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Abstract

Under appropriate assumptions on the dimension of the ambient man-

ifold and the regularity of the Hamiltonian, we show that the Mather quo-

tient is small in term of Hausdorff dimension. Then, we present applications

in dynamics.

1 Introduction

Let M be a smooth manifold without boundary. We denote by TM the tangent
bundle and by π : TM → M the canonical projection. A point in TM will be
denoted by (x, v) with x ∈ M and v ∈ TxM = π−1(x). In the same way a point
of the cotangent bundle T ∗M will be denoted by (x, p) with x ∈M and p ∈ T ∗

xM
a linear form on the vector space TxM . We will suppose that g is a complete
Riemannian metric on M . For v ∈ TxM , the norm ‖v‖x is gx(v, v)

1/2. We will
denote by ‖·‖x the dual norm on T ∗M . Moreover, for every pair x, y ∈M , d(x, y)
will denote the Riemannian distance from x to y.

We will assume in the whole paper that H : T ∗M → R is an Hamiltonian of
class Ck,α, with k ≥ 2, α ∈ [0, 1], which satisfies the three following conditions:

(H1) C2-strict convexity: ∀(x, p) ∈ T ∗M , the second derivative along the fibers
∂2H/∂p2(x, p) is strictly positive definite;

(H2) uniform superlinearity: for every K ≥ 0 there exists a finite constant
C(K) such that

∀(x, p) ∈ T ∗M, H(x, p) ≥ K‖p‖x + C(K);
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(H3) uniform boundedness in the fibers: for every R ≥ 0, we have

sup
x∈M

{H(x, p) | ‖p‖x ≤ R} < +∞.

By the Weak KAM Theorem we know that, under the above conditions, there
is c(H) ∈ R such that the Hamilton-Jacobi equation

H(x, dxu) = c (HJc)

admits a global viscosity solution u : M → R for c = c(H) and does not admit
such solution for c < c(H), see [22, 9, 6, 11, 15]. In fact, for c < c(H), the
Hamilton-Jacobi equation does not admit any viscosity subsolution (for the theory
of viscosity solutions, we refer the reader to the monographs [1, 2, 11]). Moreover,
if M is assumed to be compact, then c(H) is the only value of c for which the
Hamilton-Jacobi equation above admits a viscosity solution. The constant c(H) is
called the critical value, or the Mañé critical value of H. In the sequel, a viscosity
solution u : M → R of H(x, dxu) = c(H) will be called a critical viscosity solution
or a weak KAM solution, while a viscosity subsolution u of H(x, dxu) = c(H) will
be called a critical viscosity subsolution (or critical subsolution if u is at least C1).

The Lagrangian L : TM → R associated to the Hamiltonian H is defined by

∀(x, v) ∈ TM, L(x, v) = max
p∈T ∗

x M
{p(v) −H(x, p)} .

Since H is of class Ck, with k ≥ 2, and satisfies the three conditions (H1)-(H3), it
is well-known (see for instance [11] or [15, Lemma 2.1])) that L is finite everywhere
of class Ck, and is a Tonelli Lagrangian, i.e. satisfies the analogous of conditions
(H1)-(H3). Moreover, the Hamiltonian H can be recovered from L by

∀(x, p) ∈ T ∗
xM, H(x, p) = max

v∈TxM
{p(v) − L(x, v)} .

Therefore the following inequality is always satisfied

p(v) ≤ L(x, v) +H(x, p).

This inequality is called the Fenchel inequality. Moreover, due to the strict con-
vexity of L, we have equality in the Fenchel inequality if and only if

(x, p) = L(x, v),

where L : TM → T ∗M denotes the Legendre transform defined as

L(x, v) =

(

x,
∂L

∂v
(x, v)

)

.

Under our assumption L is a diffeomorphism of class at least C1. We will denote
by φL

t the Euler-Lagrange flow of L, and by XL the vector field on TM that
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generates the flow φL
t . If we denote by φH

t the Hamiltonian flow of H on T ∗M ,
then as is well-known, see for example [11], this flow φH

t is conjugate to φL
t by

the Legendre transform L.
As done by Mather in [26], it is convenient to introduce for t > 0 fixed, the

function ht : M ×M → R defined by

∀x, y ∈M, ht(x, y) = inf

∫ t

0

L(γ(s), γ̇(s))ds,

where the infimum is taken over all the absolutely continuous paths γ : [0, t] →M
with γ(0) = x and γ(t) = y. The Peierls barrier is the function h : M ×M → R

defined by
h(x, y) = lim inf

t→∞
{ht(x, y) + c(H)t} .

It is clear that this function satisfies

∀x, y, z ∈M, h(x, z) ≤ h(x, y) + ht(y, z) + c(H)t

h(x, z) ≤ ht(x, y) + c(H)t+ h(y, z),

and therefore it also satisfies the triangle inequality

∀x, y, z ∈M, h(x, z) ≤ h(x, y) + h(y, z).

Moreover, given a weak KAM solution u, we have

∀x, y ∈M, u(y) − u(x) ≤ h(x, y).

In particular, we have h > −∞ everywhere. It follows, from the triangle inequal-
ity, that the function h is either identically +∞ or it is finite everywhere. If M
is compact, h is finite everywhere. In addition, if h is finite, then for each x ∈M
the function hx(·) = h(x, ·) is a critical viscosity solution (see [11] or [16]). The
projected Aubry set A is defined by

A = {x ∈M | h(x, x) = 0}.

Following Mather, see [26, page 1370], we symmetrize h to define the function
δM : M ×M → R by

∀x, y ∈M, δM(x, y) = h(x, y) + h(y, x).

Since h satisfies the triangle inequality and h(x, x) ≥ 0 everywhere, the func-
tion δM is symmetric, everywhere nonnegative and satisfies the triangle inequality.
The restriction δM : A×A → R is a genuine semi-distance on the projected Aubry
set. We will call this function δM the Mather semi-distance (even when we con-
sider it on M rather than on A). We define the Mather quotient (AM , δM) to be
the metric space obtained by identifying two points x, y ∈ A if their semi-distance
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δM(x, y) vanishes. When we consider δM on the quotient space AM we will call
it the Mather distance.

In [29], Mather formulated the following problem:

Mather’s Problem. If L is C∞, is the set AM totally disconnected for the topol-
ogy of δM , i.e. is each connected component of AM reduced to a single point?

In [28], Mather brought a positive answer to that problem in low dimension.
More precisely, he proved that if M has dimension two, or if the Lagrangian is the
kinetic energy associated to a Riemannian metric on M in dimension ≤ 3, then
the quotient Aubry set is totally disconnected. Notice that one can easily show
that for a dense set of Hamiltonians, the set (AM , δM) is reduced to one point.
Mather mentioned in [29, page 1668] that it would be even more interesting to be
able to prove that the quotient Aubry set has vanishing one-dimensional Hausdorff
measure, because this implies the upper semi-continuity of the mapping H 7→ A.
He also stated that for Arnold’s diffusion a result generic in the Lagrangian but
true for every cohomology class was more relevant. This was obtained recently
by Bernard and Contreras [5].

The aim of the present paper is to show that the vanishing of the one-
dimensional Hausdorff measure of the Mather quotient is satisfied under various
assumptions. Let us state our results.

Theorem 1.1. If dimM = 1, 2 and H of class C2 or dimM = 3 and H of
class Ck,1 with k ≥ 3, then the Mather quotient (AM , δM) has vanishing one-
dimensional Hausdorff measure.

Above the projected Aubry A, there is a compact subset Ã ⊂ TM called the
Aubry set (see Section 2.1). The projection π : TM → M induces a homeo-
morphism π|Ã from Ã onto A (whose inverse is Lipschitz by a theorem due to
Mather). The Aubry set can be defined as the set of (x, v) ∈ TM such that x ∈ A
and v is the unique element in TxM such that dxu = ∂L/∂v(x, v) for any critical
viscosity subsolution u. The Aubry set is invariant under the Euler-Lagrange
flow φL

t : TM → TM . Therefore, for each x ∈ A, there is only one orbit of
φL

t in Ã whose projection passes through x. We define the stationary Aubry set
Ã0 ⊂ Ã as the set of points in Ã which are fixed points of the Euler-Lagrange
flow φt(x, v), i.e.

Ã0 = {(x, v) ∈ Ã | ∀t ∈ R, φL
t (x, v) = (x, v)}.

In fact, see Proposition 3.2, it can be shown, that Ã0 is the intersection of Ã with
the zero section of TM

Ã0 = {(x, 0) | (x, 0) ∈ Ã}.
We define the projected stationary Aubry set A0 as the projection on M of Ã0

A0 = {x | (x, 0) ∈ Ã}.
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At the very end of his paper [28], Mather noticed that the argument he used in the
case where L is a kinetic energy in dimension 3 proves the total disconnectedness
of the quotient Aubry set in dimension 3 as long as A0

M is empty. In fact, if we
consider the restriction of δM to A0, we have the following result on the quotient
metric space (A0

M , δM).

Theorem 1.2. Suppose that L is at least C2, and that the restriction x 7→ L(x, 0)
of L to the zero section of TM is of class Ck,1. Then (A0

M , δM) has vanishing
Hausdorff measure in dimension 2 dimM/(k+3). In particular, if k ≥ 2 dimM−
3 then H1(A0

M , δM) = 0, and if x 7→ L(x, 0) is C∞ then (A0
M , δM) has zero

Hausdorff dimension.

As a corollary, we have the following result which was more or less already
mentioned by Mather in [29, §19 page 1722], and proved by Sorrentino [34].

Corollary 1.3. Assume that H is of class C2 and that its associated Lagrangian
L satisfies the following conditions:

1. ∀x ∈M, minv∈TxM L(x, v) = L(x, 0);

2. the mapping x ∈M 7→ L(x, 0) is of class Cl,1(M) with l ≥ 1.

If dimM = 1, 2, or dimM ≥ 3 and l ≥ 2 dimM − 3, then (AM , δM) is totally
disconnected. In particular, if L(x, v) = 1

2
‖v‖2

x−V (x), with V ∈ Cl,1(M) and l ≥
2 dimM−3 (V ∈ C2(M) if dimM = 1, 2), then (AM , δM) is totally disconnected.

Since A0 is the projection of the subset Ã0 ⊂ Ã consisting of points in Ã
which are fixed under the the Euler-Lagrange flow φL

t , it is natural to consider
Ap the set of x ∈ A which are projection of a point (x, v) ∈ Ã whose orbit under
the the Euler-Lagrange flow φL

t is periodic with strictly positive period. We call
this set the projected periodic Aubry set. We have the following result:

Theorem 1.4. If dimM ≥ 2 and H of class Ck,1 with k ≥ 2, then (Ap
M , δM)

has vanishing Hausdorff measure in dimension 8 dimM/(k+ 8). In particular, if
k ≥ 8 dimM − 8 then H1(Ap

M , δM) = 0, and if H is C∞ then (Ap
M , δM) has zero

Hausdorff dimension.

In the case of compact surfaces, using the finiteness of exceptional minimal
sets of flows, we have:

Theorem 1.5. If M is a compact surface of class C∞ and H is of class C∞,
then (AM , δM) has zero Hausdorff dimension.

In the last section, we present applications in dynamic whose Theorem 1.6
below is a corollary. If X is a Ck vector field on M , with k ≥ 2, the Mañé
Lagrangian LX : TM → R associated to X is defined by

LX(x, v) =
1

2
‖v −X(x)‖2

x, ∀(x, v) ∈ TM.
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We will denote by AX the projected Aubry set of the Lagrangian LX .
The first author has raised the following problem, compare with the list of

questions
http://www.aimath.org/WWN/dynpde/articles/html/20a/.

Problem. Let LX : TM → R be the Mañé Lagrangian associated to the Ck

vector field X (k ≥ 2) on the compact connected manifold M .

(1) Is the set of chain-recurrent points of the flow of X on M equal to the
projected Aubry set AX?

(2) Give a condition on the dynamics of X that insures that the only weak
KAM solutions are the constants.

The theorems obtained in the first part of the paper together with the appli-
cations in dynamics developed in Section 6 give an answer to this question when
dimM ≤ 3.

Theorem 1.6. Let X be a Ck vector field, with k ≥ 2, on the compact connected
C∞ manifold M . Assume that one of the conditions hold:

(1) The dimension of M is 1 or 2.

(2) The dimension of M is 3, and the vector field X never vanishes.

(3) The dimension of M is 3, and X is of class C3,1.

Then the projected Aubry set AX of the Mañé Lagrangian LX : TM → R associ-
ated to X is the set of chain-recurrent points of the flow of X on M . Moreover,
the constants are the only weak KAM solutions for LX if and only if every point
of M is chain-recurrent under the flow of X.

The outline of the paper is the following: Sections 2 and 3 are devoted to
preparatory results. Section 4 is devoted to the proofs of Theorems 1.1, 1.2 and
1.4. Sections 5 and 6 present applications in dynamics.

2 Preliminary results

Throughout this section, M is assumed to be a complete Riemannian manifold.
As before, H : T ∗M → R is an Hamiltonian of class at least C2 satisfying the three
usual conditions (H1)-(H3), and L is the Tonelli Lagrangian which is associated
to it by Fenchel’s duality.
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2.1 Some facts about the Aubry set

We recall the results of Mather on the Aubry set, and also an important comple-
ment due to Dias Carneiro.

The following results are due to Mather, see [25, 26] for the proof in the
compact case.

Theorem 2.1 (Mather). There exists a closed subset Ã ⊂ TM such that:

(1) The set Ã is invariant under the Euler-Lagrange flow.

(2) The projection π : TM →M is injective on Ã. Moreover, we have π(Ã) =
A, and the inverse map (π|Ã)−1 : A → Ã is locally Lipschitz.

(3) Let (x, v) be in Ã, and call γ(x,v) the curve which is the projection of the
orbit φL

t (x, v) of the Euler-Lagrange flow through (x, v)

γ(x,v)(t) = πφt(x, v).

This curve is entirely contained in A, and it is an L-minimizer. Moreover,
we have

∀t, t′ ∈ R, δM(γ(t), γ(t′)) = 0,

therefore the whole curve γ(x,v) projects to the same point as x in the Mather
quotient.

(4) If x ∈ A and γn : [0, tn] → M is a sequence of L-minimizer such that
tn → +∞, γn(0) = γn(tn) = x, and

∫ tn
0
L(γn(s), γ̇n(s)) ds + c(H)tn → 0,

then both sequences γ̇n(0), γ̇n(tn) converge in TxM to the unique v ∈ TxM
such that (x, v) ∈ Ã.

The following theorem of Dias Carneiro [7] is a nice complement to the The-
orem above:

Theorem 2.2. For every (x, v) ∈ Ã, we have

H

(

x,
∂L

∂v
(x, v)

)

= c(H).

We end this subsection by the following important estimation of the Mather
semi-distance (due to Mather), see [26, page 1375].

Proposition 2.3. For every compact subset K ⊂M , we can find a finite constant
CK, such that

∀x ∈ A ∩K, ∀y ∈ K, δM(x, y) ≤ CKd(x, y)
2,

where d is the Riemannian distance on M .

Note that one can prove directly this proposition from the fact that h is
locally semi-concave on M ×M , using that δM ≥ 0, together with the fact that
δM(x, x) = 0 for every x ∈ A.

7



2.2 Aubry set and Hamilton-Jacobi equation

In this section we recast the above results in terms of viscosity solutions of the
Hamilton-Jacobi as is done in [11, 16, 15].

We first recall the notion of domination. If c ∈ R, a function u : M → R

is said to be dominated by L + c (which we denote by u ≺ L + c), if for every
continuous piecewise C1 curve γ : [a, b] →M,a < b, we have

u(γ(b)) − u(γ(a)) ≤
∫ b

a

L(γ(s), γ̇(s)) ds+ c(b− a). (DOM)

In fact this is simply a different way to define the notion of viscosity solution
for H. More precisely we have, see [11] or [15, Proposition 5.1, page 12]:

Theorem 2.4. A u : M → R is dominated by L+ c if and only if it is a viscosity
subsolution of the Hamilton-Jacobi equation H(x, dxu) = c. Moreover, we have
u ≺ L+ c if and only if u is Lipschitz and H(x, dxu) ≤ c almost everywhere.

Note that Rademacher’s Theorem states that every Lipschitz function is differ-
entiable almost everywhere. For the proof that dominated functions are Lipschitz
see B.2. It is not difficult to see that a function u : M → R is dominated by L+ c
if and only if

∀t > 0, ∀x, y ∈M, u(y) − u(x) ≤ ht(x, y) + ct.

With these notations, we observe that a function u is a critical subsolution if and
only u ≺ L+ c(H).

We now give the definition of calibrated curves. If u : M → R and c ∈ R, we
say that the curve γ : [a, b] →M is (u, L, c)-calibrated if we have the equality

u(γ(b)) − u(γ(a)) =

∫ b

a

L(γ(s), γ̇(s)) ds+ c(b− a).

If γ is a curve defined on the not necessarily compact interval I, we will say
that γ is (u, L, c)-calibrated if its restriction to any compact subinterval of I is
(u, L, c)-calibrated.

In fact, this condition of calibration is useful only when u ≺ L + c. In this
case γ is an L-minimizer. Moreover, if [a′, b′] is a subinterval of [a, b], then the
restriction γ|[a′, b′] is also (u, L, c)-calibrated.

Like in [11], if u : M → R is a critical subsolution, we denote by Ĩ(u) the
subset of TM defined as

Ĩ(u) = {(x, v) ∈ TM | γ(x,v) is (u, L, c(H))-calibrated},
where γ(x,v) is the curve (already introduced in Theorem 2.1) defined on R by

γ(x,v)(t) = πφL
t (x, v).

The following properties of Ĩ(u) are shown in [11]:
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Theorem 2.5. The set Ĩ(u) is invariant under the Euler-Lagrange flow φL
t . If

(x, v) ∈ Ĩ(u), then dxu exists, and we have

dxu =
∂L

∂v
(x, v) and H(x, dxu) = c(H).

