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ON A CONJECTURE OF HELLESETH

YVES AUBRY AND PHILIPPE LANGEVIN

Abstract. We are concern about a conjecture proposed in the middle of the
seventies by Hellesseth in the framework of maximal sequences and theirs cross-
correlations. The conjecture claims the existence of a zero outphase Fourier
coefficient. We give some divisibility properties in this direction.

1. Two conjectures of Helleseth

Let L be a finite field of order q > 2 and characteristic p. Let µ be the canonical
additive character of L i.e. µ(x) = exp(2iπTr (x)/p) where Tr is the trace function
with respect to the finite field extension L/Fp. The Fourier coefficient of a mapping
f : L → L is defined at a ∈ L by

(1) f̂(a) =
∑

x∈L

µ(ax+ f(x)).

The distribution of these values is called the Fourier spectrum of f . Note that

when f is a permutation the phase Fourier coefficient f̂(0) is equal to 0.
The mapping f(x) = xs is called the power function of exponent s, and it is

a permutation if and only if (s, q − 1) = 1. Moreover, if s ≡ 1 mod (p − 1) the
Fourier coefficients of f are rational integers. Helleseth made in [3] two “global”
conjectures on the spectra of power permutations. The first claims the vanishing
of the quantity (related to Dedekind determinant, see [9])

(2) D(f) =
∏

a∈L×

f̂(a).

Conjecture 1 (Helleseth). Let L be a field of cardinal q > 2. If f is a power

permutation of exponent s ≡ 1 mod (p− 1) then D(f) = 0.

For p = 2, it generalizes Dillon’s conjecture (see [2]) which corresponds to the
case s = q − 2 ≡ −1 mod (q − 1), and known to be true because it is related
to the vanishing of Kloosterman sums and the class number hq of the imaginary
quadratic number field Q(

√
1− 4q) (see [5, 8]). Note also that in odd characteristic

the Kloosterman sums do not vanish (see [7]) except if p = 3 (see [5]).
The second conjecture deals with the number of values in the spectrum of a

power permutation.

Conjecture 2. If [L : Fp] is a power of 2 then the spectrum of a power function

takes at least four values.

In this note, we prove some results concerning the divisibility properties of the
Fourier coefficients of power permutations in connection with Conjecture 1. Our
results can be seen as a proof “modulo ℓ” of Conjecture 1 for certain primes ℓ.
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Table 1. An example of Walsh spectrum having only one Walsh
coefficient equal to zero (see [6]).

Walsh -48 -44 -40 -36 -32 -28 -24 - 20 -16 -12
mult. 5 30 85 70 115 100 31 62 20 10

Walsh 0 8 16 20 24 28 32 36 40 44
mult. 1 5 25 20 85 90 90 80 50 50

2. Boolean function case

In this section, we assume p = 2. In [10], the second author has computed
the Fourier spectra of power permutations for all the fields of characteristic 2 with
degree less or equal to 25 without finding any counter-example to the above con-
jectures. More curiously, if we denote by nbz (s) the number of Fourier coefficients
of the power function of exponent s equal to zero then the numerical experience
suggests that:

nbz (s) ≥ nbz (−1) = hq.

At this point, it is interesting to notice that Helleseth’s conjecture can not be
extended to the set of all permutations. Indeed, let m be a positive integer and let
g : Fm

2 → F2 be a Boolean function in m variables. One defines the Walsh coefficient
of g at a ∈ Fm

2 by :

gW(a) =
∑

x∈F
m

2

(−1)a.x+g(x).

Identifying L with the F2-vector space Fm
2 , the Boolean function g has a trace

representation i.e. there exists a mapping f : L → L such that g(x) = TrL(f(x))
for all x in L. Of course, the trace representation is not unique. Moreover, if g is
balanced then g can be represented by a permutation of L. In all the cases, the
Walsh spectrum of g and the Fourier spectrum of f are identical.

In [6], an example of a ten variables Boolean function with a very atypical Walsh
spectrum (see Tab. 1) is given. This Boolean function is balanced and its Walsh
coefficients vanish only once. This numerical example, say g, implies the existence
of a permutation f of F1024 (not a power permutation) such that

g(x) = TrF1024
f(x),

whence the Fourier spectrum of f is equal to the Walsh spectrum of g, and thus∑
x∈F1024

µ(ax+ f(x)) 6= 0 for all a ∈ F×
1024.

A possible generalization of the conjecture of Helleseth, proposed by Leander,
could be the following one:

Conjecture 3. If f is a permutation of L then
∏

λ∈L× D(λf) = 0.

Note that Conjecture 2 is know to be true in characteristic 2 since recent works of
Daniel Katz in [4] and Tao Feng in [11]. In order to complete this short conjecture
tour , we recall to the reader the main global conjecture of the domain due to
Sarwate and which is still open

Conjecture 4. If f is a power permutation of L where [L : F2] is even then

supa∈L f̂(a) ≥ 2
√
q.
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In the sequel, if λ ∈ L then we denote by f̂λ(a) the Fourier coefficient of x 7→
λf(x). If f is a power permutation of exponent s, denoting by t the inverse of s
modulo q − 1, for all y ∈ L×, we have :

(3) f̂λ(a) =
∑

x∈L

µ(λxs + ax) =
∑

x∈L

µ(λysxs + axy) = f̂(aλ−t).

