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 Theorem 3.3]), and as a corollary we obtain a classical result concerning the singular set of locally semiconcave functions.

1. Introduction. Let f : R n → R ∪ {+∞} be any lower semicontinuous function, the lower Dini subdifferential of f at x in the domain of f (denoted by dom(f )) is defined by

∂ -f (x) = ζ ∈ R n | lim inf y→x f (y) -f (x) -ζ, y -x y -x ≥ 0 .
As it is well-known, for every x ∈ dom(f ), the set ∂ -f (x) is a possibly empty convex subset of R n . Now let k ∈ {1, • • • , n} be fixed; we call k-dimensional Dini singular set of f , denoted by D k (f ), the set of x ∈ dom(f ) such that ∂ -f (x) is a nonempty convex set of dimension k. Moreover, we call Dini singular set of f , the set defined by D(f

) := k∈{1,••• ,n} D k (f ).
Before stating our result, we recall that, given r ∈ {0, 1, • • • , n}, the set C ⊂ R n is called a r-rectifiable set if there exists a Lipschitz continuous function φ : R r → R n such that C ⊂ φ(R r ). In addition, C is called countably r-rectifiable if it is the union of a countable family of r-rectifiable sets. The aim of the present short note is to extend a result by Benoist, who proved that D(f ) is countably (n -1)-rectifiable (see [START_REF] Benoist | The size of the Dini subdifferential[END_REF]Theorem 3.3]), and to obtain as a corollary a classical result on locally semiconcave functions. We prove the following result.

Theorem 1.1. Let f : R n → R ∪ {+∞} be a lower semicontinuous function. Then for every k ∈ {1, • • • , n}, the set D k (f ) is countably (n -k)-rectifiable.
Let us now recall briefly the notions of semiconcave and locally semiconcave functions; we refer the reader to the book [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF] for further details on semiconcavity (see also [START_REF] Rifford | Nonholonomic Variations: An Introduction to Sub-Riemannian Geometry[END_REF]). Let Ω be an open and convex subset of R n , u : Ω → R be a continuous function, and C be a nonnegative constant. We say that u is C-semiconcave or semiconcave on Ω if 

µu(y) + (1 -µ)u(x) -u(µx + (1 -µ)y) ≤ µ(1 -µ)C 2 |x -y| 2 , (1) 
∈ {1, • • • , n}, the set Σ k (u) is countably (n -k)- rectifiable.
Our proofs combine techniques developed by Benoist in [START_REF] Benoist | The size of the Dini subdifferential[END_REF] and Cannarsa, Sinestrari in [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF].

Notations: Throughout this paper, we denote by •, • and | • |, respectively, the Euclidean scalar product and norm in R n . For any x ∈ R n and any r > 0, we set 2. Preliminary results. Let k ∈ {1, • • • , n-1}, we call k-planes the k-dimensional subspaces of R n . Given a k-plane Π, we denote by Π ⊥ its orthogonal complement in R n . Given x ∈ R n , we denote by p Π (x) and p Π ⊥ (x) the orthogonal projections of x onto Π and Π ⊥ respectively. If Π, Π ′ are two given k-planes, we set

B(x, r) := {y ∈ R n | |y -x| < r} and B(x, r) := {y ∈ R n | |y -x| ≤ r}.
d(Π, Π ′ ) := p Π -p Π ′ ,
where • is the operator norm of a linear operator in R n . We notice that the set of k-planes, denoted by P k , equipped with the distance d, is a compact metric space. Hence it admits a dense countable family {Π k i } i≥1 . In the sequel, we denote by

B k d (Π, ǫ) the set of Π ′ ∈ P k such that d(Π, Π ′ ) ≤ ǫ. Given a compact set K ⊂ R n , we recall that the support function σ K of K is defined by ∀h ∈ R n , σ K (h) := max { w, h | w ∈ K} .
We notice that if conv(K) denotes the convex hull of K, then we have

σ conv(K) = σ K . Moreover if K, K ′ are two compact sets such that K ⊂ K ′ , then σ K ≤ σ K ′ .
Given a k-plane Π, we define the function σΠ : R n → R by

∀h ∈ R n , σΠ (h) := max w, h | w ∈ Π ∩ B .
The following result is useful for the proof of our theorem.

