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Abstract. Given a lower semicontinuous function f : R
n → R ∪ {+∞}, we

prove that the set of points of R
n where the lower Dini subdifferential has

convex dimension k is countably (n − k)-rectifiable. In this way, we extend

a theorem of Benoist(see [1, Theorem 3.3]), and as a corollary we obtain a
classical result concerning the singular set of locally semiconcave functions.

1. Introduction. Let f : R
n → R ∪ {+∞} be any lower semicontinuous function,

the lower Dini subdifferential of f at x in the domain of f (denoted by dom(f)) is
defined by

∂−f(x) =

{

ζ ∈ R
n | lim inf

y→x

f(y) − f(x) − 〈ζ, y − x〉
‖y − x‖ ≥ 0

}

.

As it is well-known, for every x ∈ dom(f), the set ∂−f(x) is a possibly empty
convex subset of R

n. Now let k ∈ {1, · · · , n} be fixed; we call k-dimensional Dini
singular set of f , denoted by Dk(f), the set of x ∈ dom(f) such that ∂−f(x) is a
nonempty convex set of dimension k. Moreover, we call Dini singular set of f , the
set defined by

D(f) :=
⋃

k∈{1,··· ,n}

Dk(f).

Before stating our result, we recall that, given r ∈ {0, 1, · · · , n}, the set C ⊂ R
n is

called a r-rectifiable set if there exists a Lipschitz continuous function φ : R
r → R

n

such that C ⊂ φ(Rr). In addition, C is called countably r-rectifiable if it is the
union of a countable family of r-rectifiable sets. The aim of the present short note is
to extend a result by Benoist, who proved that D(f) is countably (n−1)-rectifiable
(see [1, Theorem 3.3]), and to obtain as a corollary a classical result on locally
semiconcave functions. We prove the following result.

Theorem 1.1. Let f : R
n → R∪{+∞} be a lower semicontinuous function. Then

for every k ∈ {1, · · · , n}, the set Dk(f) is countably (n − k)-rectifiable.

Let us now recall briefly the notions of semiconcave and locally semiconcave
functions; we refer the reader to the book [2] for further details on semiconcavity
(see also [4]). Let Ω be an open and convex subset of R

n, u : Ω → R be a continuous
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function, and C be a nonnegative constant. We say that u is C-semiconcave or
semiconcave on Ω if

µu(y) + (1 − µ)u(x) − u(µx + (1 − µ)y) ≤ µ(1 − µ)C

2
|x − y|2, (1)

for any µ ∈ [0, 1], and any x, y ∈ R
n. Consider now an open subset Ω of R

n;
the function u : Ω → R is called locally semiconcave on Ω, if for every x ∈ Ω,
there is an open and convex neighborhood of x where u is semiconcave. For every
k ∈ {1, · · · , n}, we call k-dimensional singular set of u, denoted by Σk(u), the set
of x ∈ Ω such that the Clarke generalized gradient of u at x, denoted by ∂u(x), is
a convex set of dimension k (see [2, 3]). In fact, it is easy to deduce from (1), that
for any locally semiconcave function u : Ω → R on an open subset Ω of R

n, the sets
∂u(x) and (−∂−u(x)) coincide at any x ∈ Ω (see [2, Theorem 3.3.6 p. 59]). This
implies that Σk(u) = Dk(−u) for every k ∈ {1, · · · , n} and yields the following re
sult.

Corollary 1. Let Ω be an open subset of R
n and u : Ω → R be a locally semicon-

cave function. Then for every k ∈ {1, · · · , n}, the set Σk(u) is countably (n − k)-
rectifiable.

Our proofs combine techniques developed by Benoist in [1] and Cannarsa, Sines-
trari in [2].

Notations: Throughout this paper, we denote by 〈·, ·〉 and | · |, respectively, the
Euclidean scalar product and norm in R

n. For any x ∈ R
n and any r > 0, we set

B(x, r) := {y ∈ R
n | |y − x| < r} and B̄(x, r) := {y ∈ R

n | |y − x| ≤ r}. Finally, we
use the abbreviations Br := B(0, r), B̄r := B̄(0, r), B := B1, and B̄ := B̄1.

2. Preliminary results. Let k ∈ {1, · · · , n−1}, we call k-planes the k-dimensional
subspaces of R

n. Given a k-plane Π, we denote by Π⊥ its orthogonal complement
in R

n. Given x ∈ R
n, we denote by pΠ(x) and pΠ⊥(x) the orthogonal projections

of x onto Π and Π⊥ respectively. If Π,Π′ are two given k-planes, we set

d(Π,Π′) := ‖pΠ − pΠ′‖,
where ‖ · ‖ is the operator norm of a linear operator in R

n. We notice that the
set of k-planes, denoted by Pk, equipped with the distance d, is a compact metric
space. Hence it admits a dense countable family {Πk

i }i≥1. In the sequel, we denote
by Bk

d (Π, ǫ) the set of Π′ ∈ Pk such that d(Π,Π′) ≤ ǫ.
Given a compact set K ⊂ R

n, we recall that the support function σK of K is
defined by

∀h ∈ R
n, σK(h) := max {〈w, h〉 | w ∈ K} .

