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Abstract

This paper deals with the proof of the existence of kink states in the discrete
model of the polyacetylene molecule. We use ideas from Kennedy and Lieb [4] to
study finite, odd chains of polyacetylene, and then we consider the limit as the
number of atoms goes to infinity. We show that, after extraction of a subsequence
and up to a translation, the energy minimizers of odd chains tend to an infinite
vector approaching one of the infinite dimerized states at +∞ and the other one at
−∞. This state is called a kink and its existence was strongly suggested in previous
works such as [8, 5, 12], but a mathematical proof was missing, to our knowledge.

Introduction

The first rigorous study of the discrete model of the polyacetylene molecule, (CH)x, was
made by Kennedy and Lieb in [4]. They show that, under certain conditions, the energy
of a chain with an even number of CH groups has exactly two minimizers, and that these
minimizers are dimerized configurations, as suggested in previous works by Su, Schrieffer
and Heeger [10, 9] (see also [3]). This validates the theory of the Peierls instability [7, 2]
in one-dimensional chains.

Other works (for instance [11] and [1]) deal with the continuum approximation of
the polyacetylene molecule. There, the authors obtain formal results on the existence
of solutions of the Euler-Lagrange equations associated to the minimization problem of
the energy of the (CH)x molecule in the continuum model. In particular, Campbell and
Bishop build in [1] kink-like solutions of these equations which connect the two ground
states at ±∞.

To our knowledge, in the discrete case no rigorous proof of the existence of kink states
has been given. However, numerical calculations suggest that such kinks exist [8] and
some discussions on their properties have been published [5, 12]. In the present work, we
prove rigorously the existence of kinks. They appear naturally by considering the ground
states of chains with 2N +1 CH groups and then making N tend to infinity. The ground
states converge, up to a translation and to extraction of a subsequence, to an infinite state
connecting the two infinite dimerized states. This will be made more precise in section 2.
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In section 1, we briefly introduce the discrete mathematical model describing the (CH)x
molecule. We define the energy functional as a function of the molecule configuration,
and we recall some technical aspects that will be useful further on. For a more detailed
physical description of the model the reader may refer to [10, 9, 4].

The main theorem of this paper, dealing with the existence of kinks and other prop-
erties, is proved on section 2. We use mainly ideas from [4] to develop the proof of
the theorem. However, our argument is also based upon the concentration-compactness
principle of P.L. Lions [6].

1 A model for finite chains

In the whole paper, χA denotes the characteristic function of the set A and θA denotes
the operator of multiplication by the characteristic function χA , i.e. for any sequence
x = (xi) , (θAx)i = χA(i)xi . We also denote by σp(X ) the Schatten classes in a Hilbert
space X , and by ‖ · ‖σp the associated norms.

We consider a closed chain of N ∈ N atoms. Our model is the same as in Kennedy
and Lieb (KL) in [4], except for the fact that we will not only consider chains of an
even number of atoms. The underlying electronic space is CZ/NZ. To any N -tuple of
real numbers t = (ti)i∈Z/NZ we associate a Hamiltonian operator T whose coefficients
are Ti,i+1 = Ti+1,i = ti and Ti,j = 0 otherwise (here i, j are defined modulo N). We
look for minimizers of the energy, which is a function of T and of a one-body electronic
density matrix Γ = (Γi,j)i,j∈Z/NZ. The matrix Γ has complex coefficients, is self-adjoint
and satisfies 0 ≤ Γ ≤ 1.

The formula for the energy is:

E (N)(Γ, t) =
1

2
g

N
∑

i=1

(ti − b)2 + 2Tr(TΓ).

If we fix t, this energy is minimal when Γ = χ(−∞,0)(T ) and the minimal energy is given
by the following “reduced" functional

H(N)(t) =
1

2
g

N
∑

i=1

(ti − b)2 − Tr(|T |).

If, on the contrary, we fix Γ, then the minimum of the energy is attained by a unique
vector t(Γ) of coordinates ti = b − 4

g
Re(Γi,i+1) and the minimal energy is given by the

following “reduced" functional

F (N)(Γ) = 2bTr(T 1Γ)− 8

g

N
∑

i=1

(Re(Γi,i+1))
2,

where T 1 is the Hamiltonian associated to the constant sequence ti = 1, i.e. T 1
i,i+1 =

(T 1)i+1,i = 1 and T 1
i,j = 0 otherwise, hence 2bTr(T 1Γ) = 4b

∑N
i=1Re(Γi,i+1) .
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In the rest of the paper, we make the assumption gb > 1. The authors KL define the
following variables associated to the vector {ti}

x :=
1

N

N
∑

i=1

ti y2 :=
1

N

N
∑

i=1

t2i z :=
1

N

N
∑

i=1

titi+1, (1)

and they denote by 〈T 2〉 the mean of T 2 under translations. This mean matrix can be
written as 〈T 2〉 = 2y2 + zΩ, where Ω is the matrix whose only nonzero elements are
Ωi,i+2 = Ωi+2,i = 1.

They show rigorously in the even case that the minimum of H(2N), in the class of 2N -
periodic vectors t, is attained by exactly two configurations, tdim0

i (2N) = b+(−1)iδ2N and
tdim1

i (2N) = b+ (−1)i+1δ2N , with δ2N → δ0 as N goes to infinity. The assumption gb > 1
corresponds to realistic data from physics, as explained by Kennedy-Lieb. It implies that
b > δ0, where δ0 is the unique positive solution of the dimerization equation in the limit
N → ∞ (see (5))

1

π

∫ π

0

cos2 s√
b2 sin2 s + δ2 cos2 s

ds =
1

2
g.

Note that the dimerized ground state operators Tdim0(2N) and Tdim1(2N) have the
same square, which we shall denote by T 2

dim
(2N). Similarly we shall denote by |Tdim(2N)|

their common absolute value, which is the square root of T 2
dim

(2N), and we shall denote
by e(2N) their common energy, which is the minimum of H(2N).

2 The kink problem in odd chains

Firstly, we note that the model is invariant under translations in the sense that if we let
τk : CN → CN be defined by (τkv)i = vi+k, then for any given vector t = (ti)i∈Z/NZ we get
H(N)(τkt) = H(N)(t). The main goal of this paper is to prove the following

Theorem 1. Suppose that gb > 1 and let t(2N + 1) = (ti(2N + 1))1≤i≤2N+1 be a global

minimizer of H(2N+1). Then, up to a translation i 7→ i+kN , the following properties hold:

After extraction of a subsequence, ti(2N + 1) converges to a limit t∞i , for every i ∈ Z.