Lemma 2.1. Let Π, Π ′ be two k-planes and h ∈ R n , then we have

|σ Π (h) -σΠ ′ (h)| ≤ d(Π, Π ′ )|h|. ( 2 
)
Proof. There is w ∈ Π ∩ B such that σΠ (h) = w, h . Set

d := |p Π ′ (w)| .
Notice, that since w ∈ B, we have necessarily d ≤ 1, which means that p Π ′ (w) belongs to Π ′ ∩ B. Hence we have

σΠ ′ (h) ≥ p Π ′ (w), h = p Π ′ (w) -p Π (w), h + w, h ≥ -p Π ′ (w) -p Π (w) |h| + σΠ (h) ≥ -p Π ′ -p Π |w||h| + σΠ (h) ≥ -d(Π, Π ′ )|h| + σΠ (h).
We deduce that σΠ ′ (h) -σΠ (h) ≥ -d(Π, Π ′ ) h . By symmetry, we obtain the inequality (2).

3. Proof of the theorem. Let k ∈ {1, • • • , n} be fixed. Let us choose a sequence (v j ) j≥1 which is dense in R n and let us define, for ω = (r, i, j, l) ∈ I := (N * ) 4 , the set D ω constituted of elements x belonging to the closed ball Br such that f (x) ≤ r, and such that there exist Π ∈ B k d Π i , 1 4r , ρ ≥ 9 r and ζ ∈ B v j , 1 2r satisfying:

∀y ∈ B x, 1 l , f (y) ≥ f (x) + ζ, y -x + ρσ Π (y -x) - 1 2r |y -x|. (3) 
Lemma 3.1. We have the following inclusion:

D k (f ) ⊂ ω∈I D ω . Proof. Denote by e k 1 , • • • , e k k the standard basis in R k and choose a constant ν k > 0 such that Bk ν k ⊂ conv ±e k 1 , • • • , ±e k k , (4) 
where Bk ν k denotes the closed ball centered at the origin with radius ν k in R k . Let x ∈ D k (f ); there are ζ ∈ R n and µ > 0 such that the convex set ∂ -f (x) contains the k-ball B defined as, B := B(ζ, µ) ∩ H, where H denotes the affine subspace of dimension k which is spanned by ∂ -f (x) in R n . Choose r ≥ 1 such that |x| ≤ r, f (x) ≤ r, and µ ≥ 9 ν k r . By (4), there are k

vectors e 1 , • • • , e k ∈ R n of norm 1 such that Bν k µ ∩ Π ⊂ µE ⊂ Bµ , (5) 
where Π and E are defined by

Π := SPAN{e 1 , • • • , e k } and E := conv(±e 1 , • • • , ±e k ).
For every m ∈ {1, • • • , k} and every ǫ = ±1, the vector ζ + µǫe m belongs to B, then there exists a neighborhood V m,ǫ of x such that

∀y ∈ V m,ǫ , f (y) ≥ f (x) + ζ + µǫe m , y -x - 1 2r |y -x|.
Hence we deduce that for every y ∈ m∈{1,••• ,k},ǫ=±1 V m , we have

f (y) ≥ f (x) + ζ, y -x + max {µ ǫe m , y -x | m = 1, • • • , k, ǫ = ±1} - 1 2r |y -x|.
But by (5), we have for every

h ∈ R n , max {µ ǫe m , h | m = 1, • • • , k, ǫ = ±1} = σ µE (h) ≥ σ ( Bν k µ ∩Π) (h) = ν k µσ Π (h).
We conclude easily by density of the families {Π k i } i≥1 , {v j } j≥1 .

Set for every i ≥ 1, the cone

K i := h ∈ R n | σΠi (h) ≤ 1 2 h .
We have the following lemma.