It follows that the restriction π|Ĩ(u) of the projection is injective; therefore, if we

set I(u) = π(Ĩ(u)), then Ĩ(u) is a continuous graph over I(u).
Moreover, the map x 7→ dxu is locally Lipschitz on I(u).
Since the inverse of the restriction π|Ĩ(u) is given by x 7→ L−1(x, dxu), and

the Legendre transform L is C1, it follows that the inverse of π|Ĩ(u) is also locally
Lipschitz on I.

Using the sets Ĩ(u), one can give the following characterization of the Aubry
set and its projection:

Theorem 2.6. The Aubry set Ã is given by

Ã =
⋂

u∈SS

Ĩ(u),

where SS is the set of critical viscosity subsolutions. The projected Aubry set A,
which is simply the image π(Ã), is also

A =
⋂

u∈SS

I(u).

Note that the fact that the Aubry set is a locally Lipschitz graph (i.e. part (2)
of Theorem 2.1) follows from the above results, since Ã ⊂ Ĩ(u), for any critical
subsolution u. Moreover, Theorem 2.2 also follows from the results above.

2.3 Mather semi-distance and critical subsolutions

As it was observed by the first author to generalize Mather’s examples [29], see
the announcement [13], a representation formula for δM in term of C1 critical sub-
solutions is extremely useful. This has also been used more recently by Sorrentino
[34].

To explain this representation formula, like in Theorem 2.6, we call SS the
set of critical viscosity subsolutions and by S− the set of critical viscosity (or
weak KAM) solutions. Hence S− ⊂ SS. If u : M → R is a critical viscosity
subsolution, we recall that

∀x, y ∈M, u(y) − u(x) ≤ h(x, y).

In [16], Fathi and Siconolfi proved that for every critical viscosity subsolution u :
M → R, there exists a C1 critical subsolution whose restriction to the projected
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Aubry set is equal to u. Recently Patrick Bernard [4] has even shown that u can
be assumed C1,1, i.e. differentiable everywhere with (locally) Lipschitz derivative,
see also Appendix B below. In the sequel, we denote by SS1 (resp. SS1,1) the
set of C1 (resp. C1,1) critical subsolutions. The representation formula is given
by the following lemma:

Lemma 2.7. For every x, y ∈ A,

δM(x, y) = max
u1,u2∈S−

{(u1 − u2)(y) − (u1 − u2)(x)}

= max
u1,u2∈SS

{(u1 − u2)(y) − (u1 − u2)(x)}

= max
u1,u2∈SS1

{(u1 − u2)(y) − (u1 − u2)(x)}

= max
u1,u2∈SS1,1

{(u1 − u2)(y) − (u1 − u2)(x)} .

Proof. Let x, y ∈ A be fixed. First, we notice that if u1, u2 are two critical
viscosity subsolutions, then we have

(u1 − u2)(y) − (u1 − u2)(x) = (u1(y) − u1(x)) + (u2(x) − u2(y))

≤ h(x, y) + h(y, x) = δM(x, y).

On the other hand, if we define u1, u2 : M → R by u1(z) = h(x, z) and u2(z) =
h(y, z) for any z ∈M , by the properties of h the functions u1, u2 are both critical
viscosity solutions. Moreover

(u1 − u2)(y) − (u1 − u2)(x) = (h(x, y) − h(y, y)) − (h(x, x) − h(y, x))

= h(x, y) + h(y, x) = δM(x, y),

since h(x, x) = h(y, y) = 0. Thus we obtain easily the first and the second
equality. The last inequalities is an immediate consequence of the work of Fathi
and Siconolfi and that of Bernard recalled above.

2.4 Norton’s generalization of Morse Vanishing Lemma

We will need in a crucial way Norton’s elegant generalization of Morse Vanishing
Lemma, see [30, 31]. This result, like Ferry’s Lemma (see Lemma A.3) are the
two basic pieces that allow to prove generalizations of the Morse-Sard Theorem
(see for example the work of Bates).

Lemma 2.8 (The Generalized Morse Vanishing Lemma). Suppose M is an n-
dimensional (separable) manifold endowed with a distance d coming from a Rie-
mannian metric. Let k ∈ N and α ∈ [0, 1]. Then for any subset A ⊂ M , we can
find a countable family Bi, i ∈ N of C1-embedded compact disks in M of dimen-
sion ≤ n and a countable decomposition of A = ∪i∈NAi, with Ai ⊂ Bi, for every
i ∈ N, such that every f ∈ Ck,α(M,R) vanishing on A satisfies, for each i ∈ N,

∀y ∈ Ai, x ∈ Bi, |f(x) − f(y)| ≤Mid(x, y)
k+α (1)
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for a certain constant Mi (depending on f).

Let us make some comments. In his statement of the Lemma above (see
[31]), Norton distinguishes a countable A0 in his decomposition. In fact, in the
statement we give this corresponds to the (countable numbers of) disks in the
family Bi where the dimension of the disk Bi is 0, in which case Ai is also
a point. Therefore there is no need to distinguish this countable subset when
formulating the Generalized Morse Vanishing Lemma. The second comment is
that we have stated this Generalized Morse Vanishing Lemma 2.8 directly for
(separable) manifolds. This is a routine generalization of the case M = Rn which
is done by Norton in [31] (see for example the way we deduce Lemma A.3 from
Lemma A.1).

3 Proofs of Theorems 1.1, 1.2, 1.4, and 1.5

3.1 Proof of Theorem 1.1

Let us first assume that dimM = 1, 2. The proof is the same as Mather’s proof
of total disconnectedness given in [28]. It also uses Proposition 2.3, but instead
of using the results of Mather contained in [27], it uses the stronger Lemma A.3
due to Ferry and proved in Appendix A below.

We cover M by an increasing countable union Kn of compact subsets. For a
given n, by Proposition 2.3 we can find a finite constant Cn such that

∀x, y ∈ A ∩Kn, δM(x, y) ≤ Cnd(x, y)
2.

Since dimM ≤ 2 by Lemma A.3 we obtain that (A∩Kn, δM) has vanishing one-
dimensional Hausdorff measure. Since A is the countable union of the A ∩Kn,
we also conclude that (A, δM) has vanishing one-dimensional Hausdorff measure.

Let us now assume that dimM = 3. The fact that (A0
M , δM) has vanishing

one-dimensional Hausdorff measure will follow from Theorem 1.2. So, it suffices
to prove that the semi-metric space (A \ A0, δM) has vanishing one-dimensional
Hausdorff measure.

Consider for every x ∈ A the unique vector vx ∈ TxM such that (x, vx) ∈ Ã.
Call γx the curve defined by γx(t) = πφL

t (x, vx). Since Ã is invariant by φL
t ,

the projected Aubry set is laminated by the curves γx, x ∈ A. Let us define
A′ = A \ A0. Since, by Proposition 3.2, any point of the form (z, 0) ∈ Ã is fixed
under φL

t , and γ̇x(0) = vx, we have γx(t) ∈ A′ for all x ∈ A′ and all t ∈ R.
Moreover, the family γx, x ∈ A′, is a genuine 1-dimensional Lipschitz lamination
on A′ = A \ A0. For each x ∈ A′, we can find a small C∞ 2-dimensional
submanifold Sx of M such that Sx is transversal to γx. By transversality and
continuity, the union Ux of the curves γy, y ∈ A′ such that γy ∩ Sx 6= ∅ is a
neighborhood of x in A′ (for the topology induced by the manifold topology).
Therefore since M is metric separable, we can find a countable subfamily (Sxi

)i∈N
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such that γy ∩ (∪i∈NSxi
) 6= ∅ for every y ∈ A′. By part (3) of Theorem 2.1 above,

for every z ∈ A, and every t, t′ ∈ R, we have

δM(γz(t), γz(t
′)) = 0.

It follows that the countable union of the images of Sxi
∩A in AM covers the image

of A′ in AM . Therefore by the countable additivity of the Hausdorff measure, we
have to show that (Sxi

∩A, δM) has 1-dimensional Hausdorff measure equal to 0.
Since Sxi

is 2-dimensional, this follows from Proposition 2.3 and Lemma A.3 like
above.

3.2 Proof of Theorem 1.2

Before giving the proof we need a better understanding of the sets Ã0 and A0.

Lemma 3.1. The function H̃ : M →M defined by

H̃(x) = inf{H(x, p) | p ∈ T ∗
xM}

satisfies the following properties:

(i) For every x ∈M , we have H̃(x) ≤ c(H).

(ii) We have H(x, p) = H̃(x) if and only if p = ∂L/∂v(x, 0).

(iii) For every x ∈M , we have

H̃(x) = H

(

x,
∂L

∂v
(x, 0)

)

= −L(x, 0).

Therefore H̃ is as smooth as x 7→ L(x, 0).

(iv) The point x is a critical point of H̃ (or of x 7→ L(x, 0)) if and only the
point (x, ∂L/∂v(x, 0)) is a critical point of H. In particular, the point
(x, ∂L/∂v(x, 0)) is a critical point of H for every x such that H̃(x) = c(H).

Proof. Since there exists a C1 critical subsolution u : M → R which satisfies

∀x ∈M, H(x, dxu) ≤ c(H),

we must have
H̃(x) = inf{H(x, p) | p ∈ T ∗

xM} ≤ c(H).

By strict convexity the infimum H̃(x) is attained at the unique point p̃(x) ∈ T ∗
xM .

which satisfies
∂H

∂p
(x, p̃(x)) = 0. (∗)

12



Since (x, p) 7→ (x, ∂H/∂p(x, p)) is the inverse of the Legendre transform (x, v) 7→
∂L/∂v(x, v), we obtain

p̃(x) =
∂L

∂v
(x, 0),

and therefore by the Fenchel equality

H̃(x) = H(x, p̃(x)) =
∂L

∂v
(x, 0) − L(x, 0) = −L(x, 0).

To prove the last part (iv), we first observe that

∂H

∂p

(

x,
∂L

∂v
(x, 0)

)

= 0.

Then we differentiate (in a coordinate chart) the equality obtained in (ii) to obtain

dxH̃ =
∂H

∂x

(

x,
∂L

∂v
(x, 0)

)

+
∂H

∂p

(

x,
∂L

∂v
(x, 0)

)

◦ ∂
2L

∂v2
(x, 0)

=
∂H

∂x

(

x,
∂L

∂v
(x, 0)

)

.

Therefore, by the two previous equations, the first part of (iv) follows. The last
part of (iv) is a consequence (i), which implies that each x satisfying H̃(x) = c(H)
is a global maximum of H̃.

We can now give a characterization of the stationary Aubry set Ã0.

Proposition 3.2. The set Ã0 of points in Ã which are fixed for the Euler-
Lagrange flow φL

t is exactly the intersection of Ã with the zero section in TM ,
i.e.

Ã0 = Ã ∩ {(x, 0) | x ∈M}.
Its projection A0 = π(Ã0) on M is precisely the set of point x in M at which H̃
takes the value c(H), i.e.

A0 = {x ∈M | H̃(x) = 0}.

Proof. Let (x, v) be in Ã0. Since the Euler-Lagrange flow φL
t is conjugated to

the Hamiltonian flow φH
t of H by the Legendre transform L, we obtain that

(x, ∂L/∂v(x, v)) is fixed under φH
t , and therefore (x, ∂L/∂v(x, v)) is a critical

point of H. In particular, we have

∂H

∂p

(

x,
∂L

∂v
(x, v)

)

= 0.

Since (x, p) 7→ (x, ∂H/∂p(x, p)) is the inverse of the Legendre transform, we
conclude that v = 0, yielding the proof of the inclusion Ã0 ⊂ Ã∩{(x, 0) | x ∈M}.
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Suppose now that that (x, 0) is in Ã. By Theorem 2.2, the Legendre transform
of the Aubry set is contained in the set where H is equal to c(H), i.e.

H

(

x,
∂L

∂v
(v, 0)

)

= c(H).

We obtain by Lemma 3.1 that x is a critical point of H̃ and therefore we get that
(x, ∂L/∂v(v, 0)) is a critical point of H. This implies that this points is invariant
under φH

t , hence (x, 0) is fixed under the Euler-Lagrange flow φL
t . By this we get

the equality Ã0 = Ã ∩ {(x, 0) | x ∈M}.
Note that we have proved that if (x, 0) in Ã then H̃(x) = c(H). Therefore A0

is contained in the set H̃−1(c(H)).
It remains to show that any x such that H̃(x) = c(H) is in A0. Suppose that

x is such that H̃(x) = c(H). Since H̃(x) = −L(x, 0), we get L(x, 0) + c(H) = 0.
If we consider now the constant curve γ :] −∞,+∞[→ {x}, we see that

∫ t

0

L(γ(s), γ̇(s)) ds+ c(H)t =

∫ t

0

L(x, 0) ds+ c(H)t = 0.

Therefore ht(x, x) + c(H)t = 0 for every t ≥ 0. This implies that x ∈ A. It
remains to show that the point (x, v) ∈ Ã above x is necessarily (x, 0), which will
imply that x ∈ A0. Note that again by Theorem 2.2 we have

H

(

x,
∂L

∂v
(x, v)

)

= c(H).

But infp∈T ∗

x M H(x, p) = H̃(x) = c(H), and that this infimum is only attained at
p = ∂L/∂v(x, 0). This implies that ∂L/∂v(x, v) = ∂L/∂v(x, 0). The invertibility
of the Legendre transform yields v = 0.

We now start the proof of Theorem 1.2. Replacing L by L + c(H), we can
assume, without loss of generality, that c(H) = 0. Notice now that, for every
compact subset K ⊂M , there exists αK ≥ 0 such that

x ∈ K, H(x, p) ≤ 0 =⇒ ‖p− p̃(x)‖x ≤ α

√

−H̃(x). (∗∗)

In fact, since ∂2H/∂p2(x, p) is positive definite everywhere, and S(K) = {(x, p) ∈
T ∗M | x ∈ K, H(x, p) ≤ 0} is compact, by Taylor’s formula (in integral form),
we can find βK > 0 such that

∀(x, p), (x, p′) ∈ S(K), H(x, p) ≥ H(x, p′) +
∂H

∂p
(x, p′)(p− p′) + βK‖p− p′‖2

x.

Using the equalities (∗) and H̃(x) = H(x, p̃(x)), and that H(x, p) ≤ 0 on S(K),
the inequality above yields

∀(x, p) ∈ S(K), 0 ≥ H̃(x) + βK‖p− p̃(x)‖2
x.
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This yields (∗∗) with αK =
√
βK . If u : M → R is a C1 critical subsolution, we

know that H(x, dxu) ≤ 0 for every x ∈M , therefore we obtain

∀x ∈M, ‖dxu− p̃(x)‖x ≤ αK

√

−H̃(x).

It follows that for every pair u1, u2 of critical subsolutions, we have

∀x ∈M, ‖dx(u2 − u1)‖x ≤ 2αK

√

−H̃(x). (∗ ∗ ∗)

We now use Lemma 2.8 for Ck,1 functions to decompose A0 as

A0 = ∪i∈NAi,

with each Ai ⊂ Bi, where Bi ⊂ M is a C1 embedded compact disk of dimension
≤ dimM . Since H̃ is a Ck,1 function vanishing on A0, by (1) we know that we
can find for each i ∈ N a finite constant Mi such that

∀x ∈ Ai, ∀y ∈ Bi, −H̃(y) =
∣

∣

∣
H̃(x) − H̃(y)

∣

∣

∣
≤Mid(x, y)

k+1.

Since Bi is compact, we can combine this last inequality with (∗ ∗ ∗) above to
obtain for every pair of critical subsolutions u1, u2, and every i ∈ N

∀x ∈ Ai, ∀y ∈ Bi, ‖dy(u2 − u1)‖y ≤ 2αBi

√

Mid(x, y)
(k+1)/2.

We know thatBi is C1 diffeomorphic to the unit ball Bni , with ni ∈ {0, . . . , dimM}.
To avoid heavy notation we will identify in the sequel of the proof Bi with Bni .
Since this identification is C1, we can replace in the inequality above the Rieman-
nian norm by the Euclidean norm ‖·‖euc on Rni , to obtain the following inequality

∀x ∈ Ai, ∀y ∈ Bi ≈ Bni , ‖dy(u2 − u1)‖euc ≤ Ci‖y − x‖(k+1)/2
euc .

for some suitable finite constant depending on i. If we integrate this inequality
along the segment from x to y in Bni ≈ Bi, we obtain

∀x ∈ Ai, ∀y ∈ Bi ≈ Bni , |(u1 − u2)(y) − (u1 − u2)(x)| ≤ Ci‖y − x‖
k+1
2

+1
euc .

By Lemma 2.7 we deduce that

∀x, y ∈ Ai, δM(x, y) ≤ C̃i‖y − x‖
k+1
2

+1
euc .

Since Ai ⊂ Bi ≈ Bni ⊂ Rni , and obviously 1+ k+1
2
> 1, we conclude from Lemma

A.1 that the Hausdorff measure Hni/(1+ k+1
2

)(Ai, δM) is equal to 0. Therefore, since
ni ≤ dimM and A0 is the countable union of the Ai, we conclude that

H2 dim M/(k+3)(A0, δM) = 0.

In particular, if k+3 ≥ 2 dimM , that is k ≥ 2n−3, the one-dimensional Hausdorff
dimension of (A0

M , δM) vanishes.
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3.3 Proof of Theorem 1.4

We will give a proof of Theorem 1.4 that does not use conservation of energy
(complicating a little bit some of the steps). It will use instead the completeness of
the Euler-Lagrange flow, which is automatic for Tonelli Lagrangians independent
of time, see [15, Corollary 2.2, page 6]. It can therefore be readily adapted to
the case where L depends on time, is 1-periodic in time and has a complete
Euler-Lagrange flow like in the work of Mather [25, 26].