The infinite sequence t
∞ := (t∞i )i∈Z obtained in this way is a kink connecting the two

dimerized states. More precisely, there is τ ∈ {0, 1} such that

∑

i≥1

|t∞i − b− (−1)i+τδ0|2 =
∑

i≤0

|t∞i − b+ (−1)i+τδ0|2 <∞ . (2)

Moreover, denoting by T∞ the operator in l2(Z) associated with the sequence t
∞, the

coefficients of |T (2N + 1)| converge pointwise to those of |T∞| as N → ∞:

|T (2N + 1)|i,j → |T∞|i,j (∀i, j)
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and t
∞ is a relative energy minimizer. By relative minimizer we mean the following:

Given any sequence u = (ui)i∈Z in l1(Z) and setting U the associated operator, the

difference |T∞| − |T∞ + U | is trace-class and

∆H(u) :=
1

2
g
∑

i∈Z
(ui + 2t∞i − 2b)ui + Tr(|T∞| − |T∞ + U |) ≥ 0 .

As a consequence, denoting Γ∞ := χ(−∞,0)(T
∞), the following self-consistent equations

hold:

t∞i = b− 4

g
Re(Γ∞

i,i+1) .

To prove Theorem 1, we start with some a priori estimates which use results from [4].

Lemma 1. For all N ≥ 1,

H(2N+1)(t(2N + 1))−H(2N)(tdim1(2N)) ≤ 4b.

Proof. First of all we define the test vector t
test ∈ CZ/(2N+1)Z by

ttesti =

{

b+ (−1)i+1δ2N 1 ≤ i ≤ 2N

b i = 2N + 1
,

and we denote by Ttest the associated operator. Recalling that Tdim1(2N) is the operator
on CZ/2NZ associated to the dimerized configuration t

dim1(2N) = {b+(−1)i+1δ2N}i∈Z/2NZ,
let Γdim1(2N) = χ(−∞,0)(Tdim1(2N)).

Now let us define the operator Γtest acting on CZ/(2N+1)Z by

Γi,j
test =

{

Γdim1(2N)i,j if 1 ≤ i ≤ 2N and 1 ≤ j ≤ 2N

0 if i = 2N + 1 or j = 2N + 1
.

Using this notation we get

2TrC2N+1(ΓtestTtest) = 2
2N+1
∑

i=1

(Γi,i+1
test T

i+1,i
test + Γi,i−1

test T
i−1,i
test )

= 2Γ1,2
dim1

T 2,1
dim1

+ 2Γ2N,2N−1
dim1

T 2N−1,2N
dim1

+ 2
2N−1
∑

i=2

(Γi,i+1
dim1

T i+1,i
dim1

+ Γi,i−1
dim1

T i−1,i
dim1

).

And, omitting the argument (2N) from our notation, we obtain

2TrC2N (Γdim1Tdim1) = 2

2N
∑

i=1

(Γi,i+1
dim1

T i+1,i
dim1

+ Γi,i−1
dim1

T i−1,i
dim1

).
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Hence,

2TrC2N (Γdim1Tdim1)− 2TrC2N+1(ΓtestTtest) = 2Γ1,0
dim1

T 0,1
dim1

+ 2Γ0,1
dim1

T 1,0
dim1

= 4ℜ(Γ1,0
dim1

)T 0,1
dim1

[0 ≤ Γdim1 ≤ 1 ⇒] ≤ 4T 0,1
dim1

= 4(b− δ2N)

< 4b

On the other hand, from the definition of ttest we see that

g

2

2N+1
∑

i

(ttesti − b)2 − g

2

2N+1
∑

i

(tdim1

i − b)2 = 0,

which together with the previous estimates implies that

H(2N+1)(ttest)−H(2N)(tdim1(2N)) ≤ 4b (3)

Now let ξ = (ξi) ∈ C2N+1. Since 0 ≤ Γdim1(2N) ≤ 1 we obtain

〈

ξ,Γtest(2N + 1)ξ
〉

=
∑

1≤i,j≤2N+1

Γi,j
testξiξj

=
∑

1≤i,j≤2N

Γi,j
dim1

(2N)ξiξj ∈
[

0,

2N
∑

i=1

|ξj|2
]

⊂
[

0, ‖ξ‖22
]

,

so that 0 ≤ Γtest(2N + 1) ≤ 1. Hence we conclude that

H(2N+1)(ttest(2N + 1)) ≥ H(2N+1)(t(2N + 1)) ,

and by (3) the Lemma is proved.

We now apply some ideas from the proof of Kennedy-Lieb’s theorem in [4] to study
the following function

ψN (x, y, z) :=
1

2
g(y2 − 2bx+ b2)− 1

N
TrCN

[

(2y2 + zΩN )
1/2
]

,

defined for every (x, y, z) ∈ R3. The matrix ΩN ∈ MN×N has been defined in the
introduction. Notice that the analysis of ψN made in [4] is valid for any N , excepting the
physical interpretation which makes no sense in the odd case.

To any given sequence t = (ti)i∈Z/NZ we associate the vector (x, y, z) using (1). Now,
defining as in [4] the variable si = x− ti, we have y2 = x2 + 1

N

∑

s2i and by the Cauchy-
Schwartz inequality Kennedy and Lieb obtain

z = x2 +
1

N

∑

sisi+1 ≥ x2 − 1

N

∑

s2i = 2x2 − y2. (4)

Note that the inequality x2 ≤ y2 also holds so that it is natural to study ψN on the domain
D := {(x, y, z) ∈ R3 | z ≥ 2x2 − y2; y2 ≥ x2; y ≥ 0} of R3. We do so in the following
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Lemma 2. For large enough N the function ψN : R3 → R defined by

ψN(x, y, z) :=
1

2
g(y2 − 2bx+ b2)− 1

N
TrCN

[

(2y2 + zΩN )
1/2
]

has a unique minimizer in the region D = {(x, y, z) ∈ R3 | z ≥ 2x2−y2; y2 ≥ x2; y ≥ 0}.

Proof. As noticed by Kennedy and Lieb, the function ψN is increasing in |z|. Hence, we
get the lower bound ψN (x, y, z) ≥ ψN (x, y, 0). Also, we remark that

inf
2x2−y2≤0

ψN (x, y, 0) = inf
2x2=y2

ψN (x, y, 0) ≥ inf
D
ψN (x, y, z) + e,

with e > 0, so the case 2x2 − y2 ≤ 0 is not optimal and we should restrict ourselves
to the subregion of D where 2x2 − y2 > 0. Furthermore, using again the fact that
ψN is an increasing function of |z|, in the latter subregion we have that ψN (x, y, z) ≥
ψN (x, y, 2x

2 − y2). Hence the minimum of ψN on D is actually attained in the subregion
D′ := {2x2 − y2 > 0; z = 2x2 − y2} ∩D. We suppose from now on that (x, y, z) ∈ D′.