We notice that if conv(K) denotes the convex hull of K, then we have

σconv(K) = σK .

Moreover if K,K ′ are two compact sets such that K ⊂ K ′, then σK ≤ σK′ .
Given a k-plane Π, we define the function σ̄Π : R

n → R by

∀h ∈ R
n, σ̄Π(h) := max

{

〈w, h〉 | w ∈ Π ∩ B̄
}

.

The following result is useful for the proof of our theorem.

Lemma 2.1. Let Π,Π′ be two k-planes and h ∈ R
n, then we have

|σ̄Π(h) − σ̄Π′(h)| ≤ d(Π,Π′)|h|. (2)
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Proof. There is w ∈ Π ∩ B̄ such that σ̄Π(h) = 〈w, h〉. Set

d := |pΠ′(w)| .
Notice, that since w ∈ B̄, we have necessarily d ≤ 1, which means that pΠ′(w)
belongs to Π′ ∩ B̄. Hence we have

σ̄Π′(h) ≥ 〈pΠ′(w), h〉
= 〈pΠ′(w) − pΠ(w), h〉 + 〈w, h〉
≥ −‖pΠ′(w) − pΠ(w)‖ |h| + σ̄Π(h)

≥ −‖pΠ′ − pΠ‖ |w||h| + σ̄Π(h)

≥ −d(Π,Π′)|h| + σ̄Π(h).

We deduce that σ̄Π′(h) − σ̄Π(h) ≥ −d(Π,Π′)‖h‖. By symmetry, we obtain the
inequality (2).

3. Proof of the theorem. Let k ∈ {1, · · · , n} be fixed. Let us choose a sequence

(vj)j≥1 which is dense in R
n and let us define, for ω = (r, i, j, l) ∈ I := (N∗)

4
, the

set Dω constituted of elements x belonging to the closed ball B̄r such that f(x) ≤ r,
and such that there exist Π ∈ Bk

d

(

Πi,
1
4r

)

, ρ ≥ 9
r

and ζ ∈ B̄
(

vj ,
1
2r

)

satisfying:

∀y ∈ B

(

x,
1

l

)

, f(y) ≥ f(x) + 〈ζ, y − x〉 + ρσ̄Π(y − x) − 1

2r
|y − x|. (3)

Lemma 3.1. We have the following inclusion:

Dk(f) ⊂
⋃

ω∈I

Dω.

Proof. Denote by ek
1 , · · · , ek

k the standard basis in R
k and choose a constant νk > 0

such that

B̄k
νk ⊂ conv

(

±ek
1 , · · · ,±ek

k

)

, (4)

where B̄k
νk denotes the closed ball centered at the origin with radius νk in R

k. Let

x ∈ Dk(f); there are ζ ∈ R
n and µ > 0 such that the convex set ∂−f(x) contains

the k-ball B defined as,
B := B̄(ζ, µ) ∩ H,

where H denotes the affine subspace of dimension k which is spanned by ∂−f(x)
in R

n. Choose r ≥ 1 such that |x| ≤ r, f(x) ≤ r, and µ ≥ 9
νkr

. By (4), there are k

vectors e1, · · · , ek ∈ R
n of norm 1 such that

B̄νkµ ∩ Π ⊂ µE ⊂ B̄µ, (5)

where Π and E are defined by

Π := SPAN{e1, · · · , ek} and E := conv(±e1, · · · ,±ek).

For every m ∈ {1, · · · , k} and every ǫ = ±1, the vector ζ +µǫem belongs to B, then
there exists a neighborhood Vm,ǫ of x such that

∀y ∈ Vm,ǫ, f(y) ≥ f(x) + 〈ζ + µǫem, y − x〉 − 1

2r
|y − x|.

Hence we deduce that for every y ∈ ⋂

m∈{1,··· ,k},ǫ=±1 Vm, we have

f(y) ≥ f(x) + 〈ζ, y − x〉

+ max {µ〈ǫem, y − x〉 | m = 1, · · · , k, ǫ = ±1} − 1

2r
|y − x|.
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But by (5), we have for every h ∈ R
n,

max {µ〈ǫem, h〉 | m = 1, · · · , k, ǫ = ±1} = σµE(h) ≥ σ(B̄
νkµ

∩Π)(h) = νkµσ̄Π(h).

We conclude easily by density of the families {Πk
i }i≥1, {vj}j≥1.

Set for every i ≥ 1, the cone

Ki :=

{

h ∈ R
n | σ̄Πi

(h) ≤ 1

2
‖h‖

}

.

We have the following lemma.

Lemma 3.2. For every ω = (r, i, j, l) ∈ I and every x ∈ Dω, we have

Dω ∩ B̄

(

x,
1

l

)

⊂ {x} + Ki.