In a flow the period function on the periodic non-fixed point is not necessarily
continuous. Therefore when we pick a local Poincaré section for a closed orbit the
nearby periodic points of the flow do not give rise to fixed point of the Poincaré
return map. This will cause us some minor difficulties in the proof of Theorem
1.4. We will use the following general lemma to easily get around these problems.

Proposition 3.3. Let X be a metric space and (φt)t∈R be a continuous flow on
X. Call Fix(φt) the set of fixed points of the flow (φt)t∈R, and Per(φt) the set of
periodic non-fixed points of (φt)t∈R. We define the function T : Per(φt) →]0,∞[
by T (x) is the smallest period > 0 of the point x ∈ Per(φt).

We can write Per(φt) as a countable union Per(φt) = ∪n∈NCn where each Cn

is a closed subset on which the period map T is continuous.

Proof. For t ∈ R, call Ft the set of fixed points of the map φt. Using the continuity
of (φt)t∈R on the product on R × X, it is not difficult to see that ∪t∈[a,b]Ft is a
closed subset of X for every compact subinterval [a, b] contains in R. For n ∈ Z

we set

F n = ∪2n≤t≤2n+1Ft = {x ∈ X | ∃t ∈ [2n, 2n+1] with φt(x) = x.

Note that Fm is closed. Moreover since φt(x) = x with 2m−1 ≤ t ≤ 2m implies
φ2t(x) = φt ◦ φt(x) = φt(x) = x and 2m ≤ 2t ≤ 2m+1, we get Fm−1 ⊂ Fm for
every m ∈ Z,. Therefore we have F n \F n−1 = F n \∪i≤n−1F

i is the set of periodic
non-fixed points with 2n < T (x) ≤ 2n+1. In particular Per(φt) = ∪n∈ZF

n \ F n−1.
Note also that if x ∈ F n \ F n−1, and t ∈]0, 2n+1[ are such that φt(x) = x then
necessarily t = T (x). In fact, we have t/T (x) ∈ N∗, but t/T (x) ≤ 2n+1/T (x) < 2,
hence t/T (x) = 1.

We now show that the period map T is continuous on F n \ F n−1. For this
we have to show that for a sequence xℓ ∈ F n \ F n−1 which converges to x∞ ∈
F n \ F n−1, we necessarily have T (xℓ) → T (x∞), when ℓ → ∞. Since T (xℓ) ∈
[2n, 2n+1] which is compact, it suffices to show that any accumulation point T of
T (xℓ) satisfies T = T (x∞). Pick up an increasing subsequence ℓk ր ∞ such that
T (xℓk

) → T when k → ∞. By continuity T ∈ [2n, 2n+1] and φT (x∞) = x∞. Since
x∞ ∈ F n \ F n−1, by what we have shown above we have T = T (x∞).

Since Per(φt) is the countable union ∪n∈ZF
n \ F n−1, to finish the proof of

the lemma it remains to show that each F n \ F n−1 is itself a countable union of
closed subsets of X. This is obvious because F n \F n−1 = F n ∩ (X \F n−1) is the
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intersection of a closed and an open subset in the metric X, but an open subset
in a metric space is itself a countable union of closed sets.

We will also need the following proposition which relates the size of the deriva-
tive of a C1,1 critical sub-solution at a point to minimal actions of loops at that
point. We will need to use Lipschitz functions from a compact subset of M to a
compact subset of TM . We therefore need distances on M and TM . On M we
have already a distance coming from the Riemannian metric. Since all distances,
obtained from Riemannian metrics, are Lipschitz equivalent on compact subsets,
the precise distance we use on TM is not important. We therefore just assume
that we have chosen some Riemannian metric on TM (not necessarily related to
the one on M), and we will use the distance on TM coming from this Riemannian
metric.

Proposition 3.4. Suppose that K is a given compact set, and t0, t
′
0 ∈ R satisfy

0 < t0 ≤ t′0. We can find a compact set K ′ such that, for any finite number ℓ,
we can find a finite number C such that any critical C1 subsolution u : M → R,
such that x 7→ (x, dxu) is Lipschitz on K ′ with Lipschitz constant ≤ ℓ, satisfies

∀x ∈ K, ∀t ∈ [t0, t
′
0], [c(H) −H(x, dxu)]

2 ≤ C[ht(x, x) + c(H)t].

Moreover, for every such ℓ, we can find a constant C ′ such that any pair of critical
C1 subsolutions u1, u2 : M → R, such that both maps x 7→ (x, dxui), i = 1, 2, are
Lipschitz on K ′ with Lipschitz constant ≤ ℓ, satisfies

∀x ∈ K, ∀t ∈ [t0, t
′
0], ‖dxu2 − dxu1‖4

x ≤ C ′[ht(x, x) + c(H)t].

When M is compact, we can take t′0 = +∞, and the above Proposition
becomes:

Proposition 3.5. Suppose the manifold M is compact, and that t0 > 0 is given.
For any finite number ℓ, we can find a finite number C such that any critical C1

subsolution u : M → R, such that x 7→ (x, dxu) is Lipschitz on M with Lipschitz
constant ≤ ℓ, satisfies

∀x ∈M, ∀t ≥ t0, [c(H) −H(x, dxu)]
2 ≤ C[ht(x, x) + c(H)t].

Moreover, for every such ℓ, we can find a constant C ′ such that any pair of critical
C1 subsolutions u1, u2 : M → R, such that both maps x 7→ (x, dxui), i = 1, 2, are
Lipschitz on M with Lipschitz constant ≤ ℓ, satisfies

∀x ∈M, ∀t ≥ t0, ‖dxu2 − dxu1‖4
x ≤ C ′[ht(x, x) + c(H)t].

To prove these propositions, we first need to prove some lemmas.
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Lemma 3.6. Suppose K is a compact subset of M and that t0, t
′
0 ∈ R satisfy

0 < t0 ≤ t′0. We can find a compact subset K ′ ⊂M containing K (and depending
on K, t0, t

′
0) such that any L-minimizer γ : [a, b] → M with t0 ≤ b− a ≤ t′0, and

γ(a), γ(b) ∈ K is contained in K ′.

Of course when M is compact we could take K ′ = M and the lemma is trivial.

Proof of Lemma 3.6. Since M is a complete Riemannian manifold, we can find
g : [a, b] → M a geodesic with g(a) = γ(a), g(b) = γ(b), and whose length is
d(γ(a), γ(b)). Since g is a geodesic, the norm ‖ġ(s)‖g(s) of its speed is a constant
that we denote by C. Therefore we have

d(γ(a), γ(b)) = length(g) =

∫ b

a

‖ġ(s)‖g(s) ds = C(b− a).

This yields that the norm of speed ‖ġ(s)‖g(s) = C = d(γ(a), γ(b))/(b − a) is
bounded by diam(K)/t0. If we set

A = sup{L(x, v) | (x, v) ∈ TM, ‖v‖x ≤ diam(K)/t0},

we know that A is finite by the uniform boundedness of L in the fiber. It follows
that we can estimate the action of g by

∫ b

a

L(g(s), ġ(s)) ds ≤ A(b− a).

Since γ is a minimizer with the same endpoints as g, we also get

∫ b

a

L(γ(s), γ̇(s)) ds ≤ A(b− a).

By the uniform superlinearity of L in the fibers, we can find a constant C > −∞
such that

∀(x, v) ∈ TM, C + ‖v‖x ≤ L(x, v).

Applying this to (γ(s), γ̇(s)) and integrating we get

C(b− a) + length(γ) ≤
∫ b

a

L(γ(s), γ̇(s)) ds ≤ A(b− a).

Therefore
length(γ) ≤ (A− C)(b− a).

Therefore γ is contained in the set K defined by

K ′ = V̄(A−C)(b−a)(K) = {y | ∃x ∈ K, d(x, y) ≤ (A− C)(b− a)}.

Notice that K ′ is contained in a ball of radius
(

diamK+(A−C)(b−a)
)

which is
finite, and balls of finite radius are compact in a complete Riemannian manifold.
Therefore K ′ is compact.
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Lemma 3.7. For every compact subset K ′ of M , and every t0 > 0, we can find
a constant C = C(t0, K

′) such that every L-minimizer γ : [a, b] → M , with
b− a ≥ t0 and γ([a, b]) ⊂ K ′, satisfies

∀s ∈ [a, b], ‖γ̇(s)‖γ(s) ≤ C.

Proof. Since any s ∈ [a, b] with b−a ≥ t0 is contained in an subinterval of length
exactly t0, and any sub-curve of a minimizer is a minimizer, it suffices to prove
the lemma under the condition b − a = t0. Using the action of a geodesic from
γ(a) to γ(b), and the uniform boundedness of L in he fibers like in the proof of
the previous Lemma 3.6, we can find a constant A (depending on diam(K) and
t0 but not on γ) such that

∫ b

a

L(γ(s), γ̇(s)) ds ≤ A(b− a).

Therefore, we can find s0 ∈ [a, b] such that L(γ(s0), γ̇(s0)) ≤ A. By the uniform
superlinearity of L, the subset

K = {(x, v) ∈ TM | x ∈ K ′, L(x, v) ≤ A}
is compact (and does not depend on γ). Since γ is a minimizer, we have (γ(s), γ̇(s)) =
φs−s0(γ(s0), γ̇(s0)), and |s − s0| ≤ b − a = t0, we conclude that the speed curve
of the minimizer γ is contained in the set (independent of γ)

K′ =
⋃

|t|≤t0

φL
t (K),

which is compact by the continuity of the Euler-Lagrange flow.

Lemma 3.8. For every K compact subset of M , every t0 > 0 and every t′0 ∈
[t0,+∞[ (resp. t′0 = +∞, when M is compact), we can find K ′ ⊃ K a compact
subset of M (resp. K ′ = M when M is compact) and finite constants C0, C1 such
that:
for every C1 critical subsolution u : M → R, if ωu,K′ : [0,∞[→ ∞ is a continuous
non-decreasing modulus of continuity of x 7→ (x, dxu) on K ′, then for every x, y ∈
K, and every t ∈ R with t0 ≤ t ≤ t′0, we have

ω−1
u,K′

(

c(H) −H(x, dxu)

2C1

)

c(H) −H(x, dxu)

2C0

≤ ht(x, y)+c(H)t+u(x)−u(y),

where

ω−1
u,K′(t) =

{

inf{t′ | ωu,K′(t′) = t} if t ∈ ωu,K′([0,+∞[),
+∞ otherwise.

In particular, if ωu,K′ is the linear function t 7→ Ct, with C > 0, then for
every x, y ∈ K, and every t ∈ R with t0 ≤ t ≤ t′0, we have

[c(H) −H(x, dxu)]
2

4CC0C1

≤ ht(x, y) + c(H)t+ u(x) − u(y).
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Proof. We first choose K ′. If M is compact, we set K ′ = M , and we allow
t′0 = +∞. If M is not compact we assume t′0 < +∞. By Lemma 3.6, we can find
a compact subset K ′ ⊃ K of M such that every L-minimizer γ : [a, b] →M with
t0 ≤ b − a ≤ t′0, and γ(a), γ(b) ∈ K is contained in K ′. With this choice of K ′,
we apply Lemma 3.7 to find a finite constant a finite constant C0 such that every
L-minimizer γ : [a, b] →M contained in K ′, with b−a ≥ 0, has a speed bounded
in norm by C0.

Therefore we conclude that for every L-minimizer γ : [0, t] →M , with t0 ≤ t′0
and γ(0), γ(t) ∈ K, we have γ([0, t]) ⊂ K ′, and ‖γ̇(s)‖γ(t) ≤ C0 (this is valid both
in the compact and non-compact case). In particular, for such a minimizer γ, we
have

∀s, s′ ∈ [0, t], d(γ(s), γ(s′)) ≤ C0|s− s′|.
We call C1 a Lipschitz constant of H on the compact subset {(x, p) ∈ T ∗M | x ∈
K ′, H(x, p) ≤ c(H)}.

Suppose now u is a critical subsolution. Given x, y ∈ K, and t ∈ [t0, t
′
0], we

pick γ : [0, t] →M a minimizer with γ(0) = x and γ(t) = y. Therefore we have

ht(x, y) =

∫ t

0

L(γ(s), γ̇(s)) ds.

Since γ([0, t]) ⊂ K ′ and H(γ(s), dγ(s)u) ≤ c(H), we have

∀s, s′ ∈ [0, t], |H(γ(s′), dγ(s′)u) −H(γ(s), dγ(s)u)|
≤ C1d[(γ(s

′), dγ(s′)u), (γ(s), dγ(s)u)]

≤ C1ωu,K′(d(γ(s′), γ(s)) ≤ C1ωu,K′(C0|s− s′|). (∗)

Integrating the Fenchel inequality

dγ(s)u(γ̇(s)) ≤ L(γ(s), γ̇(s)) +H(γ(s), dγ(s)u),

we get

u(y) − u(x) ≤ ht(x, y) +

∫ t

0

H(γ(s), dγ(s)u) ds.

Since H(γ(s), dγ(s)u) ≤ c(H), for every t′ ∈ [0, t], we can write

∫ t

0

H(γ(s), dγ(s)u) ds =

∫ t

0

c(H) + [H(γ(s), dγ(s)u) − c(H)] ds

≤ c(H)t+

∫ t′

0

H(γ(s), dγ(s)u) − c(H) ds

≤ c(H)t+

∫ t′

0

H(γ(0), dγ(0)u) − c(H) + C1ωu,K′(C0s) ds

= c(H)t+

∫ t′

0

H(x, dxu) − c(H) + C1ωu,K′(C0s) ds.
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Therefore from (∗) above we obtain

∀t′ ∈ [0, t], u(y)−u(x) ≤ ht(x, y)+c(H)t+

∫ t′

0

H(x, dxu)−c(H)+C1ωu,K′(C0s) ds,

which yields

∀t′ ∈ [0, t],

∫ t′

0

c(H)−H(x, dxu)−C1ωu,K′(C0s) ds ≤ ht(x, y)+c(H)t+u(x)−u(y).
(∗∗)

Since t ≥ t0 and c(H) −H(x, dxu) ≤ c(H) − inf{H(x, p) | (x, p) ∈ T ∗M} < +∞,

up to choose C0 big enough we can assume t > 1
C0
ω−1

u,K′(
c(H)−H(x,dxu)

2C1
). Then, if

we set t′ = 1
C0
ω−1

u,K′(
c(H)−H(x,dxu)

2C1
), since ωu,K′ is non decreasing we obtain

∀s ∈ [0, t′], C1ωu,K′(C0s) ≤
c(H) −H(x, dxu)

2
.

Hence

∀s ∈ [0, t′], c(H) −H(x, dxu) − C1ωu,K′(C0s) ≥
c(H) −H(x, dxu)

2
.

Combining this with (∗∗) we obtain

ω−1
u,K′

(

c(H) −H(x, dxu)

2C1

)

c(H) −H(x, dxu)

2C0

≤ ht(x, y) + c(H)t+ u(x) − u(y).

This finishes the proof.

Proof of Proposition 3.4. We apply Lemma 3.8 above to obtain the compact set
K ′. This lemma also gives for every ℓ ≥ 0 a constant A = A(ℓ) such that any
C1,1 critical subsolution u : M → R which is ℓ-Lipschitz on K ′ satisfies

∀x ∈ K, ∀t ∈ [t0, t
′
0],

[c(H) −H(x, dxu)]
2

A
≤ ht(x, x) + c(H)t.

To prove the second part, we will use the strict C2 convexity of H. Since the
set {(x, p) | x ∈ K,H(x, p) ≤ c(H)} is compact the C2 strict convexity allows us
to find β > 0 such that for all x ∈ K, and p1, p2 ∈ T ∗

xM , with H(x, pi) ≤ c(H),
we have

H(x, p2) −H(x, p1) ≥
∂H(x, p1)

∂p
(p2 − p1) + β‖p2 − p1‖2

x.

Since H is convex in p, for all x ∈ K, and p1, p2 ∈ T ∗
xM , with H(x, pi) ≤ c(H), we

also have H(x, (p1 + p2)/2) ≤ c(H). therefore we can apply the above inequality
to the pairs ((p1 + p2)/2, p1) and ((p1 + p2)/2, p2) to obtain

H(x, p1) −H

(

x,
p1 + p2

2

)

≥ ∂H(x, p1+p2

2
)

∂p
(
p1 − p2

2
) + β‖p1 − p2

2
‖2

x

H(x, p2) −H

(

x,
p1 + p2

2

)

≥ ∂H(x, p1+p2

2
)

∂p
(
p2 − p1

2
) + β‖p2 − p1

2
‖2

x.
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If we if we add these 2 inequalities, using H(x, pi) ≤ c(H), and dividing by 2, we
obtain

c(H) −H

(

x,
p1 + p2

2

)

≥ β‖p2 − p1

2
‖2

x.

Therefore if u1, u2 : M → R are two C1 critical subsolutions such that (x 7→
(x, dxui), i = 1, 2 have a Lipschitz constant ≤ ℓ on K ′, we get

c(H) −H

(

x,
dxu1 + dxu2

2

)

≥ β‖dxu2 − dxu1

2
‖2

x. (∗)

We denote by T ∗M ⊕T ∗M the Whitney sum of T ∗M with itself (i.e. we consider
the vector bundle over M whose fiber at x ∈M is T ∗

xM × T ∗
xM). The maps

T ∗M → T ∗M ⊕ T ∗M, (x, p) 7→ (x, p, 0),

T ∗M → T ∗M ⊕ T ∗M, (x, p) 7→ (x, 0, p)

and

T ∗M ⊕ T ∗M → T ∗M, (x, p1, p2) 7→
(

x,
p1 + p2

2

)

are all C∞. Therefore they are Lipschitz on any compact subset. Since for
a critical subsolution u : M → R the values (x, dxu), for x ∈ K ′, are all in
the compact subset {(x, p) | x ∈ K ′, H(x, p) ≤ c(H)}, we can find a constant
B < ∞ such that for any two C1 critical subsolutions u1, u2 : M → R such
that x 7→ (x, dxui), i = 1, 2 has a Lipschitz constant ≤ ℓ on K ′, the map x 7→
(x, (dxu1 + dxu2)/2) has Lipschitz constant ≤ Bℓ. Since (u1 + u2)/2 is also a
critical subsolution, applying the first part of the proposition proved above with
Lipschitz constant ℓ1 = Bℓ, we can find a constant C1 such that

∀x ∈ K, ∀t ∈ [t0, t
′
0], c(H) −H

(

x,
dxu1 + dxu2

2

)2

≤ C1(ht(x, x) + c(H)t).