As a function of the variables X := x2 and Y := y2, ψN(x, y, 2x
2 − y2) is written as

φN(X, Y ) :=
1

2
g(Y − 2b

√
X + b2)− 1

N
Tr
[

(

2Y + (2X − Y )Ω
)1/2
]

.

The function φN is strictly jointly convex in X, Y in the sense that Hess(φN) > 0 at any
point (X,Y) in the convex domain {2X > Y ≥ X > 0}. Moreover, we have that

inf
2X=Y

φN(X, Y ) ≥ inf
2X>Y

φN(X, Y ) + e′,

with e′ > 0.
Thus there is a unique minimizer (Xmin, Ymin) = (x2min(N), y2min(N)) = (b2N , b

2
N + δ2N )

of φN in the region {2X > Y }, and min{2X>Y } φN = minψN . Here, δN is the unique
positive solution to the generalized dimerization equation that we recall below. Let us
first define, for δ > 0, the function

fb,δ : [0, π] → R

s 7→ cos2 s√
b2 sin2 s+ δ2 cos2 s

,

then the generalized dimerization equation is given by

1

2
g =

1

N

N
∑

k=1

fb,δ

(

πk

N

)

. (5)

Notice that the couple (b2N , b
2
N + δ2N ) indeed belongs to the domain {2X > Y ≥ X >

0} when N is large enough, for the following two reasons. On the one hand we have
assumed that gb > 1, which implies that b > δ0; and on the second hand, we have that
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bN = b+O(1/N) and δN = δ0 +O(1/N). To prove the latter equality we notice that, for
any δ > 0, the function fb,δ is of class C 1 and its derivative is bounded independently of
δ, when δ stays bounded away from zero. Hence

∣

∣

∣

∣

∣

1

N

N
∑

k=1

fb,δ

(

πk

N

)

− 1

π

∫ π

0

fb,δ(s)ds

∣

∣

∣

∣

∣

= O(1/N).

By the definition of δN and δ0, we know that

1

2N

2N
∑

k=1

fb,δN

(

πk

2N

)

=
1

π

∫ π

0

fb,δ0(s)ds,

thus
∣

∣

∣

∣

1

π

∫ π

0

fb,δN (s)ds−
1

π

∫ π

0

fb,δ0(s)ds

∣

∣

∣

∣

= O(1/N). (6)

Now, the fonction 0 < δ 7→ 1
π

∫ π

0
fb,δ(s)ds is of class C

1 and its derivative is strictly
negative. So (6) implies that δN = δ0 + O(1/N). A similar argument shows that bN =
b+O(1/N), so the lemma follows.

Notice that Lemma 1, together with KL’s Lemma proved in [4], imply the follow-
ing inequalities, where we put T (2N + 1) = T and for the sake of simplicity, and let
(x2N+1, y2N+1, z2N+1) be the vector associated to t(2N + 1):

4b ≥ H(2N+1)(t(2N + 1))−H(2N)
(

t
dim1(2N)

)

≥ 1

2
g

2N+1
∑

i=1

(ti − b)2 − Tr
(

〈T 2〉1/2
)

+
1

8
‖T‖−3Tr

[

(

T 2 − 〈T 2〉
)2
]

− 2N min
D

ψ2N

= (2N + 1)
(

ψ2N+1(x2N+1, y2N+1, z2N+1)−min
D

ψ2N+1

)

(7)

+
1

8
‖T‖−3Tr

[

(

T 2 − 〈T 2〉
)2
]

+ (2N + 1)min
D

ψ2N+1 − 2N min
D

ψ2N . (8)

Since (2N + 1)minD ψ2N+1 − 2N minD ψ2N = O(1), we get from the latter estimate that
there exists a constant C > 0 such that

C ≥ (2N + 1)
(

ψ2N+1(x2N+1, y2N+1, z2N+1)−min
D

ψ2N+1

)

(9)

and that

C ≥ 1

8
‖T‖−3Tr

[

T 4 − 〈T 2〉2
]

, (10)

after applying the general equality Tr((A− 〈A〉)2) = Tr(A2 − 〈A〉2) to A = T 2 in line (8).

We use the latter estimates to prove the following two lemmas.
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Lemma 3. The sequences x2N+1 =
1

2N+1

∑

ti(2N + 1), y22N+1 =
1

2N+1

∑

t2i (2N + 1), and

z2N+1 =
1

2N+1

∑

ti(2N +1)ti+1(2N +1) converge to xdim, y2
dim

, and zdim respectively, with











xdim := b

y2
dim

:= 1
2
[(b+ δ0)

2 + (b− δ0)
2] = b2 + δ20

zdim := (b+ δ0)(b− δ0) = b2 − δ20 .

The convergence takes place at speed O
(

1
N

)

for z2N+1, and at speed O
(

1√
N

)

for x2N+1 and

y22N+1. As a consequence,

‖〈T (2N + 1)2〉 − (2y22N+1 + z2N+1Ω2N+1)‖σ2 = O(1)N→∞ .

Proof. Denoting by (xmin
2N+1, y

min
2N+1, z

min
2N+1) = (b2N+1, b

2
2N+1 + δ22N+1, b

2
2N+1 − δ22N+1) the

unique minimizer of ψ2N+1 over D we rewrite estimate (9) in the following way

C

2N + 1
≥ ψ2N+1(x2N+1, y2N+1, z2N+1)−min

D
ψ2N+1

= ψ2N+1(x2N+1, y2N+1, z2N+1)− ψ2N+1(x
min
2N+1, y

min
2N+1, z

min
2N+1) (11)

For any (x, y, z) ∈ D we let z̄ := 2x2−y2 > 0. Since the function z 7→ − 1
N

Tr(2y2+zΩ)
is differentiable, convex, even, and increasing in |z|, this is also true for the function
z 7→ ψN(x, y, z) with x, y fixed, so we infer that

∀z > 0,
∂

∂z
ψN(x, y, z) ≥

ψN(x, y, z)− ψN(x, y, 0)

z
> 0.

