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APPROXIMATION AND REGULARIZATION OF LIPSCHITZ

FUNCTIONS: CONVERGENCE OF THE GRADIENTS

MARC-OLIVIER CZARNECKI AND LUDOVIC RIFFORD

Abstract. We examine the possible extensions to the Lipschitzian setting
of the classical result on C1-convergence: first (approximation), if a sequence
(fn) of functions of class C1 from R

N to R converges uniformly to a function f
of class C1, then the gradient of f is a limit of gradients of fn in the sense that
graph(∇f) ⊂ lim infn→+∞ graph(∇fn); second (regularization), the functions
(fn) can be chosen to be of class C∞ and C1-converging to f in the sense that
limn→+∞ ‖fn − f‖∞ + ‖∇fn −∇f‖∞ = 0. In other words, the space of C∞

functions is dense in the space of C1 functions endowed with the C1 pseudo-
norm.

We first deepen the properties of Warga’s counterexample (1981) for the
extension of the approximation part to the Lipschitzian setting. This part
cannot be extended, even if one restricts the approximation schemes to the
classical convolution and the Lasry-Lions regularization. We thus make more
precise various results in the literature on the convergence of subdifferentials.

We then show that the regularization part can be extended to the Lips-
chitzian setting, namely if f : R

N → R is a locally Lipschitz function, we build
a sequence of smooth functions (fn)n∈N such that

lim
n→+∞

‖fn − f‖∞ = 0,

lim
n→+∞

dHaus(graph(∇fn), graph(∂f)) = 0.

In other words, the space of C∞ functions is dense in the space of locally Lips-
chitz functions endowed with an appropriate Lipschitz pseudo-distance. Up to
now, Rockafellar and Wets (1998) have shown that the convolution procedure
permits us to have the equality lim supn→+∞ graph(∇fn) = graph(∂f), which
cannot provide the exactness of our result.

As a consequence, we obtain a similar result on the regularization of epi-
Lipschitz sets. With both functional and set parts, we improve previous results
in the literature on the regularization of functions and sets.

1. Introduction

The purpose of this paper is to examine the extension to the Lipschitzian setting
of the following classical result on C1-convergence, and thus to study the conver-
gence properties of Clarke generalized gradients and Clarke normal cones, together
with other related notions of (generalized) gradients and normal cones. In the
smooth case, it is well known that if a C1 function f is the limit of a sequence
(fn)n∈N of C1 functions, then every gradient of f can be seen as the limit of some
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4468 MARC-OLIVIER CZARNECKI AND LUDOVIC RIFFORD

gradients of the fn’s. Furthermore every C1 function can be approached by smooth
functions for the C1-convergence. We state the results in the next proposition.

Proposition A. Let f : R
N → R be a function of class C1:

(a) For every sequence (fn)n∈N in C1(RN , R) converging uniformly to f , we have

graph(∇f) ⊂ lim inf
n→+∞

graph(∇fn).

(b) (Regularization) There exists a sequence (fn)n∈N in C∞(RN , R) such that

lim
n→+∞

‖fn − f‖∞ + ‖∇fn −∇f‖∞ = 0.

In particular

graph(∇f) = lim inf
n→+∞

graph(∇fn) = lim sup
n→+∞

graph(∇fn).

In fact, although they are apparently independent, part (b) is a consequence
of (a) by a classical convolution-type argument. In the present paper, our aim is
to understand how Proposition A can be extended to the case of locally Lipschitz
functions. Of course, in this setting we have to specify what kind of “gradient” we
consider.

In the convex setting, i.e., when (fn)n∈N is a sequence of lower semi-continuous
convex functions on R

N epi-converging (or Γ-converging) to a convex function f ,
Attouch’s theorem (see [1] and [2]) provides a global extension to both parts (a) and
(b). In fact, Attouch’s theorem establishes in reflexive Banach space the general
equivalence of Mosco convergence of the functions and set-convergence of the graph
of their subdifferential. A rich literature has since been developed to extend and
generalize Attouch’s theorem; see for example Attouch and Beer [3], Poliquin [29],
Levy, Poliquin and Thibault [25], Zolezzi [38] to quote only some of them. Note
also that outside the convex setting, there is no chance of obtaining a similar state-
ment to Attouch’s theorem in its full generality. Indeed, it is easy to build a C∞

approximation of a function f with gradients far from the (generalized) gradients
of the initial function.