Lemma 3.2. For every ω = (r, i, j, l) ∈ I and every x ∈ D ω , we have

D ω ∩ B x, 1 l ⊂ {x} + K i . Proof. Let y ∈ D ω ∩ B x, 1 l be fixed. There are Π y ∈ B k d Π i , 1 4r , ρ y ≥ 9 r and ζ y ∈ B v j , 1 2r such that ∀z ∈ B y, 1 l , f (z) ≥ f (y) + ζ y , z -y + ρ y σΠy (z -y) - 1 2r |z -y|.
In particular, for z = x, this implies

f (x) ≥ f (y) + ζ y , x -y + ρ y σΠy (x -y) - 1 2r |y -x| ≥ f (y) + ζ y , x -y - 1 2r |y -x|. (6) 
But since x ∈ D ω , there are

Π x ∈ B k d Π i , 1 4r , ρ x ≥ 9 r and ζ x ∈ B v j , 1 2r such that f (y) ≥ f (x) + ζ x , y -x + ρ x σΠx (y -x) - 1 2r |y -x|. (7) 
Summing the inequalities (6) and (7), we obtain

0 ≥ ζ x -ζ y , y -x + ρ x σΠx (y -x) - 1 r |y -x|. But |ζ x -ζ y | ≤ 1 r , hence ρ x σΠx (y -x) ≤ 2 r |y -x|.
Which gives by ( 2)

σΠi (y -x) = (σ Πi (y -x) -σΠx (y -x)) + σΠx (y -x) ≤ d(Π i , Π x )|y -x| + 2 ρ x r |y -x| ≤ 1 4r |y -x| + 1 4 |y -x| ≤ 1 2 |y -x|.
Lemma 3.3. Let ω = (r, i, j, l) ∈ I and x ∈ D ω be fixed; set

A := p Π ⊥ i D ω ∩ B x, 1 2l .
For every y ∈ A, there exists a unique z = z y ∈ Π i such that

y + z ∈ D ω ∩ B x, 1 2l .
Moreover, the mapping ψ ω : y ∈ A → z y is Lipschitz continuous.

Proof. First of all, for every y ∈ A, there is, by definition of A, some x ∈ D ω ∩ B x, 1 2l such that y = p Π ⊥ i (x). Since xy ∈ Π i , this proves the existence of z y . To prove the uniqueness, we argue by contradiction. Let y ∈ A, assume that there are z = z ′ ∈ Π i such that y + z and y + z ′ belong to D ω ∩ B x, 1 2l . Since y + z ∈ D ω , by the previous lemma, we know that

D ω ∩ B y + z, 1 l ⊂ {y + z} + K i .
But since both y + z and y + z ′ belong to B x,

1 2l , y + z ′ belongs clearly to D ω ∩ B y + z, 1 l . Hence y+z ′ ∈ {y+z}+K i . Which means that (y+z ′ )-(y+z) = z ′ -z belongs to K i . But since z ′ -z ∈ Π i , we have that σΠi (z ′ -z) = |z ′ -z| > 1 2 |z ′ -z|.
We find a contradiction. Let us now prove that the map ψ ω is Lipschitz continuous. Let y, y ′ ∈ A be fixed. By the proof above we know that ψ ω (y) = xy (resp. The proof of the lemma is completed.

ψ ω (y ′ ) = x ′ -y ′ ) where x is such that y = p Π ⊥ i (x) (resp. y = p Π ⊥ i ( 
From the lemma above, for every ω = (r, i, j, l) ∈ I and every x ∈ D ω , the map φ : A → R n defined as, ∀y ∈ A, φ(y) = y + ψ ω (y), is Lipschitz continuous and satisfies

D ω ∩ B x, 1 2l ⊂ φ(A).
Since A ⊂ Π ⊥ i , such a map can be extended into a Lipschitz continuous map from Π ⊥ i into R n . Since Π ⊥ i has dimension (nk), we deduce that the set D ω ∩ B x, 1 2l is (nk)-rectifiable. The fact that any set D ω can be covered by a finite number of balls of radius 1 2l completes the proof of the theorem.

  Finally, we use the abbreviations B r := B(0, r), Br := B(0, r), B := B 1 , and B := B1 .

  x)). Set z := ψ ω (y), z ′ := ψ ω (y ′ ) and h := x ′ -x. Since x = y+y and x ′ = y ′ +z ′ where y, y ′ ∈ Π ⊥ i and z, z ′ ∈ Π i , we have|h| 2 = |z ′ -z| 2 + |y ′ -y| 2 . But σΠi (h) = |z ′ -z| ≤ 1 2 |h|. Hence we obtain that |z ′ -z| ≤ |x ′ -x| = |h| ≤ 2 √ 3 |y ′ -y|.
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