Thus, if z > z̄ > 0, we have

ψN (x, y, z)− ψN (x, y, z̄) ≥
∂

∂z
ψN (x, y, z̄)(z − z̄) = β(z − z̄),

with β > 0.
But z̄min

2N+1 = zmin
2N+1 = b22N+1 − δ22N+1 and from the proof of Lemma 2 we have that

b2N+1 = b + O(1/N) and that δ2N+1 = δ0 + O(1/N). Hence, from (11) and the latter
estimates we conclude that |z2N+1 − zdim| = O(1/N).

Now, using the analysis made of the functions ψN and ΦN in the proof of Lemma 2
we will prove that there exist two positive constants α and r independent of N , such that

ψN(x, y, 2x
2 − y2)− ψN (x

min
2N+1,y

min
2N+1, 2x

min
2N+1 − (ymin

2N+1)
2)

≥ αmin
{

[

(

x2 − (xmin
2N+1)

2
)2

+
(

y2 − (ymin
2N+1)

2
)2
]

, r2
}

.

(12)

To prove this estimate, we just need to bound the least eigenvalue of Hess(X,Y )(φN) from
below by α, for all X, Y such that (X− (xmin

2N+1)
2)2+(Y − (ymin

2N+1)
2)2 ≤ r2. To obtain this

bound we proceed as follows.
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The eigenvalues of Ω are λk = 2 cos(4πk/N)(with eigenvectors vk = ((wk)
n)n∈Z/NZ,

where wk = ei
2πk
N ) for 0 ≤ k ≤ N − 1. So, for 0 < X < Y , we have

KN(X, Y ) := − 1

N
Tr
(

(2Y + (2X − Y )Ω)1/2
)

= −
√
2

N

N−1
∑

k=0

(2 cos(4πk/N)X + (1− cos(4πk/N))Y )1/2

From the expression

ΦN (X, Y ) =
1

2
g(Y − 2b

√
X + b2) +KN(X, Y ),

we deduce that

Hess(X,Y )(ΦN ) =

(

b
2X3/2 0
0 0

)

+

(

AN BN

BN CN

)

,

where

AN =
∂2

∂X2
KN(X, Y )

=

√
2

N

N−1
∑

k=0

[

2 cos(4πk/N)X + (1− cos(4πk/N))Y
]−3/2

cos2(4πk/N),

BN =
∂2

∂X∂Y
KN(X, Y )

=

√
2

2N

N−1
∑

k=0

[

2 cos(4πk/N)X + (1− cos(4πk/N))Y
]−3/2

cos(4πk/N)(1− cos(4πk/N)),

and

CN =
∂2

∂Y 2
KN(X, Y )

=

√
2

4N

N−1
∑

k=0

[

2 cos(4πk/N)X + (1− cos(4πk/N))Y
]−3/2

(1− cos(4πk/N))2.

Note that these three quantities are convergent Riemann sums, hence

AN → A∞, BN → B∞, and CN → C∞,

as N goes to infinity, with A∞, C∞ > 0. Therefore, for large enough N , CN ≥ C∞/2.

Now, for each N and for any vector v = (h, k)T ∈ R2 we have that

〈

Hess(X,Y )(KN)v, v
〉

= ANh
2 + 2BNhk + CNk

2 ≥ 0. (13)
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We choose r = x2
dim
/2 = b2/2. If |X − x2

dim
| ≤ r then b

2X3/2 ≥
√
2

b2
. Let ǫ0 :=

√
2−1
b2

.

〈

Hess(X,Y )(ΦN )v, v
〉

=

(

b

2X3/2
− ǫ0

)

h2 + (AN + ǫ0)h
2 + 2BNhk + CNk2

≥ 1

b2
h2

+AN

(√
AN + ǫ0√

AN

h

)2

+ 2BN

(√
AN + ǫ0√

AN

h

)

( √
AN√

AN + ǫ0
k

)

+ CN

( √
AN√

AN + ǫ0
k

)2

+ CN

(

1− AN

AN + ǫ0

)

k2

[(13) ⇒] ≥ 1

b2
h2 + CN

(

ǫ0

AN + ǫ0

)

k2.

But we have seen that for large enough N , CN ≥ C∞/2. So there is α > 0 independent
of N , such that (12) holds.

Consequently, we have proved that x2N+1 − xdim = O(1/
√
N) and y22N+1 − y2

dim
=

O(1/
√
N) and the lemma follows.

Let us apply all the above results to prove

Lemma 4. The estimate

Tr
(

T 4(2N + 1)−
〈

T 2(2N + 1)
〉2
)

≤M

holds for some constant M independent of N. Hence

‖T 2(2N + 1)− (2y22N+1 + z2N+1Ω2N+1)‖σ2 = O(1)N→∞ .

Proof. From inequality (10) there is C > 0 such that

‖T (2N + 1)‖−3Tr
[

T 4(2N + 1)− 〈T 2(2N + 1)〉2
]

≤ C,

but

‖T (2N + 1)‖3 =
∥

∥T 4(2N + 1)
∥

∥

3/4

≤
(
∥

∥

∥
T 4(2N + 1)−

〈

T 2(2N + 1)
〉2
∥

∥

∥
+
∥

∥

〈

T 2(2N + 1)
〉
∥

∥

2
)3/4

≤
∥

∥

∥
T 4(2N + 1)−

〈

T 2(2N + 1)
〉2
∥

∥

∥

3/4

+
∥

∥

∥

〈

T 2(2N + 1)
〉2
∥

∥

∥

3/4

From the equalities (see [4])

〈

T 2(2N + 1)
〉

= 2y22N+1 + z2N+1Ω2N+1
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and
σ
(〈

T 2(2N + 1)
〉)

=
{

2y22N+1 + 2z2N+1 cos 2θ, θ ∈ Θ
}

,

for a certain set of angles Θ of no importance here, we infer that

∥

∥

〈

T 2(2N + 1)
〉
∥

∥ = sup σ
(〈

T 2(2N + 1)
〉)

≤ 2y22N+1 + 2|z2N+1|
→ 2y2dim + 2zdim

= 2b2 + 2δ20 + 2b2 − 2δ20
= 4b2.

Hence, the sequence (‖〈T 2(2N + 1)〉‖)N≥0 is bounded. Let B be its upper bound and set
ηN := Tr [T 4(2N + 1)− 〈T 2(2N + 1)〉2]. We have

C ≥ ‖T (2N + 1)‖−3 Tr
[

T 4(2N + 1)− 〈T 2(2N + 1)〉2
]

≥ ηN

η
3/4
N +B3/2

.

It follows that there is M < +∞ such that ηN ≤M for all N .

