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Abstract

In this letter, the spectrum of high Schmidt number passive scalar in forced homogeneous

isotropic turbulence is studied through direct numerical simulations. An hybrid spectral-particle

method1 is used with a finer resolution of the scalar than of the momentum and large time-steps.

This approach enables to perform a systematic analysis over a wide range of Schmidt numbers.

Our results recover the theoretical scaling for the variance scalar spectrum, and its relationship

with the value of the Schmidt number, for large, intermediate and small scales. The influence of

the form of the scalar forcing is also discussed.
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The prediction of the dynamics of a scalar advected by a turbulent flow is an important

challenge in many applications. The scalar field can be used to describe the temperature

field or the concentration of chemical species, for example. For a passive scalar, Z, the

transport equation is an advection-diffusion equation,

∂Z

∂t
+ ~u · ~∇Z = ~∇ ·

(

κ~∇Z
)

(1)

where κ is the molecular scalar diffusivity and ~u the turbulent velocity field. Similar to

the Kolmogorov scale, ηK , which describes the smallest scale of turbulence motions beyond

which dissipation dominates, the Batchelor scale, ηB, describes the smallest length scale of

the scalar fluctuations that can exist before being dominated by molecular diffusion. The

phenomenology of passive scalar diffusion depends on the molecular Schmidt numbers, the

viscosity-to-diffusivity ratio, Sc = ν/κ. For high Schmidt number, the Batchelor scale is

smaller than the Kolmogorov scale. This means that scalar dynamics can occur at scales

smaller than the smallest eddy. An important theoretical result is the influence of the

Schmidt number on the scalar variance spectrum behavior2. For a Schmidt number larger

than one, Batchelor3 explained that the classical Corrsin-Obukhov cascade associated with

a k−5/3 law (where k is the wave number) for the scalar variance spectrum4,5 is followed by

a viscous-convective range with a k−1 power law. This viscous-convective range is followed

by the dissipation range, where various theoretical scalings have been proposed for the

spectrum3,6. However some recent numerical results7 seem to indicate that the k−5/3 law

appears only for very high Reynolds numbers and that the k−1 law exists even for Schmidt

numbers smaller than one. These results were obtained by using a uniform mean scalar

gradient to maintain scalar variance8.

For DNS of scalar mixing at high Schmidt number, the dependence of the Batchelor scale

on the Schmidt number suggests that the prediction of scalar dynamics for high Schmidt

numbers is more demanding in terms of spatial resolution than the prediction of momentum.

In Cottet et al9, an hybrid particle-grid method with different grid resolutions, using particles

of vorticity and scalar advected in a flow recovered through a spectral solver, was proposed.

In Lagaert et al.1, this method was extended to couple a full spectral Navier-Stokes solver

with a fourth order particle method10 for the scalar. This method was used to investigate

scalar transport for a wide range of Schmidt numbers. An interesting feature of this method,

due to the lagrangian nature of the particle method, is that refining the scalar resolution
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Rλ Nu ηK/∆xu ∆tu Sc N z ηB/∆xz ∆tz ∆tzspec

130 256 0.55 1.2e−2

0.7 512 0.66

4.3e−2

6e−3

4 1024 1.08 3e−3

8 1024 0.78 3e−3

16 1536 0.83 2e−3

32 1536 0.59 2e−3

64 2048 0.56 1.5e−3

128 3064 0.57 1e−3

210 512 0.57 3e−3
0.7 770 1.03

1e−2
2e−3

4 1024 0.56 1.5e−3

TABLE I. Setup of simulations performed. Nu, ∆xu and ∆tu are the number of points in each

direction, the spatial step and the time step, respectively, used to solve the Navier-Stokes equation

with a pseudo-spectral solver. N z, ∆xz and ∆tz are the number of points in each direction, the

spatial step and the time step, respectively, used to solve the scalar transport equation with the

particle method. ∆tzspec is the time step which would be needed if a pseudo-spectral method was

used for the same number of scalar grid points.

to account for smaller scales in the scalar does not impose decreasing the time-step. This

feature leads to additional computational savings compared e.g. to the hybrid spectral/finite-

difference strategy of Gotoh et al.11. Table I indicates the time-step values used in our

different simulations. These simulations ran on 512 to 8192 cores of an IBM Blue Gene-P

cluster with an excellent scalability (85% for the biggest configuration). For the biggest

configuration, with 2563 (resp 30643) resolution of the momentum (resp for the scalar)

running on 8192 cores, the CPU time of our simulations would correspond to about 1.8

seconds per time-step if the scalar equation was solved with a CFL condition given by a

spectral method. In the present paper we further exploit the computational efficiency of

this method to investigate universal scalings of the scalar. We also discuss the discrepancy

between our results and those obtained by using a uniform mean gradient by Donzis et al.7.

Based on this hybrid solver, various simulations have been performed in the context

of forced homogenous isotropic turbulence (HIT), in a 3D periodic box with a length 2π.
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FIG. 1. Energy spectra for both Reynolds numbers, Rλ ≈ 130 and Rλ ≈ 210. The spectra are

compensated by the Kolmogorov scaling and the dotted line is for CK = 1.8. The arrow shows the

direction of increasing Reynolds numbers.

FIG. 2. x − y plan colored by the vorticity magnitude (left, dark regions are for the highest

vorticity values) and by the passive scalar (middle, dark regions are for the highest scalar values )

for Rλ ≈ 130 and Sc = 128. The zooms (right) correspond to the white box with a length of 8ηK

for the vorticity magnitude (top) and the scalar (bottom).