Combining this inequality with (∗) above we get

∀x ∈ K, ∀t ∈ [t0, t
′
0], β2‖dxu2 − dxu1

2
‖4

x ≤ C2
1(ht(x, x) + c(H)t)2.

This yields the second part of the Proposition with C ′ = β−2C2
1 .

We now can start the proof of Theorem 1.2. Let Ãp be the set of points
in the Aubry set Ã which are periodic but not fixed under the Euler-Lagrange
flow φL

t . This set projects on Ap. Denote by T : Ãp →]0,+∞[ the period map
of Euler-Lagrange flow φL

t , i.e. if (x, v) ∈ Ãp, the number T (x) is the smallest
positive number t such that φL

t (x, v) = (x, v). Using Proposition 3.3 above, we
can write Ãp = ∪n∈NF̃n, with each F̃n compact and such that the restriction T |F̃n

is continuous. We denote by Fn the projection of F̃n ⊂ TM on the base M . We
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have Ap = ∪n∈NFn. If we want to show that Hd(Ap, δM) = 0, for some dimension
d > 0, by the countable additivity of the Hausdorff measure in dimension d, it
suffices to show that Hd(Fn, δM) = 0, for every n ∈ N.

Therefore from now on we fix some compact subset F̃ ⊂ Ãp on which the
period map is continuous, and we will show that its Hausdorff measure in the
appropriate dimension d is 0. We now perform one more reduction. In fact, we
claim that it suffices for each (x, v) ∈ F̃ to find S̃(x,v) ⊂ TM a C∞ codimension

1 transversal section to the Euler-Lagrange flow φL
t , such that (x, v) ∈ S̃(x,v) and

Hd(π(F̃ ∩ S̃(x,v)), δM) = 0, where π : TM → M is the canonical projection.

Indeed, if this was the case, since, by transversality of S̃ to the flow φL
t the set

Ṽx,v = ∪t∈Rφ
L
t (S̃(x,v)) is open in TM , we could cover the compact set F̃ by a finite

number of sets Ṽ(xi,vi), i = 1, . . . , ℓ. Note that by part (3) of Mather’s theorem

2.1, the sets π(F̃ ∩ Ṽ(x,v)) and π(F̃ ∩ S̃(x,v)) have the same image in the quotient
Mather set, therefore we get

Hd(π(F̃ ∩ Ṽ(x,v)), δM) = Hd(π(F̃ ∩ S̃(x,v)), δM) = 0.

Hence F = π(F̃ ), which is covered by the finite number of sets π(F̃ ∩ Ṽ(xi,vi)),
does also satisfy Hd(F, δM) = 0.

Fix now (x0, v0) in F̃ ⊂ Ãp. We proceed to construct the transversal S̃ =
S̃(x0,v0). We start with a C∞ codimension 1 submanifold S̃0 ⊂ TM which
it transversal to the flow φL

t , and which intersects the compact periodic orbit
φL

t (x0, v0) at exactly (x0, v0). If L (or H) is Ck,1, the Poincaré first return time
τ : S̃1 →]0,∞[ on T0 is defined and Ck−1,1 on some smaller transversal S̃1 ⊂ S̃0

containing (x0, v0). We set θ : S̃1 → S̃0, (x, v) 7→ φL
τ(x,v)(x, v). This is the Poincaré

return map, and it is also Ck−1,1, as a composition of Ck−1,1 maps. Of course, we
have τ(x0, v0) = T (x0, v0) and θ(x0, v0) = (x0, v0). Since T is continuous on F , it
is easy to show that T = τ and θ is the identity on F ∩ S̃2, where S̃2 ⊂ S̃1 is a
smaller section containing (x0, v0).

Pick ǫ > 0 small enough so that the radius of injectivity of the Riemannian
manifold M is ≥ ǫ for every x ∈ Bd(x0, ǫ) = {y ∈ M | d(x0, y) < ǫ}, where d is
the distance obtained from the Riemannian metric on M . This implies that the
restriction of the square d2 of the distance d is of class C∞ (like the Riemannian
metric) on Bd(x0, ǫ/2) ×Bd(x0, ǫ/2).

We now take a smaller section S̃3 ⊂ S̃2 around (x0, v0) such that for every
(x, v) ∈ S̃3 both x and πθ(x, v) of M are in the ball Bd(x0, ǫ/2). This is possible
by continuity since θ(x0, v0) = (x0, v0). For (x, v) ∈ S̃3, we set

ρ(x, v) = τ(x, v) + d(πθ(x, v), x).

We will now give an upper bound for hρ(x,v)(x, x)+ c(H)ρ(x, v), when (x, v) ∈ S̃3.
For this we choose a loop γ(x,v) : [0, ρ(x, v)] → M at x. This loop γ(x,v) is
equal to the curve γ(x,v),1(t) = πφt(x, v) for t ∈ [x, τ(x, v)], which joins x to
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πθ(x, v), followed by the shortest geodesic γ(x,v),2 : [τ(x, v), ρ(x, v)] →M , for the
Riemannian metric, parametrized by arc-length and joining πθ(x, v) to x. Since
γ(x,v),2 is parametrized by arc-length and is contained in Bd(x0, ǫ), its action is
bounded by Kd(πθ(x, v), x), where K = sup{L(x, v) | d(x, x0) ≤ ǫ, ‖v‖x ≤ 1} <
∞. On the other hand the action a(x, v) of γ(x,v),1(t) is given by

a(x, v) =

∫ τ(x,v)

0

L[φL
s (x, v)] ds.

Note that a is also of class Ck−1,1. It follows that, for (x, v) ∈ S̃3, we have

hρ(x,v)(x, x) + c(H)ρ(x, v) ≤ [a(x, v) + c(H)τ(x, v)] + [K + c(H)]d(πθ(x, v), x)).

Therefore if, for (x, v) ∈ S̃3, we define

Ψ(x, v) = [a(x, v) + c(H)τ(x, v)]2 + d2(θ(x, v), x),

we obtain

∀(x, v) ∈ S̃3, 0 ≤ hρ(x,v)(x, x) + c(H)ρ(x, v) ≤ [1 +K + c(H)]
√

Ψ(x, v).

Notice that Ψ is Ck−1,1 like a and τ , because x, πθ(x, v) ∈ B(x0, ǫ/2) and d2 is
C∞ on the ball B(x0, ǫ/2). We now observe that Ψ is identically 0 on F̃ ∩ S̃3.
Indeed, for (x, v) ∈ F̃ ∩ S̃3, we have θ(x, v) = (x, v), therefore d2(πθ(x, v), x) = 0.
Moreover, since (x, v) ∈ F̃ ⊂ Ã, the curve t 7→ πφL

t (x, v) calibrates any critical
subsolution u : M → R; in particular

u(πφL
τ(x,v)(x, v)) − u(π(x, v)) =

∫ τ(x,v)

0

LφL
s (x, v) ds+ c(H)τ(x, v)

= a(x, v) + c(H)τ(x, v).

But φL
τ(x,v)(x, v) = θ(x, v) = (x, v) for (x, v) ∈ F̃∩S̃3. Hence a(x, v)+c(H)τ(x, v) =

0, for (x, v) ∈ F̃ ∩ S̃3. Therefore Ψ is identically 0 on for F̃ ∩ S̃3.
To sum up the situation we have found two functions ρ,Ψ : S̃3 → [0,+∞[

such that:

1. the function ρ is continuous and > 0 everywhere;

2. the function Ψ is Ck−1,1 and vanishes identically on F̃ ∩ S̃3;

3. there exists a finite constant C such that

∀(x, v) ∈ S̃3, 0 ≤ hρ(x,v)(x, x) + c(H)ρ(x, v) ≤ C
√

Ψ(x, v).

24



This is all that we will use in the sequel of the proof.
We now fix a smaller Poincaré section S̃4 containing (x0, v0) whose closure

Cl(S̃4) is compact and contained in S̃3. We now observe that K = π(Cl(S̃4))
is a compact subset of M , and that t0 = min{τ(x, v) | (x, v) ∈ Cl(S̃4)}, t′0 =
max{τ(x, v) | (x, v) ∈ Cl(S̃4)} are finite and > 0 since τ is continuous and > 0
on the compact set Cl(S̃4). We can therefore apply Proposition 3.4, to obtain a
set K ′. We have to choose a constant ℓ needed to apply this Proposition 3.4. For
this we invoke Theorem B.1: we can find a constant ℓ such that for any critical
subsolution u : M → R we can find a C1,1 critical subsolution v : M → R which is
equal to u on the projected Aubry set A and such that x 7→ (x, dxv) has Lipschitz
constant ≤ ℓ on K ′. It follows from Lemma 2.7 that

∀x, y ∈ A, δM(x, y) = max {(u1 − u2)(y) − (u1 − u2)(x)} ,

where the maximum is taken over all the pairs of C1,1 critical subsolution u1, u2 :
M → R such that x 7→ (x, dxui), i = 1, 2 have a Lipschitz constant ≤ ℓ on K ′.
Using this ℓ, we obtain, from Proposition 3.4, a constant C ′ such that

∀(x, v) ∈ Cl(S̃4), ‖dxu2 − dxu1‖4
x ≤ C ′[hτ(x,v)(x, x) + c(H)τ(x, v)],

for every pair of C1,1 critical subsolution u1, u2 : M → R such that x 7→
(x, dxui), i = 1, 2 have a Lipschitz constant ≤ ℓ onK ′. Therefore by the properties
of τ and Ψ explicited above we obtain

∀(x, v) ∈ Cl(S̃4), ‖dxu2 − dxu1‖x ≤ CΨ(x, v)1/8,

again for every pair of C1,1 critical subsolution u1, u2 : M → R such that x 7→
(x, dxui), i = 1, 2 have a Lipschitz constant ≤ ℓ on K ′. Since Ψ is of class Ck−1,1

and is identically 0 on F̃∩S̃4, we can invoke Lemma 2.8 to obtain a decomposition

F̃ ∩ S̃4 = ∪i∈NÃi,

with Ai a compact subset, a family (Bi)i∈Nof C1 compact embedded discs in S̃4

and constants (Ci)i∈N such that

∀(x, v) ∈ Ai, ∀(y, w) ∈ Bi, Ψ(y, w) = |Ψ(y, w) − Ψ(x,w)| ≤ Cid̃[(y, w), (x, v)]k,

where d̃ is the distance obtained from a fixed Riemannian metric on S̃4. Combin-
ing with what we obtained above, we find constants C ′

i (independent of the pair
of functions u1, u2) such that

∀(x, v) ∈ Ai, ∀(y, w) ∈ Bi, ‖dyu1 − dyu2‖x ≤ C ′
id̃[(y, w), (x, v)]k/8.

Since we want to consider u1 and u2 as function on Bi ⊂ TM composing with
π : TM →M , we can rewrite this as

∀(x, v) ∈ Ai, ∀(y, w) ∈ Bi, ‖d(y,w)u1 ◦ π − d(y,w)u2 ◦ π‖x ≤ C ′
id̃[(y, w), (x, v)]k/8.
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Again as in the proof of the previous theorem to simplify things we can identify
BI with a Euclidean ball Bi of some dimension, and since the identification is done
by a C1 diffeomorphism, we can find constants C ′′

i (independent of the pair of
functions u1, u2) such that

∀(x, v) ∈ Ai, ∀(y, w) ∈ Bi, ‖d(y,w)u1◦π−d(y,w)u2◦π‖euc ≤ C ′′
i ‖(y, w)−(x, v)‖k/8

euc .

In the Euclidean disc Bi, we can integrate this inequality along the Euclidean
segment joining (x, v) to (y, w) to obtain

∀(x, v) ∈ Ai, ∀(y, w) ∈ Bi, |(u1 − u2)(y) − (u1 − u2)(x)|

≤ C ′′
i

1 + (k/8)
‖(y, w) − (x, v)‖1+(k/8)

euc .

Of course, since the identification of Bi ⊂ TM with Bi is done by a C1 diffeomor-
phism changing constants again to some C̃i (independent of the pair of functions
u1, u2), we get

∀(x, v) ∈ Ai, ∀(y, w) ∈ Bi, |(u1−u2)(y)−(u1−u2)(x)| ≤ C̃id[(y, w), (x, v)]1+(k/8),

where d is a distance on TM obtained from a Riemannian metric. Observe now
that, by Mather’s theorem, the projection π : Ã → A is bijective with an inverse
which is locally Lipschitz. Therefore since Ai is compact and contained in F̃ ⊂ Ã,
changing again the constants to C̃ ′

i (independent of the pair of functions u1, u2),
we obtain

∀x, y ∈ π(Ai), |(u1 − u2)(y) − (u1 − u2)(x)| ≤ C̃ ′
id[y, x]

1+(k/8),

Since this inequality is true now for every pair f of C1,1 critical subsolution u1, u2 :
M → R such that x 7→ (x, dxui), i = 1, 2 have a Lipschitz constant ≤ ℓ on K ′

(with the constant C̃ ′
i independent of the pair of functions u1, u2), we conclude

that
∀x, y ∈ π(Ai), δM(x, y) ≤ C̃ ′′

i d[y, x]
1+(k/8).

Therefore by Lemma A.3 we obtain that

H8 dim M/(k+8)(π(Ai)) = 0.

Again by countable additivity this gives H8 dim M/(k+8)(π(F̃ ∩ S̃4)) = 0. This
finishes the proof of the Theorem.

Remark 3.9. We observe that, from our proof, for any F̃ ⊂ Ã, the semi-metric
space (π(F̃ ), δM) has vanishing one-dimensional Hausdorff measure as soon as
the following properties are satisfied: there are r > 0, k′, l ∈ N and a function
G : TM → R of class Ck′,1 such that

1. G(x, v) ≡ 0 on F̃ ,
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2. {mr(x)}l ≤ G(x, v) for all (x, v) ∈ TM ,

3. k′ ≥ 4l(dimM − 1) − 1,

where mr(x) = inft≥r {ht(x, x) + c(H)t}.
Remark 3.10. By Proposition 2.3, for every compact subset K ⊂ M there is a
constant CK > 0 such that

∀x ∈ K, h(x, x) ≤ CKd(x,A)2,

where d(x,A) denotes the Riemannian distance from x to the set A (which is
assumed to be nonempty). Therefore, from the remark above, we deduce that if
there are l ∈ N and a functionG : M → R of class Ck′,1 with k′ ≥ 2l(dimM−1)−1
such that

∀x ∈M, d(x,A)l ≤ G(x),

then (AM , dM) has vanishing one-dimensional Hausdorff measure.

3.4 Proof of Theorem 1.5

By Theorems 1.2 and 1.4 we know that (A0
M ∪ Ap

M , δM) has zero Hausdorff di-
mension. Thus the result will follow once we will show that AM \ (A0

M ∪Ap
M) is

a finite set.
We recall that the Aubry set Ã ⊂ TM is given by the set of (x, v) ∈ TM

such that x ∈ A and v is the unique v ∈ TxM such that dxu = ∂L
∂v

(x, v) for any
critical viscosity subsolution. This set is invariant under the Euler-Lagrange flow
φL

t . For every x ∈ A, we denote by O(x) the projection on A of the orbit of
φL

t which passes through x. We observe that by Theorem 2.1 (3) the following
simple fact holds:

Lemma 3.11. If x, y ∈ A and O(x) ∩ O(y) 6= ∅, then δM(x, y) = 0.

Let us define

C0 = {x ∈ A | O(x) ∩ A0}, Cp = {x ∈ A | O(x) ∩ Ap}.

Thus, if x ∈ C0 ∪Cp, by Lemma 3.11 the Mather distance between x and A0 ∪Ap

is 0, and we have done.
Let us now define C = A\ (C0∪Cp), and let (CM , δM) be the quotiented metric

space. To conclude the proof, we show that this set consists of a finite number of
points.

Let u be a C1,1 critical subsolution (whose existence is provided by [4]), and
let X be the Lipschitz vector field uniquely defined by the relation

L(x,X(x)) = (x, dxu),
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where L denotes the Legendre transform. Its flow extends on the whole manifold
the flow considered above on A. We fix x ∈ C. Then O(x) is a non-empty,
compact, invariant set which contains a non-trivial minimal set for the flow of X
(see [32, Chapter 1]). By [24], we know that there exists at most a finite number of
such non-trivial minimal sets. Therefore, again by Lemma 3.11, (CM , δM) consists
only in the finite number of points.

4 Applications in Dynamics

Throughout this section, M is assumed to be compact. As before, H : T ∗M → R

is an Hamiltonian of class at least C2 satisfying the three usual conditions (H1)-
(H3), and L is the Tonelli Lagrangian which is associated to it by Fenchel’s
duality.

As in Subsection 2.3, we denote SS the set of critical viscosity subsolutions
and by S− the set of critical viscosity (or weak KAM) solutions, so that S− ⊂ SS.

4.1 Some more facts about the Aubry set when the man-

ifold is compact

From the characterization of the Aubry set given by Theorem 2.6, it is natural
to introduce the Mañé set Ñ given by

Ñ =
⋃

u∈SS

Ĩ(u).

Like for Ã, the subset Ñ of TM is compact and invariant under the Euler-
Lagrange flow φL

t of L.