We notice that Lemma 4 tells us that
∑

i

[

(

t2i (2N + 1) + t2i+1(2N + 1)− 2y2dim
)2

+ 2 (ti(2N + 1)ti+1(2N + 1)− zdim)2
]

≤ M, (14)

by the definition of T 2 and 〈T 2〉 in terms of the variables x, y, z.
Now, we have

z2N+1 − z̄2N+1 =
1

2N + 1

∑

sisi+1 +
1

2N + 1

∑

s2i

=
1

4N + 2

∑

(si + si+1)
2

=
1

4N + 2

∑

(ti(2N + 1) + ti+1(2N + 1)− 2x2N+1)
2.

This, together with the estimate z2N+1 − z̄2N+1 = O(1/N) from Lemma 3, implies that

∑

(ti(2N + 1) + ti+1(2N + 1)− 2x2N+1)
2 = O(1)N→∞.

Finally, we have proved

∑

(ti(2N + 1) + ti+1(2N + 1)− 2b)2 =
∑

(ti(2N + 1) + ti+1(2N + 1)− 2x2N+1)
2

+ (2N + 1)(2x2N+1 − 2b)2

= O(1) (15)

Furthermore, denoting

ρi(N) := (ti(2N + 1) + ti+1(2N + 1)− 2b)2 + (ti(2N + 1)ti+1(2N + 1)− zdim)
2

11



we get from (14) and (15):

2N+1
∑

i=1

ρi(N) < M ′. (16)

The next lemma tells us that the smallness of ρ(N) on an interval implies that t(2N+1)
is close to one of the two dimerized states on this interval.

Lemma 5. There exist γ > 0 and C > 0 such that: given N ≥ 1 and any pair of integers

I < J ∈ Z, if

∀i ∈ [I, J − 1] , ρi(N) ≤ γ

then there is τN ∈ {0, 1} such that for all i ∈ [I, J ]:

∣

∣ti(2N + 1)− b− (−1)i+τN δ0
∣

∣

2 ≤ Cρi(N).

We shall say that [I, J ] is of type 1 when τN = 0, of type 2 when τN = 1.

Proof. In the interval [I, J ] each couple (ti(2N+1), ti+1(2N+1)) solves the second-degree
equation X2 − Si(N)X + Pi(N) = 0, where

Si(N) = ti(2N + 1) + ti+1(2N + 1) = 2b+ λi(N)

Pi(N) = ti(2N + 1)ti+1(2N + 1) = zdim + µi(N)

ρi(N) = λ2i (N) + µ2
i (N) ≤ γ

Hence, {ti(2N + 1), ti+1(2N + 1)} =
{Si(N)±

√
∆i(N)

2

}

, with ∆i(N) = S2
i (N)− 4Pi(N).

Note that the roots
Si(N)±

√
∆i(N)

2
are differentiable functions of (λi(N), µi(N)) near (0, 0),

taking distinct values b± δ0 at (0, 0). So, for γ small enough, there is a constant C such
that exactly one of the following two estimates holds:

|ti(2N + 1)− b− (−1)iδ0|+ |ti+1(2N + 1)− b− (−1)i+1δ0| ≤
√

Cρi(N)

or

|ti(2N + 1)− b− (−1)i+1δ0|+ |ti+1(2N + 1)− b− (−1)i+2δ0| ≤
√

Cρi(N).

Assume, for instance, that the first estimate holds for i = I. Then the same estimate
holds for any i ∈ [I, J ], by induction on i. In this case we define τN = 0. Similarly, if the
second estimate holds for i = I then it holds everywhere in the interval, and we define
τN = 1. In both cases, Lemma 5 is true.

Now, the estimate (16) gives us a bound M ′ independent of N on the l1 norms of
the (2N + 1)-tuples ρ(N) := (ρi(N))i∈Z/(2N+1)Z. By an easy argument in the spirit of
the concentration-compactness method, we find, up to extraction of a subsequence, a
nonnegative integer p < M ′/2γ, and p sequences of integers 0 ≤ i1N < i2N < · · · < ipN <
2N + 1 , such that:
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1. limN→∞(ik+1
N − ikN) = ∞ for 1 ≤ k ≤ p− 1, limN→∞(i1N + 2N + 1− ipN ) = ∞

2. ρikN (N) > γ

3. There is a constant ∆ > 0 such that, if dist(i , {i1N , · · · , ipN}+(2N +1)Z) ≥ ∆, then
ρi(N) ≤ γ.

A priori p might be zero (this is called "vanishing" in the concentration-compactness
theory). In such a case, for all i ∈ Z, ρi(N) ≤ γ. By Lemma 5, this would imply the
existence of τN such that for all integers i ∈ Z,

∣

∣ti(2N + 1)− b− (−1)i+τN δ0
∣

∣ ≤
√

Cρi(N).

Taking γ small enough we see that this is impossible since for every i we have
ti+2N+1(2N + 1) = ti(2N + 1) and ρ(N)i+2N+1 = ρ(N)i. So vanishing is excluded and p
must be positive.

Now, for N large enough, the set {i ∈ Z : dist(i , {i1N , · · · , ipN} + (2N + 1)Z) ≥ ∆}
consists of intervals separating the integers ikN + (2N + 1)m, and, by Lemma 5, each
interval must be either of type 1 or of type 2. Using once again an odd-period argument,
we see that there are necessarily two intervals of different types, hence the existence of
1 ≤ k∗ ≤ p and m∗ ∈ {0, 1} such that iN := ik∗N + (2N + 1)m∗ has an interval of type 1
immediately to its left side, and an interval of type 2 immediately to its right side. Then
we may shift the (2N + 1)-tuple t(2N + 1) so that iN becomes zero for all N . We finally
get the following estimates (after shifting and extraction):

ρ0(N) > γ (17)

There is a sequence RN → ∞ and, for all ǫ > 0, an integer Nǫ and a radius Rǫ > 0
such that for all N ≥ Nǫ ,

∑

Rǫ<|i|<RN

ρi(N) < ǫ (18)

and

(∀N ≥ Nǫ)















∑

−RN<i<−Rǫ

(ti(2N + 1)− b− (−1)iδ0)
2 < Cǫ

∑

Rǫ<t<RN

(ti(2N + 1)− b− (−1)i+1δ0)
2 < Cǫ

(19)

Now, the estimate (16) gives us a bound M ′ independent of N on the l1 norms of
the (2N + 1)-tuples ρ(N) := (ρi(N))i∈Z/(2N+1)Z. It also provides a uniform l∞ bound on
the (2N + 1)-tuples t(2N + 1). So, after extraction of a subsequence, we may impose
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the pointwise convergence ti(2N + 1) → t∞i , and, denoting ρ∞i :=
(

t∞i + t∞i+1 − 2b
)2

+
(

t∞i t
∞
i+1 − zdim

)2
, Fatou’s lemma guarantees that

∑

i∈Z ρ
∞
i ≤M ′.