Proof. Let y ∈ Dω ∩ B̄
(

x, 1
l

)

be fixed. There are Πy ∈ Bk
d

(

Πi,
1
4r

)

, ρy ≥ 9
r

and

ζy ∈ B̄
(

vj ,
1
2r

)

such that

∀z ∈ B̄

(

y,
1

l

)

, f(z) ≥ f(y) + 〈ζy, z − y〉 + ρyσ̄Πy
(z − y) − 1

2r
|z − y|.

In particular, for z = x, this implies

f(x) ≥ f(y) + 〈ζy, x − y〉 + ρyσ̄Πy
(x − y) − 1

2r
|y − x|

≥ f(y) + 〈ζy, x − y〉 − 1

2r
|y − x|. (6)

But since x ∈ Dω, there are Πx ∈ Bk
d

(

Πi,
1
4r

)

, ρx ≥ 9
r

and ζx ∈ B̄
(

vj ,
1
2r

)

such
that

f(y) ≥ f(x) + 〈ζx, y − x〉 + ρxσ̄Πx
(y − x) − 1

2r
|y − x|. (7)

Summing the inequalities (6) and (7), we obtain

0 ≥ 〈ζx − ζy, y − x〉 + ρxσ̄Πx
(y − x) − 1

r
|y − x|.

But |ζx − ζy| ≤ 1
r
, hence

ρxσ̄Πx
(y − x) ≤ 2

r
|y − x|.

Which gives by (2)

σ̄Πi
(y − x) = (σ̄Πi

(y − x) − σ̄Πx
(y − x)) + σ̄Πx

(y − x)

≤ d(Πi,Πx)|y − x| + 2

ρxr
|y − x|

≤ 1

4r
|y − x| + 1

4
|y − x|

≤ 1

2
|y − x|.
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Lemma 3.3. Let ω = (r, i, j, l) ∈ I and x̄ ∈ Dω be fixed; set

A := pΠ⊥

i

(

Dω ∩ B̄

(

x̄,
1

2l

))

.

For every y ∈ A, there exists a unique z = zy ∈ Πi such that

y + z ∈ Dω ∩ B̄

(

x̄,
1

2l

)

.

Moreover, the mapping ψω : y ∈ A 7→ zy is Lipschitz continuous.

Proof. First of all, for every y ∈ A, there is, by definition of A, some x ∈ Dω ∩
B̄

(

x̄, 1
2l

)

such that y = pΠ⊥

i
(x). Since x − y ∈ Πi , this proves the existence of

zy. To prove the uniqueness, we argue by contradiction. Let y ∈ A, assume that
there are z 6= z′ ∈ Πi such that y + z and y + z′ belong to Dω ∩ B̄

(

x̄, 1
2l

)

. Since
y + z ∈ Dω, by the previous lemma, we know that

Dω ∩ B̄

(

y + z,
1

l

)

⊂ {y + z} + Ki.

But since both y + z and y + z′ belong to B̄
(

x̄, 1
2l

)

, y + z′ belongs clearly to Dω ∩
B̄

(

y + z, 1
l

)

. Hence y+z′ ∈ {y+z}+Ki. Which means that (y+z′)−(y+z) = z′−z

belongs to Ki. But since z′− z ∈ Πi, we have that σ̄Πi
(z′− z) = |z′− z| > 1

2 |z′− z|.
We find a contradiction. Let us now prove that the map ψω is Lipschitz continuous.
Let y, y′ ∈ A be fixed. By the proof above we know that ψω(y) = x − y (resp.
ψω(y′) = x′ − y′) where x is such that y = pΠ⊥

i
(x) (resp. y = pΠ⊥

i
(x)). Set z :=

ψω(y), z′ := ψω(y′) and h := x′−x. Since x = y+y and x′ = y′+z′ where y, y′ ∈ Π⊥
i

and z, z′ ∈ Πi, we have |h|2 = |z′ − z|2 + |y′ − y|2. But σ̄Πi
(h) = |z′ − z| ≤ 1

2 |h|.
Hence we obtain that

|z′ − z| ≤ |x′ − x| = |h| ≤ 2√
3
|y′ − y|.

The proof of the lemma is completed.

From the lemma above, for every ω = (r, i, j, l) ∈ I and every x̄ ∈ Dω, the map
φ : A → R

n defined as,

∀y ∈ A, φ(y) = y + ψω(y),

is Lipschitz continuous and satisfies

Dω ∩ B̄

(

x̄,
1

2l

)

⊂ φ(A).

Since A ⊂ Π⊥
i , such a map can be extended into a Lipschitz continuous map from

Π⊥
i into R

n. Since Π⊥
i has dimension (n−k), we deduce that the set Dω ∩ B̄

(

x̄, 1
2l

)

is (n − k)-rectifiable. The fact that any set Dω can be covered by a finite number
of balls of radius 1

2l
completes the proof of the theorem.
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