The forcing scheme used to obtain a statistical steady flow follows the one proposed by

Alvelius12. To achieve a steady state for the scalar, a forcing scheme is also applied to

low wave number modes in Fourier space, similarly to velocity forcing13. Two Taylor-scale

Reynolds number, Rλ, are considered, 130 and 210, using a resolution of 2563 and 5123 grid
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FIG. 3. Scalar variance spectra for Rλ ≈ 130. The spectra are compensated by the scaling

proposed by Corrsin-Obukov and the dotted line is for CCO = 0.5. The arrow shows the direction

of increasing Schmidt numbers.

points, respectively. Figure 1 shows the compensated spectrum for the kinetic energy, with

ǫ, the mean energy dissipation rate. For the scalar field, the mesh resolution is increased

with the Schmidt number14. Simulation details are given in table I. Figure 2 illustrates

the scales separation between the Kolmogorov and Bacthelor scales for the highest Schmidt

number case, Sc = 128.

The behaviors of the scalar variance spectrum are studied at large, intermediate and

small scales from this DNS database and compared with theoretical predictions. First, at

the largest scales, the classical Corrsin-Obukhov cascade is expected to characterize the

inertial-convective range. Similarly to the inertial range of the kinetic energy spectrum, it

is expected that this cascade follows a k−5/3 law4,5. Figure 3 shows the scalar spectra for

various Schmidt numbers, compensated by the Corrsin-Obukhov scaling, with χ the mean

scalar dissipation rate. As expected, the results show a inertial-convective range independent

of the Schmidt number. The Corrsin-Obukhov constant, CCO, is found around 0.5. This

result is consistent with previous results considering three-dimensional and one dimensional

scalar variance spectra8,15. The k−5/3 range of the scalar spectrum is found more clearly than

the k−5/3 range of the energy spectrum. Indeed, intermittency effect can alter the value of

this exponent16, but the scalar spectrum exponent is known to tend to the −5/3 value more

rapidly than the energy spectrum exponent17,18. Note that the end of the inertial-convective

range appears around 10ηK (which is roughly the Taylor scale) independently of the Schmidt
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FIG. 4. Scalar variance spectra for Rλ ≈ 130. The spectra are compensated by the scaling proposed

by Batchelor for Schmidt number higher than one, and the dotted line is for CB = 3. The arrow

shows the direction of increasing Schmidt numbers. For the dissipative region, the circles show the

law proposed by Kraichnan and the squares show the law proposed by Batchelor.

number.

Beyond this range, for Schmidt numbers larger than one, Batchelor3 explained the devel-

opment of the viscous-convective range with a k−1 law. This scaling is due to the velocity

small scales strain effect on the scalar field. Figure 4 shows the scalar spectra for various

Schmidt numbers, compensated by the Batchelor’s scaling. For the highest Schmidt num-

ber considered (128), the k−1 range extends to about a decade. The Batchelor constant,

CB, if found around 3. This value is in the range given in previous numerical or analytical

works7,19,20 and larger than the theoretical value of 2 initially proposed by Batchelor. Even

if all the spectra collapse at the smallest scales, in the dissipative region, the spectrum for

Sc = 0.7 (the smallest Schmidt number value shown on the figure) has not a clear k−1

range. This range is found only for Sc > 1. The form of the scalar variance spectrum in

the dissipation range (following the viscous-convective range) is also studied. Two distinct

theoretical behaviors have been proposed by Batchelor3 and Kraichnan6, respectively. Note

that this question has some practical implications for better understanding energy transfer

between ocean and atmosphere21. Our DNS results clearly show a good agreement with the

Kraichnan form, as already established in various previous works7,21,22.

Compared to previous studies and observations8,22, our numerical results find the same

behavior for the smallest scales. However, our numerical results clearly show a −5/3 inertial-
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FIG. 5. Scalar variance spectra for two Schmidt number, Sc = 0.7 and Sc = 4 for Rλ ≈ 130 (left)

and Rλ ≈ 210 (right). The spectra are compensated by the scaling proposed by Corrsin-Obukov

and the dotted line is for CCO = 0.5. The arrow shows the direction of increasing Schmidt numbers.

The dashed and solid lines show the spectra for the localized forcing and constant gradient forcing,

respectively. The dashed-dotted line corresponds to the k−1 scaling under the chosen normalization.

convective range for this moderate Reynolds number, in constrast with previous works7,

where an imposed mean scalar gradient was used8. To better understand the influence of the

forcing scheme at large and intermediate scales, additional simulations have been performed

with an imposed mean scalar gradient to maintain the scalar variance. Figure 5 compares

the scalar variance spectra for two Reynolds number, 130 and 210 and two Schmidt number,

0.7 and 4. The spectra are compensated by using the scaling of the inertial-convective

range. As expected the small scales behavior is not influenced by the forcing schemes.

But, for moderate Reynolds number, the influence of the forcing schemes clearly appears.

The simulations using a mean scalar gradient forcing have no inertial-convective range and

the large k−1 viscous-convective range seems with result from the forcing. In particular,

for Sc = 0.7, the scalar spectrum exhibits a viscous-convective range for the mean scalar

gradient forcing, in contrast with the results obtained with a low wave numbers forcing and

with the theoretical prediction. Note that, when the Reynolds number increases, a inertial-

convective range begins to appear for simulations with mean scalar gradient, as shown by

the spectra for Rλ = 210. Future works will be devoted to better understand how this

forcing influence on the inertial-convective range.
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