We also have that
{

∀i ≥ ∆, |t∞i − b− (−1)i+1δ0| ≤
√

Cρ∞i
∀i ≤ −∆, |t∞i − b− (−1)iδ0| ≤

√

Cρ∞i ,

which implies the kink property (2) of Theorem 1. Now, the pointwise convergence
[T 2(N)]i,j → [(T∞)2]i,j obviously holds, but the pointwise convergence |T (N)|i,j → |T∞|i,j
is less obvious. In order to study the absolute values of T (N) and T∞, we shall use the
classical formula for the absolute value of a self-adjoint operator A ,

|A| = 1

π

∫

R

A2(ω2 + A2)−1dω . (20)

To exploit this formula, we shall need a decay estimate on the coefficients of the
matrices (ω2 + T 2)−1 away from the diagonal.

Note that T 2
dim(2N) commutes with the translation i→ i+1, and in the Fourier domain

it is a multiplication operator by a nonzero 2π-periodic scalar function mN (p), which is
a complex-analytic function of the frequency p in a strip of the form {p : |Im(p)| < ρ}
for some ρ > 0 independent of N and ω. Moreover, there is an estimate in this strip of
the form Re(mN (p)) ≥ r for some positive constant r independent of N and ω. As a
consequence, there holds the estimate |(ω2 +mN(p))

−1| ≤ 1
r+ω2 in the complex strip. So

the Fourier coefficients cl of the analytic and periodic function (ω2 +mN (p))
−1 satisfy a

decay estimate of the form

|cl| ≤
C

1 + ω2
e−ρ l , l ∈ Z .

As a consequence,

∣

∣

[

(ω2 + T 2
dim(N))−1

]

i,j

∣

∣ ≤ C

1 + ω2
e−ρ dist(i−j,2NZ) .

Similarly, for N infinite we have

∣

∣

[

(ω2 + T 2
dim)

−1
]

i,j

∣

∣ ≤ C

1 + ω2
e−ρ |i−j| .

For arbitrary N -tuples s, we are able to prove the following (weaker) estimate:

Lemma 6. Let M , ω0 > 0 . Then there are two constants C, ρ > 0 depending only on M
and ω0 , such that, for any ω ≥ ω0 :

1. For all N ≥ 1, if s ∈ RZ/NZ satisfies (∀ 1 ≤ i ≤ N) : |si| ≤M , then

(∀ i, j ∈ Z) :
∣

∣

[

(ω2 + S2)−1
]

i,j

∣

∣ ≤ C

ω2
e−ρ dist (i−j,NZ) .
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2. For an infinite chain, if s ∈ RZ satisfies (∀i ∈ Z) : |si| ≤M , then

(∀ i, j ∈ Z) :
∣

∣

[

(ω2 + S2)−1
]

i,j

∣

∣ ≤ C

ω2
e−ρ |i−j| . (21)

Proof. The proofs for finite and infinite chains are similar, so we only treat the case of an
infinite chain: s ∈ R

Z and S acts in l2(Z,C).

We first introduce a smooth function η : R → [0, 1] satisfying η(0) = 0, η(1) = 1
2
,

η(2) = 1 and 0 ≤ η′(t) ≤ 1 for all t.

Given m ∈ N and R ≥ 4, let ηm,R(t) := η
( |t|−mR

R

)

. This function of t is even and
satisfies ηm,R ≡ 0 on [−mR,mR], 1

2
≤ ηm,R ≤ 1 on [(m + 1)R, (m + 2)R], ηm,R ≡ 1 on

[(m+ 2)R,∞]. Moreover, |η′m,R| ≤ 1
R
, hence |ηm,R(t+ 2)− ηm,R(t)| ≤ 2

R
.

Take an arbitrary j ∈ Z . Let ej = (δi,j)i∈Z and consider the vector V := (ω2+S2)−1ej.
The coordinates of V are Vi =

[

(ω2 + S2)−1
]

i,j
. Now, for each integer m ≥ 1 we define

the vector V m of coordinates V m
i = ηm,R(i− j)Vi. We have ηm,R(i− j)

[

(ω2 +S2)V
]

i
= 0,

hence
[

(ω2 + S2)V m
]

i
= ξmi

with

ξmi := sisi+1

(

(ηm,R(i+ 2− j)− ηm,R(i− j)
)

Vi+2

+ sisi−1

(

(ηm,R(i− 2− j)− ηm,R(i− j)
)

Vi−2

hence, remembering that |si−1|, |si|, |si+1| ≤M , we get

|ξmi | ≤ 2M2

R
(|Vi+2|+ |Vi−2|) .

When m ≥ 2, we see that ξmi = 0 when |i − j| ≤ mR − 2, while for all (i, j) such that
|i− j| ≥ mR − 2 we have ηm−1,R(i± 2− j) ≥ 1

2
, since R ≥ 4. As a consequence,

|ξmi | ≤ 4M2

R
(|V m−1

i+2 |+ |V m−1
i−2 |) .

Finally, we get the estimate

‖(ω2 + S2)V 1‖2 ≤
4M2

R
‖V ‖2

and for all m ≥ 2

‖(ω2 + S2)V m‖2 ≤
8M2

R
‖V m−1‖2 .

Clearly, ‖(ω2 + S2)−1‖ ≤ 1
ω2 , hence ‖V ‖2 ≤ 1

ω2 and, by induction on m ≥ 1:

‖V m‖2 ≤
1

2ω2

(

8M2

ω2R

)m

.

Assuming ω ≥ ω0 and choosing R > 8M2/ω2
0 we easily derive the decay estimate (21).
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Thanks to Lemma 6, we are now able to prove the desired pointwise convergence
result:

Lemma 7. Take a finite constant M . Assume that we are given a sequence of N-tuples

s(N) ∈ RZ/NZ such that for all i, N : |si(N)| ≤ M . Assume, moreover, that for each

i ∈ Z, the sequence si(N) has a limit s∞i as N → ∞. Then:

∀i, j ∈ Z , |S(N)|i,j → |S∞|i,j .