This last phenomenon highlights the difference between our point and an ap-
proach à la Attouch’s theorem, which is not strictly a regularization. In the
Attouch’s theorem direction, the question would rather be to identify a class of
Lipschitz functions for which epi-convergence of the sequence (fn) to f would be
equivalent to the convergence of the graph of the gradients (see Zolezzi [38]).

Let us now explain why we focus on the Lipschitzian setting for possible exten-
sions of Proposition A. It is easy to prove that if a convex function is the uniform
limit of a sequence of locally Lipschitz functions, then (a) holds for a Clarke gen-
eralized gradient (we will recall the notions of nonsmooth analysis that we use in
the next section). As we shall see, this result has a geometric meaning. Note
that the convex case permits us to solve our problem in the case of semiconvex (or
semiconcave) functions. As a matter of fact since these functions are locally the
sum of a convex function and of a smooth function, Proposition A combined with
the result of the convex framework implies that if a sequence (fn)n∈N of locally
Lipschitz functions on R

N converges to some semiconvex function, then (a) holds
for Clarke generalized gradients. This result is also a consequence of the fact that
Proposition A(a) remains true for Clarke gradients if we assume that f is C1 and
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APPROXIMATION AND REGULARIZATION OF LIPSCHITZ FUNCTIONS 4469

that the fn’s are locally Lipschitz. It is in fact an immediate consequence of the
following.

Proposition B. Let (Mn)n∈N be a sequence of closed subsets of R
N , and let M =

lim supn→∞ Mn = lim infn→∞ Mn. Then

graph(NP
M ) ⊂ lim inf

n→∞
graph(NP

Mn
).

From this result, one easily deduces that Proposition A(a) can be extended for
lower semicontinuous functions and their proximal (also Dini’s/Fréchet and limit-
ing) subgradients. Lebourg [24] gave this extension for the Fréchet subgradients
(of f). One easily sees that Proposition A(b) may not hold in this case, simply
because the graph of the proximal subgradient may not be closed, and because of
the nonconvexity of the limiting subgradient. Simple counterexamples also show
that if either f or fn is not assumed to be Lipschitz, Proposition A(a) may not hold
for the Clarke subgradient. These considerations naturally lead to considering the
Lipschitz function with Clarke’s subgradient. Precisely,

Question 1. Let f : R
N → R be a locally Lipschitz function.

(a) For every sequence (fn)n∈N in Liploc(R
N , R) epi-converging (or Γ-converging)

to f , do we have
graph(∂f) ⊂ lim inf

n→+∞
graph(∂fn)?

(b) (Regularization) Does there exist a sequence (fn)n∈N in C∞(RN , R) converg-
ing uniformly to f , such that

graph(∂f) = lim inf
n→+∞

graph(∇fn) = lim sup
n→+∞

graph(∇fn)?

In terms of convergence of sets and their Clarke’s normal cones, the formulation
of Question 1 becomes:

Question 2. Let M be a closed epi-Lipschitz subset of R
N .

(a) For every sequence (Mn)n∈N of closed epi-Lipschitz subsets of R
N converging

to M , do we have
graph(NC

M ) ⊂ lim inf
n→∞

graph(NC
Mn

)?

(b) Does there exist a sequence (Mn)n∈N of smooth sets converging to M for the
Hausdorff distance, such that

graph(NC
M ) = lim inf

n→+∞
graph(NC

Mn
) = lim sup

n→+∞
graph(NC

Mn
)?

These two questions (also only in terms of lim sup) were long-standing questions
after the results of Ioffe [19], Mordukhovich [27], Kruger and Mordukhovich [21] on
the convergence of functions and their gradients. Warga [37] provided an example
of a function f : R

2 → R and a sequence (fn)n∈N of functions of class C∞ which
give a negative answer to Question 1(a) and its consequent Question 2(a) in terms
of sets. However, one may wonder if Question 1(a) would have a positive answer
with the Lasry-Lions regularization, in view of its many nice properties. This is not
the case, and the function f exhibited by Warga again provides the counterexample.

