 2001. How to Build

a Speech Recognition Application: Second Edition: A Style Guide for Telephony Dialogs.

Enterprise Integration Group; 2
nd

 edition, 414 pages. ISBN-13: 978-0967127828.

[Bohus and Rudnicky, 2009] Bohus, D., and Rudnicky, A. 2009. The RavenClaw dialog

management framework: Architecture and systems. Computer. Speech & Language,

Volume 23, Issue 3, July 2009, Pages 332-361.

[Chung, 2004] Chung, G. 2004. Developing a Flexible Spoken Dialog System Using

Simulation. Association for Computational Linguistics (ACL), pp. 63-70.

[Cordoba et al, 2004] Cordoba, R., Fernández, F., Sama, V., D‟Haro, L. F., et al. 2004.

Implementation of Dialog Applications in an Open-Source VoiceXML Platform. Intern.

Conf. on Spoken Language Processing (ICSLP), pp. I-257-260.

[D‟Haro, 2009] D‟Haro, L. F. 2009. Speed Up Strategies for the Creation of Multimodal

and Multilingual Dialog Applications. PhD Dissertation thesis. Universidad Politécnica

de Madrid. Available at http://www-

gth.die.upm.es/~lfdharo/index_en.php?status=publications.

[D‟Haro et al, 2006] D‟Haro, L. F., Cordoba, R., Ferreiros, J., Hamerich, S.W., Schless,

V., Kladis, B., Schubert, V., Kocsis, O., Igel, S., and Pardo, J. M. 2006. An advanced

platform to speed up the design of multilingual dialog applications for multiple

modalities. Speech Communication Vol. 48, Issue 8, pp. 863-887.

[D‟Haro et al, 2004] D‟Haro, L. F., Cordoba, R. de, San-Segundo, et al. 2004. Strategies

to reduce Design Time in Multimodal/Multilingual Dialog Applications. Intern. Conf. on

Spoken Language Processing (ICSLP), pp. IV-3057-3060.

[Eberman et al, 2002] Eberman, B., Carter, J., and Goddeau, D. 2002. Building

VoiceXML Browsers with OpenVXI. 11
th

 Intern. Conf. on WWW, pp. 713 – 717.

http://www-gth.die.upm.es/~lfdharo/index_en.php?status=publications
http://www-gth.die.upm.es/~lfdharo/index_en.php?status=publications

35

[Feng et al, 2003] Feng, J., Bangalore, S., Rahim, M. 2003. WEBTALK: Mining Websites

for Automatically Building Dialog Systems. Workshop on Automatic Speech Recognition

and Understanding (ASRU '03). pp. 168-173.

[GEMINI, 2010] Web page of the GEMINI Project available at http://www-

gth.die.upm.es/projects/gemini/, April 2011.

[Georgila et al, 2004] Georgila, K., Fakotakis, N., and Kokkinakis, G. 2004. A graphical

tool for handling rule grammars in Java speech grammar format. 4
th

 Intern. Conf. on

Language Resources and Evaluation.

[Hamerich, 2008] Hamerich, S. W. 2008. From GEMINI to DiaGen: Improving

Development of Speech Dialogs for Embedded Systems. 9
th

 SIGdial Workshop on

Discourse and Dialog - Association for Computational Linguistics (ACL), pp. 92-95.

[Hamerich et al, 2003]Hamerich, S. W., Wang, Y.-F., Schubert, V. et al. 2003. XML-

Based Dialog Descriptions in the Gemini Project. Berliner XML-Tage, pp. 404-412.

[Jung et al, 2008] Jung, S., Lee, C., Kima, S., and Geunbae Lee, G. 2008.

DialogStudio : A Workbench for Data-driven Spoken Dialog System Development and

Management. Speech Communications, 50 (8-9), pp. 683-697.

[López-Cozar and Araki, 2005] López-Cózar, R., and Araki, M. 2005. Spoken,

Multilingual and Multimodal Dialog Systems: Development and Assessment. 262 pp.

Published by John Wiley & Sons, ISBN: 0-470-02155-1.

[McGlashan et al, 2004] McGlashan, S., Burnett, D.C., Carter, J., et al. 2004. Voice

Extensible Markup Language (VoiceXML) Version 2.0. W3C Recommendation.

Available at http://www.w3.org/TR/voicexml20.

[McTear et al, 2005] McTear, M., O‟Neill, I., Hanna, P., and Liu, X. 2005. Handling

errors and determining confirmation strategies—An object-based approach. Speech

Communication, Volume 45, Issue 3, March 2005, Pages 249-269.

[McTear, 1998] McTear, M. 1998. Modelling Spoken Dialogs with State Transition

Diagrams: Experiences with the CSLU Toolkit. Intern. Conf. on Spoken Language

Processing (ICSLP), pp. 1223-1226.

[Pargellis et al, 2004] Pargellis, A. N., Kuo, H. J., and Lee, C. 2004. An automatic dialog

generation platform for personalized dialog applications. Speech Communication Vol.

42, pp. 329-351.

[Polifroni and Walker, 2006] Polifroni, J. and Walker, M. 2006. Learning Database

Content for Spoken Dialog System Design. Intern. Conf. on Language Resources and

Evaluation (LREC), pp. 143-148.

[Schubert et al, 2005] Schubert, V, and Hamerich, S. W. 2005. The Dialog Application

Metalanguage GDialogXML. European Conference on Speech Communication and

Technology (Eurospeech), pp. 789-792.

[Tsai, 2006] Tsai, M. J. 2006. VoiceXML dialog system of the multimodal IP-Telephony

– The application for voice ordering service. Experts Systems with Applications 31, pp.

684-696.

[Wang and Acero, 2006] Wang, Y., and Acero, A. 2006. Rapid development of spoken

language understanding grammars. Speech Communication, Vol. 48(3-4), pp 390-416.

http://www-gth.die.upm.es/projects/gemini/
http://www-gth.die.upm.es/projects/gemini/
http://www.w3.org/TR/voicexml20

36

[Wolters et al, 2009] Wolters, M., Georgila, K., Moore, J., et al. 2009. Reducing working

memory load in spoken dialog systems. Interacting with Computers, Vol 21 (4), pp. 276-

287.

 Innovative acceleration strategies to speed up the design of spoken-dialog systems

 Heuristic features from the backend database used to accelerate the design

 Subjective and objective evaluation confirms usability of the accelerations

 More than 50% reduction in design time

Research Highlights