Proof. First of all, note that for any bounded, self-adjoint operator A, the integrand in
|A| = 1

π

∫

R
A2(ω2+A2)−1dω has operator norm ‖A2(ω2+A2)−1‖ ≤ min{1, ‖A‖2/ω2}. So,

by Lebesgue’s dominated convergence theorem, we just have to prove that for each ω > 0
and any i, j ∈ Z,

[

(ω2 + S2(N))−1
]

i,j
→
[

(ω2 + (S∞)2)−1
]

i,j
as N → ∞ .

So, from now on, we fix ω > 0 . We denote L(N) := (ω2 +S2(N))−1 (acting in CZ/NZ)
and L∞ := (ω2 + (S∞)2)−1 (acting in l2(Z,C)).

For each positive integer N , we consider the infinite sequence (s∞,N
i ) such that s∞,N

i+N =

s∞,N
i (∀i ∈ Z) and s∞,N

i = s∞i when 0 < i ≤ N . Let (S∞,N
i,j )i,j∈Z be the associated

operator. By construction, S∞,N , considered as an operator in l2(Z,C), commutes with
the shift σN : (zi) → (zi−N). So the operator L∞,N := (ω2 + (S∞,N)2)−1 also commutes
with σN . Again by construction, the coefficients of S∞,N converge pointwise to those of
S∞ as N → ∞. So, writing

[

L∞,N − L∞]
i,j

=
[

L∞,N((S∞)2 − (S∞,N)2)L∞]
i,j

one easily proves, thanks to Lemma 6, that the coefficients of L∞,N converge pointwise to
those of L∞ as N → ∞.

Now, for eachN ≥ 1 we define a new matrix (S̃i,j(N))i,j∈Z/NZ by the formula S̃i,j(N) :=
∑

m∈Z S
∞,N
i+Nm, j . Note that only a finite number of terms in this series are nonzero, so that

there is no problem of convergence. Similarly, we define L̃i,j(N) :=
∑

m∈Z L
∞,N
i+Nm, j. This

time we have an infinite series, but thanks to Lemma 6 its terms decay exponentially, and
the coefficients of L̃(N)− L∞,N converge pointwise to zero as N → ∞. By construction,
L̃(N), considered as an operator in CZ/NZ, coincides with (ω2+(S̃(N))2)−1. Our last step
is to write

[

L(N)− L̃(N)
]

i,j
=
[

L(N) (S̃2(N)− S2(N))L̃(N)
]

i,j
.

From this we see, thanks once again to Lemma 6, that the coefficients of L(N) − L̃(N)
converge pointwise to zero as N → ∞. Combining the successive pointwise convergence
results obtained above, we finally get the desired convergence Li,j(N) → L∞

i,j .
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We recall that the assumptions of Lemma 7 are satisfied by our minimizers t(2N +1),
up to extraction of a subsequence. So we can conclude that

∀i, j ∈ Z , |T (2N + 1)|i,j → |T∞|i,j .
Now, our goal is to prove that t∞ is a relative energy minimizer. For this purpose, we

need a better understanding of the possible lack of invertibility of T 2(2N +1) and (T∞)2.
We recall that T 2

dim(2N) = 2(b2 + δ22N)1 + (b2 − δ22N )Ω2N , with δ2N → δ0 as N goes to
infinity. Similarly, for the infinite chain T 2

dim = 2(b2 + δ20)1 + (b2 − δ20)Ω.

Lemma 8. There is a positive constant κ such that, when N is large enough or in the

case of the infinite chain, if s satisfies (s2i +s
2
i−1−2b2−2δ20)

2+2(sisi+1−b2+δ20)2 ≤ κ (∀i),
then S is invertible and its inverse has operator norm less than 2/δ20.

Proof. We only give the proof in the case s ∈ CZ, the case “N large" being similar. In the
Fourier domain, T 2

dim is a multiplication operator by a function of the form b2 cos2(k) +
δ20 sin

2(k). Since δ0 < b, the smallest value of this multiplier is δ20, so the inverse of T 2
dim

has operator norm 1/δ20. Now, if κ is chosen small enough, then the hypothesis on s

implies that ‖S2 − T 2
dim‖ ≤ δ20/2, hence the lemma.

The next lemma tells us that T 2(2N + 1) has a bounded inverse with bound at most
4/δ20 on the orthogonal complement of a subspace of CZ/(2N+1)Z the dimension of which is
bounded independently of N .

Lemma 9. There is a finite constant D such that, if N is large enough, then the rank of

χ[0,δ20/4]
(T 2(2N + 1)) is at most D. Similarly, the rank of χ[0,δ20/4]

(T 2
∞) is at most D.

Proof. We first treat the case of an infinite chain, which is easier. We consider a normalized
eigenvector V of T 2

∞ with eigenvalue λ ≤ δ20/4. We follow the same kind of strategy as in
the proof of Lemma 6, in order to get a decay estimate on the components of V . We shall
only prove the decay for positive values of i, the case of negative values being similar.
We take the same function η as in the proof of Lemma 6, but our definition of ηm,R is
slightly different: we take ηm,R(t) := η( t−mR

R
), so that ηm,R vanishes on the whole interval

(−∞, mR]. We define a sequence of vectors V m by V m
i = ηm,R(i)Vi for m ≥ 1. We know

that there is τ ∈ {0, 1} such that t∞i − b− (−1)i+τ δ0 → 0 as i→ ∞. Now, we take a large
integer R0 and we define si := b + (−1)i+τδ0(∀i < R0) and si := t∞i (∀i ≥ R0). Then, if
R0 is chosen large enough,

(s2i + s2i−1 − 2b2 − 2δ20)
2 + 2(sisi+1 − b2 + δ20)

2 ≤ κ (∀i) .

So Lemma 8 tells us that S2 is invertible and that the operator norm of its inverse is less
than 2/δ20. We now take R > R0. Proceeding as in the proof of Lemma 6 we find estimates
of the form ‖(S2 − λ)V 1

i ‖2 ≤ O(1/R), ‖(S2 − λ)V m
i ‖2 ≤ O(1/R)‖V m−1

i ‖2 (∀m ≥ 2). But
the norm operator of (S2 − λ)−1 is less than 4/δ20. So, choosing R large enough, we get a
decay estimate of the form |Vi| ≤ C e−α i. The positive constants C, α do not depend on
λ, and arguing in the same way for negative values of i, we get the estimate |Vi| ≤ C e−α|i|
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for all normalized vectors in the range of χ[0,δ20/4]
(T 2

∞). This implies that the unit ball of

this range is compact, so χ[0,δ20/4]
(T 2

∞) has finite rank.