Theorem 4.1 (Mañé). When M is compact, each point of the invariant set Ã is
chain-recurrent for the restriction φL

t |Ã. Moreover, the invariant set Ñ is chain-
transitive for the restriction φL

t |Ñ .

Corollary 4.2. When M is compact, the restriction φL
t |Ã to the invariant subset

Ã is chain-transitive if and only if Ã is connected.

Proof. This is an easy well-known result in the theory of Dynamical Systems:
Suppose θt, t ∈ R, is a flow on the compact metric space X. If every point of X is
chain-recurrent for θt, then θt is chain-transitive if and only if X is connected.

For the following result see [11] or [10, Théorème 1].

Theorem 4.3. When M is compact, the following properties are satisfied:
1) Two weak KAM solutions that coincide on A are equal everywhere.
2) For every u ∈ SS, there is a unique weak KAM solution u− : M → R such
that u− = u on A; moreover, the two function u and u− are also equal on I(u).
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It follows from the second statement in this theorem that we have

Ñ =
⋃

u∈S−

Ĩ(u).

Moreover, it can be easily shown from the results of [11] that

A =
⋂

u∈S−

I(u).

We give now the general relationship between uniqueness of weak KAM solu-
tions and the quotient Mather set.

Proposition 4.4. Suppose M is compact. The following two statements are
equivalent:

1) Any two weak KAM solutions differ by a constant.

2) The Mather quotient (AM , δM) is trivial, i.e. is reduced to one point.

Moreover, if anyone of these conditions is true, then Ã = Ñ , and therefore Ã
is connected and the restriction of the Euler-Lagrange flow φL

t to Ã is chain-
transitive.

Proof. For every fixed x ∈M , the function y 7→ h(x, y) is a weak KAM solution.
Therefore if we assume that any two weak KAM solutions differ by a constant,
then for x1, x2 ∈M we can find a constant Cx1,x2 such that

∀y ∈M, h(x1, y) = Cx1,x2 + h(x2, y).

If x2 ∈ A, then h(x2, x2) = 0, therefore evaluating the equality above for y = x2,
we obtain Cx1,x2 = h(x1, x2). Substituting in the equality and evaluating we
conclude

∀x1 ∈M, ∀x2 ∈ A, h(x1, x1) = h(x1, x2) + h(x2, x1).

This implies
∀x1, x2 ∈ A, h(x1, x2) + h(x2, x1) = 0,

which means that δM(x1, x2) = 0 for every x1, x2 ∈ A.
To prove the converse, let us recall that for every critical subsolution u, we

have
∀x, y ∈M, u(y) − u(x) ≤ h(x, y).

Therefore applying this for a pair u1, u2 ∈ SS, we obtain

∀x, y ∈M, u1(y) − u1(x) ≤ h(x, y),

u2(x) − u2(y) ≤ h(y, x).
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Adding and rearranging, we obtain

∀x, y ∈M, (u1 − u2)(y) − (u1 − u2)(x) ≤ h(x, y) + h(y, x).

Since the right hand side is symmetric in x, y, we obtain

∀x, y ∈M, |(u1 − u2)(y) − (u1 − u2)(x)|≤ h(x, y) + h(y, x).

If we assume that 2) is true, this implies that u1−u2 is constant c on the projected
Aubry set A, that is u1 = u2 + c on A. Thus, if u1, u2 are weak KAM solutions,
then we have u1 = u2 + c on M , because any two solutions equal on the Aubry
set are equal everywhere by 2) of Theorem 4.3.

It remains to show the last statement. Notice that if u1, u2 ∈ SS differ by
a constant then Ĩ(u1) = Ĩ(u2). Therefore if any two elements in S− differ by a
constant, then

Ã = Ĩ(u) = Ñ ,

where u is any element in S−. But, by Mañé’s Theorem 4.1, the invariant set Ñ
is chain-transitive for the flow φt, hence it is connected by Corollary 4.2.

We now denote by XL the Euler-Lagrange vector field of L, that is the vector
field on TM that generates φL

t . We recall that an important property of XL is
that

∀(x, v) ∈ TM, Tπ(XL(x, v)) = v,

where Tπ : T (TM) → TM denotes the canonical projection.
Here is a last ingredient that we will have to use.

Proposition 4.5 (Lyapunov Property). Suppose u1, u2 ∈ SS. The function
(u1 − u2) ◦ π is non-decreasing along any orbit of the Euler Lagrange flow φL

t

contained in Ĩ(u2). If we assume u1 is differentiable at x ∈ I(u2), and (x, v) ∈
Ĩ(u2), then, using that u2 is differentiable on I(u2), we obtain

XL · [(u1 − u2) ◦ π](x, v) = dxu1(v) − dxu2(v) ≤ 0.

Moreover, the inequality above is an equality, if and only if dxu1 = dxu2. In that
case H(x, dxu1) = H(x, dxu2) = c(H).

Proof. If (x, v) ∈ Ĩ(u2) then t 7→ πφt(x, v) is (u2, L, c(H))-calibrated, hence

∀t1 ≤ t2, u2 ◦π(φt2(x, v))−u2 ◦π(φt1(x, v)) =

∫ t2

t1

L(φs(x, v)) ds+c(H)(t2− t1).

Since u1 ∈ SS, we get

∀t1 ≤ t2, u1 ◦π(φt2(x, v))−u1 ◦π(φt1(x, v)) ≤
∫ t2

t1

L(φs(x, v)) ds+c(H)(t2− t1).
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Combining these two facts, we conclude

∀t1 ≤ t2, u1◦π(φt2(x, v))−u1◦π(φt1(x, v)) ≤ u2◦π(φt2(x, v))−u2◦π(φt1(x, v)).

This implies

∀t1 ≤ t2, (u1 − u2) ◦ π(φt2(x, v)) ≤ (u1 − u2) ◦ π(φt1(x, v)).

Recall that u2 is differentiable at every x ∈ I(u2). Thus, if also dxu1 exists, if
(x, v) ∈ Ĩ(u2) we obtain

XL · [(u1 − u2) ◦ π](x, v) ≤ 0.

We remark that XL · [(u1 − u2) ◦ π](x, v) = dx(u1 − u2)(Tπ ◦ XL(x, v)). Since
Tπ ◦XL(x, v) = v, we obtain

XL · [(u1 − u2) ◦ π](x, v) = dxu1(v) − dxu2(v) ≤ 0.

If the last inequality is an equality, we get dxu1(v) = dxu2(v). Since (x, v) ∈ Ĩ(u2),
we have dxu2 = ∂L

∂v
(x, v) and H(x, dxu2) = c(H), therefore the Fenchel inequality

yields the equality

dxu2(v) = L(x, v) +H(x, dxu2) = L(x, v) + c(H).

Since u1 ∈ SS, we know that H(x, dxu1) ≤ c(H). The previous equality, using
the Fenchel inequality dxu1(v) ≤ L(x, v)+H(x, dxu1), and the fact that dxu1(v) =
dxu2(v), implies

H(x, dxu1) = c(H) and dxu1(v) = L(x, v) +H(x, dxu1).

This means that we have equality in the Fenchel inequality dxu1(v) ≤ L(x, v) +
H(x, dxu1), we therefore conclude that dxu1 = ∂L

∂v
(x, v), but the right hand side

of this last equality is dxu2.

4.2 Mather disconnectedness condition

Definition 4.6. We will say that the the Tonelli Lagrangian L on M satisfies
the Mather disconnectedness condition if for every pair u1, u2 ∈ S−, the image
(u1 − u2)(A) ⊂ R is totally disconnected.

Notice that by part 2) of Theorem 4.3, if L satisfies the Mather disconnect-
edness condition, then for every pair of critical sub-solutions u1, u2, the image
(u1 − u2)(A) ⊂ R is also totally disconnected.

Proposition 4.7. If H1(AM , δM) = 0, then L satisfies the Mather disconnected-
ness condition.
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Proof. If u1, u2 ∈ SS, u1 − u2 is 1-Lipschitz with respect to δM , see the proof of
Proposition 4.4. Therefore the 1-dimensional Hausdorff measure (i.e. Lebesgue
measure) of (u1 − u2)(A) is 0 like H1(AM , δM). The result follows since a subset
of R of Lebesgue measure 0 is totally disconnected.

By Proposition 4.7, the results obtained above in this work contain the fol-
lowing theorem.

Theorem 4.8. Let L be a Tonelli Lagrangian on the compact manifold M , it
satisfies the Mather disconnectedness condition in the following five cases:

(1) The dimension of M is 1 or 2.

(2) The dimension of M is 3, and Ã contains no fixed point of the Euler-
Lagrange flow.

(3) The dimension of M is 3, and L is of class C3,1.

(4) The Lagrangian is of class Ck,1, with k ≥ 2 dimM − 3, and every point of
Ã is fixed under the Euler-Lagrange flow φL

t .

(5) The Lagrangian is of class Ck, with k ≥ 8 dimM − 7, and each point of Ã
either is fixed under the Euler-Lagrange flow φL

t or its orbit in the Aubry
set is periodic with (strictly) positive period.

Lemma 4.9. Suppose that L is a Tonelli Lagrangian L on the compact manifold
M that satisfies the Mather disconnectedness condition. For every u ∈ SS, the
set of points in Ĩ(u) which are chain-recurrent for the restriction φL

t |Ĩ(u) of the

Euler-Lagrange flow is precisely the Aubry set Ã.

Proof. First of all, we recall that, from Theorem 4.1, each point of A is chain-
recurrent for the restriction φL

t |Ã. By [16, Theorem 1.5], we can find a C1 critical
viscosity subsolution u1 : M → R which is strict outside A, i.e. for every x /∈ A
we have H(x, dxu1) < c(H). We define θ on TM by θ = (u1 − u) ◦ π. By
Proposition 2.5, we know that at each point (x, v) of Ĩ(u) the derivative of θ
exists and depends continuously on (x, v) ∈ Ĩ(u). By Proposition 4.5, at each
point of (x, v) of Ĩ(u), we have

XL · θ(x, v) = dxu1(v) − dxu(v)) ≤ 0,

with the last inequality an equality if and only if dxu1 = dxu, and this implies
H(x, dxu1) = c(H). Since u1 is strict outside A, we conclude that XL · θ < 0 on
Ĩ(u) \ Ã. Suppose that (x0, v0) ∈ Ĩ(u) \ Ã. By invariance of both Ã and Ĩ(u),
every point on the orbit φL

t (x0, v0), t ∈ R is also contained in Ĩ(u) \ Ã, therefore
t 7→ c(t) = θ(φt(x0, v0)) is (strictly) decreasing , and so we have c(1) < c(0).
Observe now that θ(Ã) = (u1 − u)(A) is totally disconnected by the Mather
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disconnectedness condition. Therefore we can find c ∈]c(1), c(0)[\θ(Ã). By what
we have seen, the directional derivative XL · θ is < 0 at every point of the level
set Lc = {(x, v) ∈ Ĩ(u) | θ(x, v) = c}. Since θ is everywhere non-increasing on
the orbits of φL

t and XL · θ < 0 on Lc, we get

∀t > 0, ∀(x, v) ∈ Lc, θ(φt(x, v)) < c.

Consider the compact set Kc = {(x, v) ∈ Ĩ(u) | θ(x, v) ≤ c}. Using again that θ
is non-increasing on the orbits of φL

t |Ĩ(u), we have

∀t ≥ 0, φL
t (Kc) ⊂ Kc and φL

t (Kc \ Lc) ⊂ Kc \ Lc.

Using what we obtained above on Lc, we conclude that

∀t > 0, φL
t (Kc) ⊂ Kc \ Lc.

We now fix some metric on Ĩ(u) defining its topology. We then consider the
compact set φL

1 (Kc). It is contained in the open set Kc \ Lc = {(x, v) ∈ Ĩ(u) |
θ(x, v) < c}. We can therefore find ǫ > 0 such that the ǫ neighborhood Vǫ(φ1(Kc))
of φL

1 (Kc) in Ĩ(u) is also contained in Kc. Since for t ≥ 1 we have φL
t−1(Kc) ⊂ Kc,

and therefore φL
t (Kc) ⊂ φ1(Kc), it follows that

Vǫ

(

⋃

t≥1

φL
t (Kc)

)

⊂ Kc.

It is know easy to conclude that every ǫ-pseudo orbit for φL
t |Ĩ(u) that starts in Kc

remains in Kc. Since θ(φL
1 (x0, v0)) = c(1) < c < c(0) = θ(x0, v0), no α-pseudo

orbit starting at (x0, v0) can return to (x0, v0), for α ≤ ǫ such that the ball of
center φL

1 (x0, v0) and radius α, in Ĩ(u), is contained in Kc. Therefore (x0, v0)
cannot be chain recurrent.

Theorem 4.10. Let L be a Tonelli Lagrangian on the compact manifold M . If
L satisfies the Mather disconnectedness condition, then the following statements
are equivalent:

(1) The Aubry set Ã, or its projection A, is connected.

(2) The Aubry set Ã is chain-transitive for the restriction of the Euler-Lagrange
flow φL

t |Ã.

(3) Any two weak KAM solutions differ by a constant.

(4) The Aubry set Ã is equal to the Mañé set Ñ .

(5) There exists u ∈ SS such that Ĩ(u) is chain-recurrent for the restriction
φt|Ĩ(u) of the Euler-Lagrange flow.
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Proof. From Corollary 4.2, we know that (1) and (2) are equivalent.
If (1) is true then for u1, u2 ∈ S−, the image u1 − u2(A) is a sub-interval of

R, but by the Mather disconnectedness condition, it is also totally disconnected,
therefore u1 − u2 is constant. Hence (1) implies (3).

If (3) is true then (4) follows from Proposition 4.4.
Suppose now that (4) is true. Since for every u ∈ SS, we have Ã ⊂ Ĩ(u) ⊂ Ñ ,

we obtain Ĩ(u) = Ñ . But Ñ is chain-transitive for the restriction φL
t |Ñ . Hence

(4) implies (5).
If (5) is true for some u ∈ SS, then every point of Ĩ(u) is chain-recurrent for

the restriction φL
t |Ĩ(u). Lemma 4.9 then implies that Ã = Ĩ(u), and we therefore

satisfy (2).

Remark 4.11. For each integer d > 0, and each ǫ > 0, John Mather has con-
structed on the torus Td = Rd/Zd a Tonelli Lagrangian L of class C2d−3,1−ǫ such
that Ã is connected, contained in the fixed points of the Euler-Lagrange flow, and
the Mather quotient (AM , δM) is isometric to an interval, see [29]. In particular
for such a Lagrangian, Theorem 4.10 cannot be true.

4.3 Mañé Lagrangians

We give know an application to the Mañé example associated to a vector field.
Suppose M is a compact Riemannian manifold, where the metric g is of class
C∞. If X is a Ck vector field on M , with k ≥ 2, we define the Lagrangian
LX : TM → R by

LX(x, v) =
1

2
‖v −X(x)‖2

x,

where as usual ‖v − X(x)‖2
x = gx(v, v). We will call LX the Mañé Lagrangian

of X, see the Appendix in [23]. The following proposition gives the obvious
properties of LX .

Proposition 4.12. Let LX the Mañé Lagrangian of the Ck vector field X, with
k ≥ 2, on the compact Riemannian manifold M . We have

∂LX

∂v
(x, v) = gx(v −X(x), ·).

Its associated Hamiltonian HX : T ∗M → R is given by

HX(x, p) =
1

2
‖p‖2

x + p(X(x)).

The constant functions are solutions of the Hamilton-Jacobi equation

HX(x, dxu) = 0.

Therefore, we obtain c(H) = 0. Moreover, we have

Ĩ(0) = Graph(X) = {(x,X(x)) | x ∈M}.
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If we call φt the Euler-Lagrange flow of LX on TM , then for every x ∈ M , and
every t ∈ R, we have φt(x,X(x)) = (γX

x (t), γ̇X
x (t)), where γX

x is the solution of
the vector field X which is equal to x for t = 0. In particular, the restriction
φt|Ĩ(0) of the Euler-Lagrange flow to Ĩ(0) = Graph(X) is conjugated (by π|Ĩ(0))
to the flow of X on M .

Proof. The computation of ∂LX/∂v is easy. For HX , we recall that HX(x, p) =
p(vp) − L(x, vp), where vp ∈ TxM is defined by p = ∂LX/∂v(x, vp). Solving for
vp, and substituting yields the result.

If u is a constant function then dxu = 0 everywhere, and obviouslyHX(x, dxu) =
0. The fact that c(H) = 0 follows, since c(H) is the only value c for which there
exists a viscosity solution of the Hamilton-Jacobi equation H(x, dxu) = c.

Let us define u0 as the null function onM . Suppose now that γ : (−∞,+∞) →
M is a solution of X (by compactness of M , solutions of X are defined for all
time). We have dγ(t)u0(γ̇(t)) = 0, and HX(γ(t), dγ(t)u0) = 0; moreover, since
γ̇(t) = X(γ(t)), we also get LX(γ(t), γ̇(t)) = 0. It follows that

dγ(t)u0(γ̇(t)) = LX(γ(t), γ̇(t)) +HX(γ(t), dγ(t)u0) = LX(γ(t), γ̇(t)).

By integration, we see that γ is (u0, LX , 0)-calibrated, therefore it is an extremal.
Hence we get φt(γ(0), γ̇(0)) = (γ(t), γ̇(t)), and (γ(0), γ̇(0)) ∈ Ĩ(u0). But γ̇(0) =
X(γ(0)), and γ(0) can be an arbitrary point of M . This implies Graph(X) ⊂
Ĩ(u0). This finishes the proof because we know that Ĩ(u0) is a graph on a part
of the base M .

Lemma 4.13. Let LX : TM → R be the Mañé Lagrangian associated to the Ck

vector field X on the compact connected manifold M , with k ≥ 2. Assume that
LX satisfies the Mather disconnectedness condition. Then we have:

(1) The projected Aubry set A is the set of chain-recurrent points of the flow of
X on M .