Hence, one of the specifics of power permutations among the permutations of L
is that the spectrum of λf does not depend on λ ∈ L×.

We conclude this section by giving a divisibility result. Recall that a function f
defined over a field L of characteristic 2 is said to be almost perfect nonlinear if for
all u ∈ L× the derivative x 7→ f(x+ u) + f(x) is two-to-one. It is for example the
case of f(x) = x3 over any field L and of f(x) = x−1 when [L : F2] is odd.

Proposition 1. Let f be a power permutation over a field L of characteristic two

and cardinal q 6≡ 2, 4 mod 5. If f is almost perfect nonlinear then there exists

a ∈ L× such that f̂(a) ≡ 0 mod 5.

Proof. It is well-known (see [1]) that an APN function f satisfies

(4)
∑

λ∈L×

∑

a∈L

f̂λ(a)
4 = 2q3(q − 1).

Since the spectrum of λf does not depend on λ ∈ L×, it implies that:

(5)
∑

a∈L

f̂λ(a)
4 = 2q3.

Assuming D(f) 6≡ 0 mod 5, we get the congruence q− 1 ≡ 2q3 mod 5 implying
q ≡ 2, 4 mod 5. �

3. hyperplane section

The key point of view of this note is to consider the number, say Nn(u, v), of
solutions in Ln of the system

(6)

{
u = x1 + x2 + . . . + xn

v = f(x1) + f(x2) + . . . + f(xn).

Using characters counting principle, we can write:

q2Nn(u, v) =
∑

x1,x2,...,xn

∑

β∈L

∑

α∈L

µβ(
∑

i

f(xi) + v)µα(
∑

i

xi + u)

=
∑

β

∑

α

(∑

y

µ(βf(y) + αy))
)n

µ(αu + βv)

=
∑

β

∑

α

f̂β(α)
nµ(αu + βv)

=
∑

α

1̂(α)nµ(αu) +
∑

β 6=0

∑

α

f̂β(α)
nµ(αu+ βv)

= qn +
∑

α6=0

∑

β 6=0

f̂β(α)
nµ(αu + βv)
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Lemma 1. Assuming the Fourier coefficients of λf , λ ∈ L, are integers. Let ℓ be

a prime such that
∏

λ∈L× D(λf) 6≡ 0 mod ℓ. Then

q2Nℓ−1(u, v) ≡ 1 + (qδ0(u)− 1)(qδ0(v)− 1) mod ℓ

where δa(b) is equal to 1 if b = a and 0 otherwise.

Proof. By the Fermat’s little Theorem, we have the congruence

f̂λ(a)
ℓ−1

≡ 1− δ0(a) mod ℓ.

Hence

q2Nℓ−1(u, v) = qℓ−1 +
∑

α6=0

∑

β 6=0

f̂β(α)
ℓ−1µ(αu + βv)

≡ 1 +
∑

α6=0

∑

β 6=0

µ(αu+ βv) mod ℓ

and we conclude remarking that
∑

α∈L× µ(αu) = qδ0(u)− 1. �

4. Divisibility of Fourier coefficients

In [3], it is proved that for the exponents s ≡ 1 mod (p− 1), the Fourier coeffi-
cients are multiple of p. In this section, we are interested in divisibility properties
modulo a prime ℓ 6= p.

Assuming that the Fourier coefficients of a mapping f , not necessary a power
function, are rational integers, we can see that if 3 does not divide D(f) then we
have necessarily q ≡ 2 mod 3. Indeed, using Parseval relation, we can write

1 ≡ q2 =
∑

a∈L

|f̂(a)|2 =
∑

a∈L

f̂(a) ≡ q − 1 mod 3.

Theorem 1. Let f be the power function of exponent s. If s = 1 mod (p− 1) is

coprime with q − 1 then D(f) ≡ 0 mod 3.

Proof. Suppose that D(f) 6≡ 0 mod 3. Applying Lemma 1 with ℓ = 3, we get

(7) ∀u ∈ L×, ∀v ∈ L×, N2(u, v) 6≡ 0 mod ℓ.

To complete the proof we prove the existence of a pair (u, v) of nonzero elements
such that N2(u, v) = 0. Let us fix u = 1, the v’s such that N2(1, v) > 0 are in the
image of L by the mapping x 7→ (1− x)s + xs, if x is a preimage of v then 1− x is
an other one except if p = 2 and v = 2(1/2)s. Thus, if q > 3, there exists v ∈ L×

without preimage i.e. N2(1, v) = 0.
�

Proposition 2. Let f be a power permutation of exponent s ≡ 1 mod (p− 1). If

[L : Fp] is a power of a prime ℓ and p 6≡ 2 mod ℓ then D(f) ≡ 0 mod ℓ.
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Proof. The Frobenius automorphism acts on the solutions of the system (6) with
u = 0, v = 1. Since s ≡ 1 mod (p − 1), the system has no Fp-solutions, thus
Nℓ−1(0, 1) ≡ 0 mod ℓ. On the other hand, by Lemma 1, if D(f) 6≡ 0 mod ℓ then

q2Nℓ−1(0, 1) ≡ 2− q ≡ 2− p mod ℓ.

�
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