Now, we shortly explain how these ideas can be adapted to the case of a large finite
chain. Combining Lemmas 4 and 5 we find that for any ǫ > 0, there are a positive constant
Aǫ , an integer pǫ ≥ 1 independent of N (for N large enough) and pǫ + 1 sequences of
integers 0 = i0N < i1N < · · · < ipǫN = N such that:

1. limN→∞(ik+1
N − ikN) = ∞ for 0 ≤ k ≤ pǫ − 1.

2. For each 0 ≤ k ≤ pǫ − 1 there is τk ∈ {0, 1}, such that, when i varies in the interval
(ikN , i

k+1
N ), if dist(i, {ikN , ik+1

N }) ≥ Aǫ then |ti(2N + 1)− b− (−1)i+τkδ0| < ǫ .

Now, we fix a small enough value of ǫ, and we denote P = pǫ. By arguments similar
to those used for the infinite chain, we can get a decay estimate of the form

|Vi| ≤ C exp [−α dist(|i|, {i0N , i1N , · · · , iPN}+ (2N + 1)Z)]

for all normalized vectors V in the range of χ[0,δ20/4]
(T 2(2N + 1)). This implies that for

any r > 0, the unit ball of this range can be covered by a finite number q(r) of balls of
radius r where q(r) is independent of N . So there is a constant D such that for any N ,
the rank of χ[0,δ20/4]

(T 2(N)) is at most D.

Now we consider a sequence u ∈ l1(Z,R). Given N ≥ 1, we call u(N) the N -periodic
sequence such that ui(N) = ui (∀ 1 ≤ i ≤ N). We have the following result:

Lemma 10. The difference (|T∞ + U | − |T∞|) is a trace-class operator in l2(Z,C), and

for any ǫ > 0 there is ∆ǫ such that, for any N large enough, denoting

Jǫ := {i ∈ Z : dist(i, (2N + 1)Z) ≥ ∆ǫ} ,

and recalling our notation θA for the operator of multiplication by χA, we have

‖(|T (2N + 1) + U(2N + 1)| − |T (2N + 1)|)θJǫ‖σ1(CZ/(2N+1)Z) ≤ ǫ . (22)

Proof. We take ω0 > 0 (to be chosen later), we denote S(2N+1) := T (2N+1)+U(2N+1)
and using (20) we write |S(2N+1)|−|T (2N+1)| = 1

π
(A(2N+1)+B(2N+1)+C(2N+1))

where, omitting temporarily the (2N + 1) argument, we have:

A :=

∫

|ω|≥ω0

ω2(ω2 + S2)−1(S2 − T 2)(ω2 + T 2)−1dω (23)

B :=

∫

|ω|≤ω0

(

S2(ω2 + S2)−1 − T 2(ω2 + T 2)−1
)

χ[0,δ20/4]
(T 2)dω (24)

C :=

∫

|ω|≤ω0

ω2(ω2 + S2)−1(S2 − T 2)(ω2 + T 2)−1χ(δ20/4,∞)(T
2)dω (25)
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The operator norms of ω2(ω2 + S2(2N + 1))−1, S2(2N + 1)(ω2 + S2(2N + 1))−1,
T 2(2N + 1)(ω2 + T 2(2N + 1))−1 are at most 1, and the operator norm of (ω2 + T 2(2N +
1))−1χ(δ20/4,∞)(T

2(2N + 1)) is at most 4/δ20. Moreover the trace norm of S2(2N + 1) −
T 2(2N + 1) is bounded independently of N , and ‖χ[0,δ20/4]

(T 2(2N + 1))‖σ1 ≤ D thanks to
Lemma 9. So, choosing ω0 small enough (independently of N), we can impose ‖B(2N +
1)‖σ1 + ‖C(2N + 1)‖σ1 ≤ ǫ/2 . It remains to study A(2N + 1). Since ω0 is now fixed, we
can apply Lemma 6 to (ω2 + S2(2N + 1))−1 and (ω2 + T 2(2N + 1))−1, and we easily find
∆ǫ such that

‖A(2N + 1)θJǫ‖σ1(CZ/(2N+1)Z) ≤ ǫ/2 .

This proves (22). Using a similar decomposition |T∞+U∞|− |T∞| = 1
π
(A∞+B∞+C∞),

one shows in the same way that this operator is trace-class, and the lemma is proved.

Now, by Lemma 7 applied to T (2N + 1) and T (2N + 1) + U(2N + 1), we see that
for each i ∈ Z, (|T (2N + 1) + U(2N + 1)| − |T (2N + 1)|)i,i → (|T∞ + U∞| − |T∞|)i,i.
Combining this with the uniform estimate (22), we conclude that

Tr(|T (2N + 1)| − |T (2N + 1) + U(2N + 1)|) → Tr(|T∞| − |T∞ + U |) as N → ∞
and finally

H(2N+1)(t(2N + 1) + u(2N + 1))−H(2N+1)(t(2N + 1)) → ∆H(u) .

But t(2N + 1) is an energy minimizer, so

H(2N+1)(t(2N + 1) + u(2N + 1))−H(2N+1)(t(2N + 1)) ≥ 0 (∀N) ,

hence ∆H(u) ≥ 0. We have proved that t∞ is a relative minimizer.

Our last task is to prove that t∞ satisfies the self-consistent equations. We recall that
Γ∞ := χ(−∞,0)(T

∞). Taking as before u ∈ l1(Z,R), we denote Q := Γ∞−χ(−∞,0)(T
∞+U).

We know that U and (|T∞| − |T∞ + U |) are trace-class. But |T∞| = T∞(1 − 2Γ∞) and
|T∞ + U | = (T∞ + U)(1 − 2Γ∞ + 2Q), hence

|T∞| − |T∞ + U | = −U + 2UΓ∞ − 2(T∞ + U)Q .

Remembering that Γ∞ is a projector, we see that tr((T∞ + U)Q) ≥ 0. Moreover the
diagonal coefficients of U are zero, so tr(U) = 0 . As a consequence,

2tr(UΓ∞) ≥ tr(|T∞| − |T∞ + U |)
and finally

1

2
g
∑

i∈Z
(ui + 2t∞i − 2b)ui + 2tr(UΓ∞) ≥ ∆H(u) ≥ 0 .

But tr(UΓ∞) = 2
∑

i∈ZRe(Γ
∞
i,i+1)ui, hence

∑

i≥1

1

2
gu2i + (4Re(Γ∞

i,i+1) + g(t∞i − b))ui ≥ 0 .

Varying u, we conclude that 4Re(Γ∞
i,i+1) + g(t∞i − b) = 0 (∀i). This ends the proof of

Theorem 1.
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