(2) The constants are the only weak KAM solutions if and only every point of M
is chain-recurrent under the flow of X.

Proof. To prove (1), we apply Lemma 4.9 to obtain that the Aubry set Ã is equal
to set of points in Ĩ(0) = Graph(X) which are chain-recurrent for the restric-
tion φt|Graph(X). But from Proposition 4.12 the projection π|Graph(X) conjugates

φt|Graph(X) to the flow of X on M . It now suffices to observe that A = π(Ã).
We now prove (2). Suppose that every point of M is chain-recurrent for

the flow of X. From what we have just seen A = M , and so property (1) of
Theorem 4.10 holds. Therefore by property (3) of that same theorem, we have
uniqueness up to constants of weak KAM solutions, but the constants are weak
KAM solutions. To prove the converse, assume that the constants are the only
weak KAM solutions. This implies that property (3) of Theorem 4.10 holds.
Therefore by property (4) of that same theorem Ã = Ñ . But Ĩ(0) = Graph(X)
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is squeezed between Ã and Ñ . Therefore Ã = Graph(X). Taking images by the
projection π we conclude that A = M . By part (1) of the present lemma, every
point of M is chain-recurrent for the flow of X on M .

Combining this last lemma and Theorem 4.8 completes the proof of Theorem
1.6.

4.4 Gradient-like vector fields. Examples

We recall the definition of gradient-like vector filed.

Definition 4.14. A vector field X on M is said to be gradient-like if we can find
a C1 function f : M → R such that

(i) for every x ∈M , we have X · f(x) = dxf(X(x)) ≤ 0;

(ii) for a given x ∈M , we have X · f(x) = 0 if and only if X(x) = 0.

As an example of gradient-like vector field, we can take X = − grad f , where
f : M → R is C1 and the gradient is taken with respect to the Riemannian metric
on M . In this case

X · f(x) = −dxf(grad f(x)) = −1

2
‖dxf‖2

x.

Note that if ϕ : M → R is a function such that

∀x ∈M, ϕ(x) = 0 ⇐⇒ X(x) = 0

and X is gradient-like, then ϕX is also gradient-like.
The following fact is easy to prove.

Proposition 4.15. If X is a C1 gradient-like vector field, then the non-wandering
set Ω(φX

t ) is equal to the zero set Z(X) = {x ∈ M | X(x) = 0} of X (or
equivalently Ω(φX

t ) = Fix(φX
t )).

In the case of Mañé’s example associated to gradient-like vector field, we have:

Proposition 4.16. Let X be a gradient-like vector field, and denote by A the
Aubry set of the Mañé Lagrangian LX . Then the image of A0 in the quotient
Aubry set (AM , δM) is full. Therefore, if X is Ck with k ≥ 2 dimM − 2, then
H1(AM , δM) = 0, and LX satisfies the Mather disconnectedness condition.

Proof. If x ∈ A, the whole orbit φX
t (x) is contained in A, and any limit point x∞

of φX
t (x), as t → ∞, is in Ω(φX

t ), and it is therefore fixed. We also know by (3)
of Theorem 2.1 that δM(x, x∞) = 0. Therefore the image of A0 in the quotient
Aubry set (AM , δM) is full. The rest of the proof follows by Theorem 1.2.
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Let us now give some examples.
We start with a Whitney counterexample to Sard Theorem (see for example

[18]). Such a counterexample gives a function f : Tn → R which is Cn−1, and for
which we can find a connected set C ⊂ Tn such that dxf = 0 for every x ∈ C,
and f is not constant on C. Therefore f(C) = [a, b] ⊂ R, with a < b. If we now
consider X = − grad f and LX(v) = 1

2
‖v − X(x)‖2

x on TTn, then f is a critical
C1 subsolution. In fact

HX(x, dxf) = dxf(X(x)) +
1

2
‖dxf‖2

x = −‖dxf‖2
x +

1

2
‖grad f‖2

x = −1

2
‖grad f‖2

x.

We see that this critical subsolution is strict outside Z(X), therefore we have
Z(X) = A ⊃ C. Since f and 0 are both critical subsolution, by the proof
of Proposition 4.4 the function f and so it is 1-Lipschitz seen as a map from
(AM , δM) to R. This implies that

H1(AM , δM) ≥ H1(f(A)) ≥ H1(f(C)) = H1([a, b]) = b− a > 0.

It follows that, for this X, H1(AM , δM) > 0 and LX does not satisfy the Mather
dsconnectedness condition.

Note that we can assume that f is C∞ outside C. Indeed, if this was not the
case, we could approximate f in the Cn−1 topology on M \C with a C∞ function,
so that this approximation glues back with f on C to a Cn−1 function.

By a standard result (see for example [12]), we can find a C∞ function ϕ :
M → [0,+∞[, with ϕ|M \ C > 0, ϕ|C = 0, and such that ϕX is C∞. Of course
the vector field ϕX is still gradient like, but, since ϕX is C∞, the associated
Mañé Lagrangian does satisfy the Mather disconnectedness condition, and its
Aubry set is still Z(X). Note that the orbits of X and ϕX are the same as ϕ > 0
on M \ Z(X).

We can also modify a little bit f like suggested by Hurley in [20] to construct
a Cn−1 function f : Tn → R such that its Euclidean gradient grad f has a chain
recurrent point which is not a critical point of f , and for which there exists a
connected set C ⊂ Tn such that dxf = 0 for every x ∈ C, and f is not constant
on C.

Although Hurley in [20, pages 453-454] does it for n = 2 or 3, starting from a
Whitney counterexample to Sard Theorem it is clear that one can obtain it for
any n ≥ 2.

Note that again, if we take X = − grad f and we denote by AX the Aubry set
of LX , as above we will have AX = Z(X), and in that case the chain recurrent
set of X is strictly larger than AX . Therefore one must have some high differen-
tiability assumption on the vector field X in order to assure that AX is equal to
the set of chain recurrent points.

Again taking some care in the construction of Hurley, and applying an ap-
proximation theorem, we can assume that f is C∞ outside C. Like above we can
find a C∞ function ϕ : Tn → [0,+∞[, with ϕ|Tn \ C > 0, ϕ|C = 0 and such
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that ϕX is C∞. Note that AϕX is equal to the chain recurrent set of ϕX (which
is the same as the chain recurrent set of X) because LϕX satisfies the Mather
disconnectedness condition.

A A Lemma of Ferry and a result of Mather

A.1 Ferry’s Lemma

In this appendix, we state and prove a generalization of a Lemma due to Ferry
in 1976 [17]. This Lemma has been rediscovered Bates in 1992 [3] to prove his
generalization of Sard’s Theorem. They proved that if E ⊂ Rn is a measurable
set, f : E → R is continuous, and n ≥ 2 is such that f satisfies

∀x, y ∈ E, |f(x) − f(y)| ≤ C‖x− y‖n,

then f(E) has Lebesgue measure 0.
Their proof yield in fact the following generalization.

Lemma A.1. Let Ψ : E → X be a map where E is a subset of Rn and (X, dX)
is a semi-metric space. Suppose that there are p and M such that

∀x, y ∈ E, dX(Ψ(x),Ψ(y)) ≤M‖x− y‖p.

If p > 1, then the n/p-dimensional Hausdorff measure of (Ψ(E), dX) is 0.

Proof. Since all norms on Rn are equivalent we can assume

∀x = (x1, . . . , xn) ∈ Rn, ‖x‖ =
n

max
i=1

|xi|.

Since it suffices to prove that Hn
p (Ψ(E ∩K)) = 0 for each compact set K ⊂ Rn,

we can assume that E is bounded, which in particular implies Ln(E) < +∞ (we
denote by Ln the Lebesgue measure on Rn). We now write E = E1 ∪ E2, where
E1 is the set of density points for E and E2 = E \E1. By the definition if density
points

∀x ∈ E1, lim
r→0

Ln(E1 ∩B(x, r))

Ln(B(x, r))
= 1.

It is a standard result in measure theory that Ln(E2) = 0. Thus for each ǫ > 0
be fixed, there exists a countable family of balls {Bi}i∈I such that

E2 ⊂
⋃

i∈I

Bi and
∑

i∈I

(diamBi)
n ≤ ε.

Then we have

Hn
p (Ψ(E2)) ≤

∑

i∈I

(diamX Ψ(Bi ∩ E2))
n
p

≤M
∑

i∈I

[(diamBi)
p]

n
p ≤M

∑

i∈I

(diamBi)
n ≤Mε.
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Letting ε→ 0, we obtain H
n
p
(Ψ(E2)) = 0. Note that in this part of the argument

we have not used the condition p > 1

We now want to prove that H
n
p
(Ψ(E1)) = 0. Fix N ∈ N. For every density point

x ∈ E1, there exists ρ(x) > 0 such that

∀r ≤ ρ(x),
Ln(E1 ∩B(x, r))

Ln(B(x, r))
=

Ln(E ∩B(x, r))

Ln(B(x, r))
≥ 1 − 1

2Nn
.

Note that, since Ln(B(y, s)) = 2nsn, this implies that for such an x ∈ E1, we
have

∀r ≤ ρ(x), ∀y ∈ Rn, Ln(B(x, r) \ E1) ≤
1

2
Ln(B(y, r/N)),

Therefore, since for y ∈ B(x, N−1
N
r), we have B(y, r/N)) ⊂ B(x, r), we obtain

∀r ≤ ρ(x), ∀y ∈ B(x,
N − 1

N
r), E1 ∩B(y, r/N) 6= ∅. (2)

Fix x ∈ E1. It is now simple to prove that for all y ∈ E1∩B(x, r), with r ≤ ρ(x),
there exist N + 1 points x0, . . . , xN ∈ E1, with x0 = x and xN = y such that

∀1 ≤ i ≤ N, |xi − xi−1| ≤
3r

N
.

Indeed, first take y1, . . . , yN−1 the N − 1 points on the line segment [y, x] such

that |yi − yi−1| = |y−x|
N

. We then observe that, for i = 1, . . . , N − 1, we have
‖yi−x‖ ≤ i|y − x|/N ≤ (N−1)r/N . Hence, by (2), the intersection B(yi,

rx

N
)∩E1

is not empty for each i = 1, . . . , N −1, and so it suffices to take a point xi in that
intersection. Then, for all y ∈ E1 ∩B(x, r),

dX(Ψ(x),Ψ(y)) ≤
N
∑

i=1

dX(Ψ(xi−1),Ψ(xi)) ≤M

N
∑

i=1

|xi − xi−1|p

≤MN

(

3r

N

)p

= 3pMN1−prp. (3)

It follows that

∀x ∈ E1, ∀r ≤ ρ(x), diam(Ψ(B(x, r) ∩ E1) ≤ 2
(

3pMN1−prp
)

= 21−p3pMN1−p[diam(B(x, r))]p

(4)

We are now able to prove that Hn
p (Ψ(E1)) = 0.

Take an open set Ω ⊃ E1 such that Ln(Ω) ≤ Ln(E1) + 1 = Ln(E) + 1 < +∞,
and consider the fine covering F given by F = {B(x, r)}x∈E1 with r such that

B(x, r) ⊂ Ω and r ≤ ρ(x)
5

, where ρ(x) was defined above. By Vitali’s covering
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theorem (see [8, paragraph 1.5.1]), there exists a countable collection G of disjoint
balls in F such that

E1 ⊂
⋃

B∈G

5B,

where 5B denotes the ball concentric to B with radius 5 times that of B. Since
the balls in F are disjoint and contained in 0, we get

∑

B∈G

Ln(B) ≤ Ln(O) ≤ Ln(E) + 1 < +∞.

Since the norm on Rn is the max norm, we have Ln(B) = diam(B)n for every B
which is a ball for the norm. Therefore

∑

B∈G

diam(B)n ≤ Ln(O) ≤ Ln(E) + 1 < +∞. (5)

We can so consider the covering of Ψ(E1) given by ∪B∈GΨ(5B ∩E1). In this way,
by (4), we get

Hn
p (Ψ(E1)) ≤

∑

B∈G

(diamX Ψ(5B ∩ E1))
n
p

≤
∑

B∈G

(

21−p3pMN1−p[5 diam(B)]p
)

n
p

=
∑

B∈G

2
n(1−p)

p 3nM
n
pN

n(1−p)
p 5n diam(B)]n

= 2
n(1−p)

p 3nM
n
pN

n(1−p)
p 5n

∑

B∈G

diam(B)]n.

Using (5), we obtain

Hn
p (Ψ(E1)) ≤ 2

n(1−p)
p 3nM

n
pN

n(1−p)
p 5n (Ln(E) + 1) .

Since Ln(E) + 1 < ∞ and 1 − p < 0, letting N → ∞ we obtain Hn
p (Ψ(E1)) =

0.

Remark A.2. As we said at the beginning of the appendix the original case
of Ferry’s Lemma plays a crucial role in Steve Bates [3] version of Morse-Sard
Theorem: If f : M → R is of class Cn−1,1, where n = dimM ≥ 2, then the set of
critical values of f is of Lebesgue measure 0.

In fact the original case of Ferry’s Lemma is also a consequence of Bates [3]
version of Morse-Sard Theorem. Indeed note first that, by uniform continuity, we
can extend f to the closure Ē of E in Rn. Of course by continuity we will also
have

∀x, y ∈ Ē, |f(x) − f(y)| ≤ C‖x− y‖n.
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On the closed set the family f,Df = 0, . . . , Dn−1f = 0 satisfy the condition of
Whitney’s extension theorem with Dk−1f Lipschitz (see [35, Theorem 4, page
177]), therefore the exists an extension f̄ : Rn → R which is of class Cn−1,1. Of
course all points of Ē are critical points of f̄ so by Bates version of the Morse-Sard
theorem f̄(Ē) = f(Ē) has measure 0.

It is easy to generalize this result to a finite dimensional manifolds, since
such manifolds are always assumed metric and separable, and therefore second
countable.

Before stating this generalization, we recall that on a smooth (in fact at least
C1) finite dimensional manifold M the notion of locally Hölder of exponent p ≥ 0
makes sense. A map f : A → X where (X, dX) is a metric space and A ⊂ M is
said to be locally Hölder of exponent p (we allow p ≥ 1!) if for every x ∈ A, we
can find a neighborhood Ux of x and Mx <∞ such that

∀y, y′ ∈ Ux ∩ A, dX(f(y), f(y′)) ≤MxdM(y, y′)p,

where dM is a distance obtained from a Riemannian metric on M . Note that
this notion is independent of the choice of dM , since all distances obtained from
Riemannian metrics are locally Lipschitz equivalent. It is not difficult to show
that f : A→ X is locally Hölder of exponent p if and only if we can find a family
(Ui, ϕi)i∈I of smooth (or at least C1) charts ofM , with Ui open subset of Rn, where
n = dimM , and a family Mi ∈ I of finite numbers such that A ⊂ ∪i∈Iϕi(Ui) and

∀i ∈ I, ∀x, x′ ∈ Ui, dX(fϕi(x), fϕi(x
′)) ≤Mi‖x− x′‖p,

where ‖ · ‖ is a norm on Rn. Since M is second countable we can always assume
that I is itself countable, and therefore we can deduce the following generalization
of Lemma A.1.

Lemma A.3. Let M be a (metric separable) manifold of dimension n <∞, and
(X, dx) be a metric space. Suppose Ψ : A → X, where A ⊂ M , is a locally
Hölder map of exponent p > 1. Then the n/p-dimensional Hausdorff measure of
(Ψ(A), dx) is 0.

A.2 Mather’s result

We would like to show how one can deduce from Ferry’s Lemma the following
result of Mather, compare with [27, Proposition 1 page 1507]

Proposition A.4. Let X be a compact, connected subset of Rd, d ≥ 2. Let
x, y ∈ X and ǫ > 0. Then there exists a sequence x = x0, . . . , xk = y of points in
X such that

∑k−1
i=0 ‖xi+1 − xi‖d < ǫ.
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In fact, if (A, d) is a metric space and p > 0, we can introduce a semi-metric
δp on A defined by

δp(a, a
′) = inf{

k−1
∑

i=0

d(ai+1, ai)
p | k ≥ 1, a1, . . . ak−1 ∈ A, a0 = a, ak = a′}.

It is not difficult to check that δp is symmetric, satisfies the triangular inequality,
and that δp(a, a) = 0 for every a ∈ A. Note that when p ≤ 1, the function dp is
already a metric. Therefore it follows by the triangular inequality that δp = dp,
when p ≤ 1. However when p > 1, we might have δp(a, a

′) = 0 with a 6= a′. This is
indeed the case when A = [0, 1] with distance d(t−t′) = |t−t′|. In fact, if we divide
the segment [t, t′] by N equally space points, we obtain δp(t, t

′) ≤ N(|t− t′|/N)p,
hence, letting N → ∞, since p > 1 we obtain δp = 0. This yields the first of the
following remarks.

Remark A.5. 1) If p > 1 and there exists a Lipschitz curve γ : [0, 1] → A, with
γ(0) = a and γ(1) = a′, then δ(a, a′) = 0, for every p > 1.

2) We will say that A is Lipschitz arcwise connected, if for every a, a′ ∈ A
there is a Lipschitz curve γ : [0, 1] → A, with γ(0) = a and γ(1) = a′. It follows
from 1) that δ̂p ≡ 0 if A is Lipschitz arcwise connected and p > 1.

3) If M is a connected smooth manifold with a distance d coming from a
Riemannian metric, then δp ≡ 0, for every p > 1. This follows from 1) above
since any two points in a connected manifold can be joined by a smooth path.

4) If A′ ⊂ A we can consider the distance δ′p associated to (A′, d|A) and p > 0.
We always have δp|A′ ≤ δ′p with equality when A′ is dense in A.

5) If f : A→ B is Lipschitz with constant Lipschitz constant ≤ K, then f is
also Lipschitz as a map from (A, δA

p ) to (B, δB
p ), with constant Lipschitz constant

≤ Kp

In the sequel, we will denote by (Âp, δp), or just by Âp, the metric space
obtained by identifying points a, a′ ∈ A such that δp(a, a

′) = 0. We denote

by π̂p : A → Âp the canonical projection. It is clear that δp(a, a
′) ≤ d(a, a′)p,

therefore the projection is Hölder of exponent p > 0. It follows that one has the
following consequence of Lemma A.3.

Proposition A.6. Suppose that A is a subset of an n-dimensional manifold M ,
and that d is a distance that is locally Lipschitz equivalent to a the restriction to
A of a distance on M coming from a Riemannian metric. Then Hn

p (Âp) = 0,

for all p > 1. In particular, if n ≥ 2, we have H1(Ân) = 0, and therefore Ân is
totally disconnected.

This proposition follows from Lemma A.3, except for the last statement which
is a general fact: If a metric space X has 0 1-dimensional Hausdorff measure, it
is totally disconnected. In fact, if x is fixed, note that the map dx : X → R, y 7→
d(x, y) is Lipschitz; hence the image dx(X) has also 1-dimensional Hausdorff
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measure, i.e. Lebesgue measure, in R equal to 0. In particular, we can find a
sequence rn > 0, with rn → 0, and rn /∈ dx(X). This last condition means
that{y ∈ X | d(x, y) = rn} is empty, therefore the boundary of the ball B̄d(x, rn)
is empty.

It is now easy to obtain Proposition A.4. In fact, if under the hypotheses of
Proposition A.6 we also assume that A is connected, then Ân is also connected
because π̂p is continuous and surjective. But a connected and totally disconnected
metric space contains at most one point, therefore δn(x, y) = 0 for every pair of
points in the connected subset A of Rn, when n ≥ 2.

Note that we could have obtained Proposition A.4 directly from Bates [3]
version of Morse-Sard Theorem along the lines mentioned in Remark A.2.

Mather gave an extension Proposition A.4 to Lipschitz laminations, see [27,
Proposition 2, page 1510]. In fact, by our method we can give a much more
general result. For this we introduce the following definition.

Definition A.7 (Agglutination). A subset A of the finite n-dimensional manifold
M is a Lipschitz agglutination of codimension k, if every x ∈ A is contained in a
subset B ⊂ A which is Lipschitz arcwise connected and of topological dimension
≥ n− k.

Obviously any subset of the manifold which admits a codimension k Lipschitz
lamination, as considered in [27], is a codimension k Lipschitz agglutination.
Moreover, any union of Lipschitz agglutination of codimension k is itself a Lip-
schitz agglutination of codimension k. In particular any union of codimension k
immersed Lipschitz submanifolds is a Lipschitz agglutination of codimension k.
We can now state our generalization.

Proposition A.8. Suppose that A is a codimension k Lipschitz agglutination of
the n-dimensional manifold M , and that d is a distance that is locally Lipschitz
equivalent to a the restriction to A of a distance on M coming from a Riemannian

metric. Then H k
p (Âp) = 0 for all p > 1. In particular, if k ≥ 2, we have

H1(Âk) = 0, and therefore Âk is totally disconnected.

We first prove a well-known Lemma.

Lemma A.9. If M is a finite-dimensional (metric separable) manifold, and d is
an integer with 0 ≤ d ≤ n, we can find a sequence (Di)i∈N of subsets of M , each
of which is C∞ diffeomorphic to a Euclidean disc of dimension n − d, such that
the topological dimension of M \ ∪i∈NDi is ≤ d− 1. In particular, any subset B
of M of topological dimension ≥ d has to intersect one of the Di.

Proof. We first consider the case M = Rn. Call Sd
n the family of subsets of

{1, . . . , n} with exactly d elements. For every I ∈ Sd
n and every (r1, . . . , rn) ∈ Qn,

we define
V I

(r1,...,rn) = {(x1, . . . , xn) ∈ Rn | xj = rj,∀j ∈ I}.
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Each V I
(r1,...,rn) is an affine subspace of dimension n−d, and this family is countable.

If we denote by Md−1
n the complement in Rn of the countable union of the

subsets V I
r , I ∈ Sd

n, r ∈ Qn, then the points in Md−1
n are precisely the points in

Rn, who have at most d− 1 rational coordinates. By [19, Example III.6, page 29]
the topological dimension of Md−1

n is ≤ d− 1 (in fact it is d− 1).
We now consider a general (metric separable) n-dimensional smooth manifold

M . We can find a countable family of charts ϕj : Rn → M, j ∈ N such that
∪j∈Nϕj(B̄) = M , where B̄ is the unit closed Euclidean ball in Rn. We consider
the countable collection Dj,I,r, j ∈ N, I ∈ Sd

n, r ∈ Qn defined by

Dj,I,r = ϕj(V
I
r ).

Each Dj,I,r is C∞ diffeomorphic to a Euclidean disc of dimension n− d. We now
show that the topological dimension of the complement

C = M \
⋃

j∈N,I∈Sd
n,r∈Qn

Dj,I,r,

is ≤ d − 1. We can write C = ∪j∈NC ∩ ϕj(B̄). Since each C ∩ ϕj(B̄) is closed
in C , by the Countable Sum Theorem [19, Theorem III.2, page 30], it suffices
to show that each C ∩ ϕj(B̄) has topological dimension ≤ d − 1. But, the map
ϕ−1

j : ϕj(R
n) → Rn sends C∩ϕj(B̄) to a subset of Md−1

n has topological dimension

≤ d − 1. This implies that the topological dimension of C ∩ ϕj(B̄) is d − 1 by
[19, Theorem III.1, page 26]. Note that this last reference proves also the last
statement in the Lemma.

Proof of Proposition A.8. We apply the lemma above with d = n− k, to obtain
a countable family Di, i ∈ N of C∞ discs of dimension n− d = k such that each
subset of M whose topological dimension is ≥ d = n−k has to intersect one of the
Di. Consider then a Lipschitz agglutination A ⊂M of codimension k, and we fix
p > 1. We first claim that Âp = ∪i∈Nπ̂p(A∩Di). In fact if x ∈ A, by the definition
of a Lipschitz agglutination of codimension k we can find a Lipschitz arcwise
connected subset Bx ⊂ A of dimension ≥ n− k containing x. By the property of
the family Di, there exists i0 ∈ I such that Bx ∩Di0 6= ∅. Choose y ∈ Bx ∩Di0 .
By 2) of Remark A.5, we have δBx

p (x, y) = 0. Since Bx ⊂ A, we conclude that
δA
p (x, y) = 0. Therefore π̂p(x) = π̂p(y) ∈ π̂p(Bx ∩ Di) ⊂ π̂p(A ∩ Di). Since the

family Di is countable, it remains to show that Hk/p(Di ∩ A, δA
p ) = 0. Note that

since Di is a submanifold of M , the distance d on M induces a distance on Di

which is locally Lipschitz equivalent to a distance coming from a Riemannian
metric. Therefore by Proposition A.6, we have Hk/p(Di ∩A, δDi∩A

p ) = 0. But the
inclusion Di∩A →֒ A is Lipschitz with Lipschitz constant 1 for the metrics δDi∩A

p

on Di ∩ A and δA
p on A. Therefore Hk/p(Di ∩ A, δA

p ) = 0.
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B Existence of C
1,1
loc critical subsolution on non-

compact manifolds

In [4], using some kind of Lasry-Lions regularization (see [21]), Bernard proved
the existence of C1,1 critical subsolutions on compact manifolds. Here, adapting
his proof, we show that the same result holds in the noncompact case and we make
clear that the Lipschitz constant of the derivative of the C1,1

loc critical subsolution
can be uniformly bounded on compact subsets of M . We consider the two Lax-
Oleinik semi-groups T−

t and T+
t defined by,

T−
t u(x) = inf

y∈M
u(y) + ht(y, x)

T+
t u(x) = sup

y∈M
u(y) − ht(x, y),

for every x ∈M .
For any c ∈M , these two semi-groups preserve the set of functions dominated

by L + c, see for example [11] for the compact case or [15] for the non-compact
case. It is also well known that these semi-groups have some regularizing effects:
namely for every t > 0 and every Lipschitz (or even continuous, when M is
compact) function u : M → R, the function T+

t u is finite everywhere and locally
semi-convex, while T−

t u is finite everywhere and locally semi-concave, see for
example [11] or the explanations below.

In [4], the idea for proving the existence of C1,1 critical subsolution on compact
manifolds is the following: it is a known fact that a function is C1,1 if and only if
it is both locally semi-concave and locally semi-convex. Let now u be a critical
viscosity subsolution. If we apply the semi-group T+

t to u, we obtain a semi-
convex critical viscosity subsolution T+

t u. Thus, if one proves that, for s small
enough, T−

s T
+
t u is still semi-convex, as we already know that it is semi-concave,

we would have found a C1,1 critical subsolution. Since we want to give a uniform
bound on the Lipschitz constant of the derivative of the C1,1

loc critical subsolution
on compact sets, we will have to bound the constant of semi-convexity of T+

t u on
compact subsets of M . Let us now prove the result in the noncompact case.

Theorem B.1. Assume that H is of class C2. For every compact subset K
of M , there is a constant ℓ = ℓ(K) > 0 such that, if u : M → R is a critical
viscosity subsolution, then there exists a C1,1

loc critical subsolution v : M → R whose
restriction to the projected Aubry set is equal to u and such that the mapping
x 7→ (x, dxv) is ℓ-Lipschitz on K.

Before proving Theorem B.1, we need a few lemmas.

Lemma B.2. There is a constant A < +∞ such that for any c ∈ R, any function
u : M → R dominated by c is (A+ c)-Lipschitz on M , that is

∀x, y ∈M, |u(y) − u(x)| ≤ (A+ c)d(x, y),
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where d denotes the Riemannian distance associated to the Riemannian metric g
on M .

Proof. Let u : M → R be dominated by L + c and x, y ∈ M be fixed. Let
γx,y : [0, d(x, y)] →M be a minimizing geodesic with constant unit speed joining
x to y. By definition of hd(x,y)(x, y), one has

hd(x,y)(x, y) ≤
∫ d(x,y)

0

L(γx,y(t), γ̇x,y(t)) dt ≤ Ad(x, y),

where A = supx∈M{L(x, v) | ‖v‖x ≤ 1} is finite thanks to the uniform boudedness
of L in the fibers. Thus, one has

u(x) − u(y) ≤ hd(x,y)(x, y) + cd(x, y) ≤ (A(1) + c)d(x, y).

Exchanging x and y, we conclude that u is (A+ c)-Lipschitz.

Next we give some estimates on the functions ht.

Lemma B.3. There exists a constant B < +∞ such that

∀t > 0, ∀x ∈M, ht(x, x) ≤ Bt.

Moreover, for every constant C < +∞, we can find D(C) > −∞ such that

∀t > 0, ∀x, y ∈M, ht(x, y) ≥ Cd(x, y) +D(C)t.

Proof. Using a constant curve at x, we get

ht(x, x) ≤
∫ t

0

L(x, 0) ds.

Therefore, if we set B = sup{L(x, 0) | x ∈M} < +∞, we obtain

∀t > 0, ∀x ∈M, ht(x, x) ≤ Bt.

Using the uniform superlinearity of L, for every C < +∞ we can find a constant
D(C) > −∞, depending only on C, such that

∀(x, v) ∈ TM, L(x, v) ≥ C‖v‖x +D(C).

Fix now x, y ∈M . If γ : [0, t] →M is such that γ(0) = x, γ(t) = y, we can apply
the above equality to (γ(s), γ̇(s)) and integrate to obtain

∫ t

0

L(γ(s), γ̇(s)) ds ≥ C length(γ) +D(C)t ≥ Cd(x, y) +D(C)t.

To find ht(x, y), we have to minimize
∫ t

0
L(γ(s), γ̇(s)) ds over all curves with

γ(0) = x, γ(t) = y. Therefore, by what we just obtained, we get

ht(x, y) ≥ Cd(x, y) +D(C)t.
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Lemma B.4. If C < +∞ is a given constant, we can find B(C) < +∞ such
that for every u : M → R which is Lipschitz, with Lipschitz constant ≤ C, we
have

∀t ≥ 0, ∀x ∈M, T−
t u(x) = inf{u(y) + ht(y, x) | y ∈M,d(x, y) ≤ B(C)t},
T+

t u(x) = sup{u(y) − ht(x, y) | y ∈M,d(x, y) ≤ B(C)t},
|T−

t u(x) − u(x)| ≤ B(C)t,

|T+
t u(x) − u(x)| ≤ B(C)t.

Proof. We will do the proof for T−
t , as the case of T+

t is analogous. Using the
first part of Lemma B.3, we get

T−
t u(x) ≤ u(x) + ht(x, x) ≤ u(x) +Bt

By the second part of Lemma B.3, we get

T−
t u(x) ≥ inf

y∈M
u(y) + Cd(x, y) +D(C)t.

Since u is C-Lipschitz, we have u(x) ≤ u(y) + Cd(x, y), hence T−
t u(x) ≥ u(x) +

D(c)t. It follows that

|T−
t u(x) − u(x)| ≤ max{B,−D(C)}t.

Since u(x) + ht(x, x) ≤ u(x) +Bt, we obtain

T−
t u(x) = inf{u(y) + ht(y, x) | y ∈M,u(y) + ht(y, x) ≤ u(x) +Bt}.

Using again the second part of Lemma B.3, and the fact that u is C-Lipschitz,
we know that

u(y) + ht(y, x) ≥ u(y) + (C + 1)d(x, y) +D(C + 1)t

≥ u(x) + d(x, y) +D(C + 1)t.

It follows that

T−
t u(x) = inf{u(y) + ht(y, x) | y ∈M,d(x, y) ≤ Bt−D(C + 1)t}.

Hence we can take as B(C) any finite number ≥ max{B,−D(C), B − D(C +
1)}.

For the next lemmas we need to introduce some notation. We will suppose
that (U,ϕ) is a C∞ chart on M . Here U is an open subset, and ϕ : U → Rk is a
C∞ diffeomorphism on the open subset ϕ(U) of Rk. We will denote by ‖·‖euc the
canonical Euclidean norm on Rk. For r ≥ 0, we set

B(r) = {v ∈ Rk | ‖v‖euc ≤ r},

i.e. the subset B(r) is the closed Euclidean ball of radius r and center 0 in Rk.
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Lemma B.5. Suppose that (U,ϕ) is a C∞ chart on M , and B(r) ⊂ ϕ(U). For
any r′ < r, any A ≥ 1, any B ≥ 1, and any ǫ > 0, we can find δ > 0 such that
for any function u : B(r) → R satisfying

(a) the function u is C1,1
loc on B(r);

(b) the Lipschitz constant (for the canonical Euclidean metric on Rk) of u on
B(r) is ≤ A;

(c) the Lipschitz constant (for the canonical Euclidean metric on Rk) of the
derivative x 7→ dx(u ◦ ϕ−1) on B(r) is bounded by B;

and any t ≤ δ, the function T−,ϕ
t u : B(r) → R defined by

T−,ϕ
t u(x) = inf

y∈B(r)
u(y) + ht(ϕ

−1(y), ϕ−1(x))

satisfies

(a’) the function T−,ϕ
t u is C1,1 on a neighborhood of B(r′);

(b’) the Lipschitz constant (for the canonical Euclidean metric on Rk) of T−,ϕ
t u

is bounded by A+ ǫ;

(c’) the Lipschitz constant (for the canonical Euclidean metric on Rk) of x 7→
dx(T

−,ϕ
t u) on B(r′) is bounded by B + ǫ;

(d’) for every x ∈ B(r′), there is one and only one yx ∈ B(r) such that

ϕ−1(x) = π∗φH
t (ϕ−1(yx), dϕ−1(yx)(u ◦ ϕ)),

where π∗ : T ∗M → M is the canonical projection, and φH
t is the Hamilto-

nian flow of H on T ∗M . Moreover, we have

(ϕ−1(x), dϕ−1(x)(u ◦ ϕ)) = φH
t (ϕ−1(yx), dϕ−1(yx)(u ◦ ϕ)).

Proof. We can assume that r < +∞. To simplify notations, we will suppose that
ϕ as the “identity”, i.e. we will write things in the coordinate system given by ϕ.
Let us choose r′′ and R such that r′ < r′′ < r < R and ϕ(U) ⊃ B(R). If we set
A1 = sup{L(x, v) | x ∈ B(R), ‖v‖euc ≤ 1}, any function u ≺ L + c has, on B(R),
a Lipschitz constant ≤ A = A1 + c. In particular ‖dxu‖euc ≤ A at every point
x ∈ B(R) where dxu exists.

By continuity and compactness we can find δ1 > 0 such that

∀x ∈ B(r), ∀p ∈ (Rk)∗ with ‖p‖euc ≤ A, ∀t ∈ [−δ1, δ1], φH
t (x, p) ∈ B(R)×(Rk)∗.

By Lemma B.4 we can find δ2 > 0, with δ2 ≤ δ1 depending only c, such that
for any function u : M → R, with u ≺ L+ c, and any t ≤ δ2 we have

∀x ∈ B(r′′), T−
t u(x) = inf

y∈B(r)
u(y) + ht(y, x).
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Fix a function u satisfying (a), (b), and (c) of the Lemma. We will show that
T−

t u is C1,1 on B(r′′) for t small enough (depending on A,B and not on u), and we
will compute the Lipschitz constant of the derivative of this function. Classically
one shows that T−

t u is C1,1 by using the inverse function theorem for Lipschitz
perturbation of the identity. For a change, we will do it in a (very slightly)
different way using that T−

t u is Lipschitz.
Suppose t ∈ δ1. For x ∈ B(r′′) choose a point yx ∈ B(r) such that Ttu(x) =

u(yx)+ht(yx, x). If we choose a minimizer γ : [0, t] →M with γ(0) = yx, γ(t) = x,
and whose action is ht(x, y), we know that ∂L/∂v(x, γ̇(t)) is in the upper gradient
of Ttu at x, and ∂L/∂v(x, γ̇(0)) is in the lower gradient of u at yx. Since u is
differentiable at yx we necessarily have ∂L/∂v(x, γ̇(0)) = dyx

u. Moreover at each
point x ∈ B(r′′) where the Lipschitz function Ttu is differentiable we must have
dxT

−
t u = ∂L/∂v(x, γ̇(t)). Since γ is a minimizer, its speed curve s 7→ (γ(s), γ̇(s))

is an orbit of the Euler-Lagrange flow φL
s associated to L. Since the conjugate of

φL
s is the Hamiltonian flow φH

s of the Hamiltonian H : T ∗M → R associated by
Fenchel duality to L, we obtain that at each x where T−

t u is differentiable

(x, dxT
−
t u) = φH

t (yx, dyx
u). (*)

Therefore x = π∗φH
t (yx, dyx

u), where π∗ is the canonical projection from T ∗M
to M . In the local coordinates that we are using π∗ : B(r) × (Rk)∗ → B(r) is
the projection on the first factor. To simplify computations we use the norm
‖(x, p)‖ = max(‖v‖euc, ‖p‖euc) on B(R) × (Rk)∗ ⊂ Rk × (Rk)∗. Let us set
ψ(s, y, p) = π∗(φH

s (y, v)) − y. This map is C1 and is is identically 0 when s = 0,
therefore on the compact set {(y, p) ∈ B(r) × (Rk)∗ | ‖p‖ ≤ A} the Lipschitz
constant ℓ(s) of (y, p) 7→ ψ(s, y, p) tends to 0 as s → 0. Since y 7→ dyu has a
Lipschitz constant bounded by B ≥ 1 on B(r), the map y 7→ (y, dyu) has also a
Lipschitz constant bounded by B on B(r). Moreover since ‖dyu‖euc is bounded
by A on B(r), we see that on B(r) we have

π∗φH
t (y, dyu) = y + θt,u(y),

where the map θt,u has Lipschitz constant ≤ Bℓ(t). Note that this ℓ(t) depends
only on A and not on u. Let us set Θt,u(y) = y + θt,u(y). Note that

‖Θt,u(y
′) − Θt,u(y)‖ = ‖[y′ + θt,u(y

′)] − [y + θt,u(y)]‖
≥ ‖y′ − y‖ − ‖θt,u(y

′) − θt,u(y)‖
≥ ‖y′ − y‖ −Bℓ(t)‖y′ − y‖
= (1 −Bℓ(t))‖y′ − y‖.

Therefore, for t small enough to have 1 − Bℓ(t) > 0, the map Θt,u : B(r) →
Θt,u(B(r)) is invertible and its inverse Θ−1

t,u : Θt,u(B(r)) → B(r) has a Lipschitz
constant ≤ (1−Bℓ(t))−1. Note that Equation (*) above shows that, for every x ∈
B(r′′) at which T−

t u is differentiable, we can find yx ∈ B(r) such that x = Θt,u(yx).
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Since T−
t u is Lipschitz it is differentiable a.e, and so the image Θt,u(B(r)) contains

a set of full Lebesgue measure in B(r′′). The compactness of Θt,u(B(r)) implies
that this image has to contain B(r′′). Equation (*) tells us now that at each point
x ∈ B(r′′) where T−

t u is differentiable we have

(x, dxT
−
t u) = φH

t (Θ−1
t,u(x), dΘ−1

t,u(x)u).. (**)

But the right hand side above is a continuous function defined at least on B(r′′).
This implies that the Lipschitz function T−

t u is differentiable on B(r′′) and its
derivative satisfies Equation (**) above. Therefore on B(r′′) the derivative x 7→
dxT

−
t u has Lipschitz constant bounded by L(t)B(1−Bℓ(t)), with L(t) the Lips-

chitz constant of (y, p) 7→ π2φ
H
t (y, p) on the set {(y, p) ∈ B(r)×(Rk)∗ | ‖p‖ ≤ A},

where π2 : B(r)× (Rk)∗ → (Rk)∗ is the projection on the second factor. Since φH
t

is a C1 flow and φH
0 is the identity we have L(t) → 1, as t→ 0. This finishes the

proof since ℓ(t) → 0, and ℓ(t), L(t) depends only on A and not on u.

Recall that a function f : C → R, defined on the convex subset C of Rk is
said to be K-semiconvex if x 7→ f(x)+K‖x‖2

euc is convex on C. If K ≥ 0 is fixed,
for an open convex subset C of Rk, the following conditions are equivalent:

• the function f : C → R is K-semiconvex;

• for every x ∈ C we can find px ∈ (Rk)∗ such that

∀y ∈ C, f(y) ≥ px(y − x) −K‖x‖2
euc;

• for every x ∈ C, if p̃x ∈ (Rk)∗ is a subdifferential of f at x, we have

∀y ∈ C, f(y) ≥ p̃x(y − x) −K‖x‖2
euc.

It is not difficult to see that, if C is an open convex subset of Rk, a C1 function
f : C → R, whose derivative has on C a (global) Lipschitz constant ≤ B, is
B/2-semiconvex.

We know state the regularization property of the semi-groups T−
t and T+

t .
These properties are well-known. They have been extensively exploited for vis-
cosity solutions, see [1, 2]. For a proof in the compact case see [11]. We will
sketch a proof relying on the semi-concavity of ht.

Theorem B.6. Suppose that t0 > 0, that c a finite constant, and that (U,ϕ) is
a C∞ chart with B(r) ⊂ ϕ(U). We can find a constant K such that for every
function u ≺ L + c, and any t ≥ t0, the restriction T−

t u ◦ ϕ−1|B(r) (resp. T+
t u ◦

ϕ−1|B(r)) is K-semiconcave (resp. K-semiconvex).
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Proof. We do the proof for T−
t . By Lemma B.2, there exists a constant A such

that all functions dominated by L + c have Lipschitz constant on M which is
≤ A + c. It follows from Lemma B.4 that we can find a finite constant B such
that for any u ≺ L+ c, and any x ∈M

T−
t u(x) = inf{u(y) + ht(y, x) | y ∈M,d(x, y) ≤ Bt}.

In particular, if Ct is the compact set {y ∈M | d(y, ϕ−1(B(r)) ≤ Bt}, we get

∀x ∈ ϕ−1(B(r)), T−
t u(x) = inf

y∈Ct

u(y) + ht(y, x).

Since ht is locally semiconcave on M ×M (see for example [14, Theorem B.19])
and Ct is a compact subset, using standard arguments for the theory of locally
semi-concave functions (again see for example [14, Appendix A]) we can find a
constant Kt such that T−

t u ◦ ϕ−1|B(r) is Kt-semiconcave for every u ≺ L+ c. It
remains to show that we can take Kt independent of t ≥ t0 > 0. In fact, since
T−

t preserves the set of functions dominated by L+ c, we have T−
t−t0u ≺ L+ c, for

any u ≺ L + c. Therefore, we conclude that T−
t u = T−

t0 [T−
t−t0u] does also satisfy

T−
t u ◦ ϕ−1|B(r) is Kt0-semiconcave.

Next we show that T−
t preserve semi-convexity, for small time t.

Lemma B.7. Suppose that (U,ϕ) is a C∞ chart on M , and B(r) ⊂ ϕ(U). For
any r′ < r, any finite number A ≥ 0, any finite number K ≥ 1/2, and finite
ǫ > 0, we can find δ > 0 such that for any function u : B(r) → R satisfying

(i) the function u has Lipschitz constant ≤ A on B(r);

(ii) the function u is K-semiconvex;

and any t ≤ δ, the function T−,ϕ
t u : B(r′) → R defined by

T−,ϕ
t u(x) = inf

y∈B(r)
u(y) + ht(ϕ

−1(y), ϕ−1(x))

is (K + ǫ)-semiconvex in B(r′).

Proof. As in the previous proof we will assume that ϕ is the “identity”. We also
choose r′′ and r′′′ such that r′ < r′′ < r′′′ < r. Consider the family of function
vα,x,p : B(r) → R, where α ∈ R, x ∈ B(r) and p ∈ (Rk)∗, with ‖p‖euc ≤ A, defined
by

vα,x,p(y) = α+ p(y − x) −K‖y − x‖2
euc.

It is not difficult to see that the derivative of vα,x,p has, on B(r), a Lipschitz
constant ≤ 2K, and that this derivative is bounded in norm by A + 4Kr. Since
2K ≥ 1, we can apply Lemma B.5 and find δ > 0 such that T−,ϕ

t vα,x,p is C1,1 on
B(r′′) with a Lipschitz constant for its derivative ≤ 2K + 2ǫ for any t ≤ δ. In
particular any such function T−,ϕ

t vα,x,p is (K + ǫ)-semiconvex on B(r′′).
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Taking δ > 0 smaller if necessary, we can assume that, for every u satisfying
condition (a) of the lemma, every t ≤ δ, and every x ∈ B(r′′), we can find
yx ∈ B(r′′′) such that

T−,ϕ
t u(x) = u(yx) + ht(yx, x).

If we pick up a minimizer γ : [0, t] → M with γ(0) = yx and γ(t) = x, we know
that p̃x = ∂L/∂v(yx, γ̇(0)) is a subdifferential of u at yx, and also

π∗φH
t (yx, p̃x) = x. (***)

Since u is K-semiconvex on B(r) and p̃x is in the subdifferential of u at yx, we
have

∀y ∈ B(r), u(y) ≥ u(yx) + p̃x −K‖y − yx‖2
euc = vu(yx),yx,p̃x

(y).

Set v = vu(yx),yx,p̃x
to simplify notation. From the inequality above we get

T−,ϕ
t u ≥ T−,ϕ

t v. (⋄)

We also know that T−,ϕ
t v is C1,1 and (K + ǫ)-semiconvex. We know show that

T−,ϕ
t u and T−,ϕ

t v take the same value at x. By the proof of the previous lemma
we know that T−,ϕ

t v(x) = v(y′x) + ht(y
′
x, x), where y′x is the only point y ∈ B(r)

such that π∗φH
t (y, dyv) = x. But dyx

v = p̃x, therefore by Equation (***) we
obtain y′x = yx. Since we also have v(yx) = u(yx), we conclude that T−,ϕ

t v(x) =
v(yx) + ht(yx, x) = u(yx) + ht(yx, x) = T−,ϕ

t u(x). Since v is (K + ǫ)-semiconvex
on B(r′′), for every y ∈ B(r′′) we have

T−,ϕ
t v(y) ≥ T−,ϕ

t v(x) + px(y − x) − (K + ǫ)‖y − x‖2
euc,

where px is the derivative at x of the C1,1 function T−,ϕ
t v. Therefore by Equation

(⋄) we obtain

∀y ∈ B(r′′), T−,ϕ
t u(y) ≥ T−,ϕ

t u(x) + px(y − x) − (K + ǫ)‖y − x‖2
euc.

Since x was an arbitrary point in B(r′′), this finishes the proof.

Before giving the proof of the theorem, we also notice that since L is uniformly
superlinear in the fibers, there exists a finite constant C(K ′) such that

∀(x, v) ∈ TM, L(x, v) ≥ 2K ′‖v‖x + C(K ′).

From that, we deduce that for every t > 0,

∀x, y ∈M, ht(x, y), ht(y, x) ≥ 2K ′d(x, y) + C(K ′)t. (6)

The previous two lemmas are also true if we replace T−,ϕ
t u by

T+,ϕ
t u(x) = sup

y∈B(r)

u(y) − ht(x, y),

and also replace semi-convexity in the second lemma by semi-concavity.
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Proof of Theorem B.1. We choose a countable family of C∞ charts (Un, ϕn)n≥1

on M such that ϕn(Un) = Rk, and M = ∪n≥0ϕ
−1
n (B̊(1)).

Fix a c ∈ R. We know that any function u : M → R dominated by L + c is
Lipschitz with Lipschitz constant ≤ A(0) + c. Therefore, for each integer n ≥ 1,
we can find a finite constant An such that, for every u : M → R dominated by
L+c, the function u◦ϕ−1

n has on B(2) a Lipschitz constant ≤ An for the canonical
Euclidean norm on Rk. We will construct by induction a sequence Bn ∈ [1,+∞[
and two sequence of > 0 numbers t−n , t

+
n such that if we define, for u : M → R,

the function Sn(u) on m by

Sn(u) = T−
t−n
T+

t+n
T−

t−n−1

T+

t+n−1

· · ·T−
t−1
T+

t+1
(u),

with S0 the identity, then for every u ≺ L+ c defined on the whole M , and every
k = 1, . . . , n, we have

(i) the supremum supx∈M |Sn(u)(x) − Sn−1(u)(x)| is less than 1/2n;

(ii) the function Sn(u) ◦ ϕ−1
k is C1,1 on B(1 + 2−n);

(iii) the function Sn(u) ◦ ϕ−1
k has on B(2) Lipschitz constant ≤ Ak;

(iv) the derivative of Sn(u) ◦ ϕ−1
k on B(1 + 2−n) has Lipschitz constant ≤ Bk +

1 − 2−n.

Note that, since T−
t and T+

t do preserve functions dominated by L+ c on M , we
will have Sn(u) ≺ L+ c, and condition (iii) above will be satisfied for any choice
of t+n , t

−
n .

Suppose that Sn has been constructed. We first pick t+n+1. It follows from
Lemma B.4 that there exists δ1 such that for every u ≺ L+ c, and t ∈ [0, δ1], we
have

sup
x∈M

|T+
t (u)(x) − u(x)| ≤ 1/2n+2.

Given that (i), (ii), (iii) and (iv) are verified, we can apply the version of Lemma
B.5 for T+

t to the finite set of charts (Uk, ϕk), k = 1, . . . , n, with ball B(1 + 2−n)
constants Ak and Bk + 1 − 2−n, to find δ2 > 0 such that for every t ∈ [0, δ2],
and every u ≺ L+ c, the function T+

t Sn(u) ◦ ϕ−1
k is C1,1 on B(1 + 2−n − 2−(n+2))

with Lipschitz constant of its derivative ≤ Bk + 1 − 2−n + 2−(n+2). Let us now
fix t+n+1 > 0 with t+n+1 ≤ min(δ1, δ2). Since t+n+1 > 0, we know by Theorem

B.6 that there exists a finite constant B̃n+1 such that for every u ≺ L + c, the
function T+

t+n+1

S(u) ◦ ϕ−1
n+1 is B̃n+1-semiconvex on the ball B(2). Therefore, for

every u ≺ L+ c, we have

(a) the supremum supx∈M |T+

t+n+1

Sn(u)(x) − Sn(u)(x)| is less than 1/2n+2;

(b) the function T+

t+n+1

Sn(u)◦ϕ−1
k is C1,1 on B(1+2−n−2−(n+2)), for k = 1, . . . , n;
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(c) the function T+

t+n+1

Sn(u) ◦ ϕ−1
k has on B(2) Lipschitz constant ≤ Ak, for

k = 1, . . . , n+ 1;

(d) the derivative of T+

t+n+1

Sn(u) ◦ ϕ−1
k on B(1 + 2−n) has Lipschitz constant

≤ Bk + 1 − 2−n + 2−(n+2);

(e) the function T+

t+n+1

Sn(u) ◦ ϕ−1
n+1 is B̃n+1-semiconvex on the ball B(2).

We first pick t−n+1. It follows from Lemma B.4 that there exists δ′1 such that for
every u ≺ L+ c, and t ∈ [0, δ′1], we have

sup
x∈M

|T−
t (u)(x) − u(x)| ≤ 1/2n+2.

Given that (b), (c), (d) are verified, we can apply Lemma B.5 to the finite set
of charts (Uk, ϕk), k = 1, . . . , n, with ball B(1 + 2−n − 2−(n+2)), constants Ak

and Bk + 1 − 2−n + 2−(n+2), to find δ′2 > 0 such that for every t ∈ [0, δ′2], and
every u ≺ L + c, the function T−

t T
+

t+n+1

Sn(u) ◦ ϕ−1
k is C1,1 on B(1 + 2−(n+1)) =

B(1 + 2−n − 2−(n+2) − 2−(n+2)) with Lipschitz constant of its derivative ≤ Bk +
1 − 2−n + 2−(n+2) + 2−(n+2) = Bk + 1 − 2−(n+1).

By condition (e) above, we can also apply Lemma B.7 to find δ′3 such that for
every t ∈ [0, δ′3], and each u ≺ L+c, the function T−

t T
+

t+n+1

Sn(u)◦ϕ−1
n+1 is (B̃n+1+1)-

semiconvex on B(1+2−(n+1)). Let us now fix t−n+1 > 0 with t−n+1 ≤ min(δ′1, δ
′
2, δ

′
3).

Since t−n+1 > 0, we know by Theorem B.6 that there exists a finite constant

B̂n+1 such that, for every u ≺ L+ c, the function T−
t−n+1

T+

t+n+1

Sn(u) ◦ϕ−1
n+1 is B̂n+1-

semiconcave on the ball B(1 + 2−(n+1)). Hence, if we set Bn+1 = 2 max{B̃n+1 +
1, B̂n+1} ≥ 1, for every u ≺ L + c the function T+

t−n+1

T+

t+n+1

Sn(u) ◦ ϕ−1
n+1 is both

Bn+1/2-semiconvex and Bn+1/2-semiconcave on B(1 + 2−(n+1)). It is therefore
C1,1 on B(1 + 2−(n+1)), with a derivative with Lipschitz constant ≤ Bn+1. It is
not difficult now to verify that with this choice of t+n+1, t

−
n+1, the operator Sn+1

satisfies the required conditions (i), (ii), (iii), and (iv).
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