Theorem A. There exists a Lipschitz function f : R
2 → R, such that

graph(∂f) �⊂ lim inf
λ,µ→0

graph(∇fλ,µ),

where fλ,µ is the Lasry-Lions regularization of f , for 0 < µ < λ.
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4470 MARC-OLIVIER CZARNECKI AND LUDOVIC RIFFORD

In fact, we show that the Lasry-Lions regularization of Warga’s function f gives
the smallest container of f , i.e., if (fn) is a sequence of smooth functions which
uniformly converges to this function f , then

lim inf
λ,µ→0

graph(∇fλ,µ) ⊂ lim inf
n→+∞

graph(∇fn).

Theorem A adds precision to Benoist [5] and Georgiev and Zlateva [18]. Let us
also mention that Question 1(a) has a positive answer when N = 1 and also its
consequent Question 2(a) in terms of sets in dimension 2. As a direct by-product
of the example of Warga, we obtain an example of strict inclusion between two
different kinds of normal cones, thus showing additional interest of [14, Theorem
2.2] (see section 3.6).

Furthermore, we give a positive answer to Question 1(b) with the following result.

Theorem B. Let Ω be an open subset of R
N and let f : Ω → R be a locally

Lipschitz function. Then there exists a sequence of smooth functions (fn)n∈N such
that

lim
n→+∞

‖fn − f‖∞ = 0,(1.1)

lim
n→+∞

dHaus(graph(∇fn), graph(∂f)) = 0.(1.2)

In particular

graph(∂f) = lim inf
n→+∞

graph(∇fn) = lim sup
n→+∞

graph(∇fn).

Theorem B can be viewed as a density result: endow the space Liploc(Ω, R) with
the pseudo-distance defined by

dLip(f, g) := ‖f − g‖∞ + dHaus(graph(∂g), graph(∂g)).

Then Theorem B can be expressed as the density of functions of class C∞ for the
corresponding topology:

Liploc(Ω, R) = C∞(Ω, R).

The inclusion lim supn→+∞ graph(∇fn) ⊂ graph(∂f) can easily be obtained by
the classical convolution procedure. Rockafellar and Wets [35, Theorem 9.67] show
furthermore, up to a density argument (see Lemma 8.2 below), that one can have the
equality lim supn→+∞ graph(∇fn) = graph(∂f) with the convolution procedure.
They achieve this by taking convex combinations of mollifiers. However, one cannot
deduce from their result information on the set lim infn→+∞ graph(∇fn), and hence
on the complete set convergence of the sets graph(∇fn).

As a consequence of our result, we improve (see Section 3.4) the convergence
results of [15], hence of [11] and [16], where only one side of the convergence of the
gradients was obtained. We can state Theorem B in terms of sets.

Theorem C. Let M be a closed epi-Lipschitz subset of R
N . Then there exists a

sequence of smooth sets (Mn)n∈N such that

lim
n→+∞

dHaus(M, Mn) = 0,(1.3)

lim
n→+∞

dHaus(graph(NP
Mn

∩ S), graph(NC
M ∩ S)) = 0.(1.4)

In particular

graph(NC
M ) = lim inf

n→+∞
graph(NC

Mn
) = lim sup

n→+∞
graph(NC

Mn
).
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APPROXIMATION AND REGULARIZATION OF LIPSCHITZ FUNCTIONS 4471

As a consequence we improve the approximation results on epi-Lipschitz sets
of [12]. We will also make more precise the approximation results on proximally
nondegenerate sets of [14].

2. Main results

2.1. Basic definitions in nonsmooth analysis.1 We recall the following defi-
nitions of the Painlevé set-limit associated with a net (Mn)n∈N of subsets of R

N ,
where N is a directed set (see, for example, Kuratowski [22]):

lim inf Mn := {x ∈ R
N |∃(xn)n∈N ⊂ R

N , xn → x, xn∈Mn for all n large enough},
lim sup Mn := {x ∈ R

N |∃(xn)n∈N ⊂ R
N , ∃ϕ ∈ I, xn → x, xn ∈ Mϕ(n) for all n},

where I is the set of all maps ϕ : N → N such that ϕ(n) ≥ n for every n ∈ N .
When N = N, we write lim infn→+∞ Mn and lim supn→+∞ Mn. Intimately related
with the notion of the Painlevé set-limit is the Hausdorff “distance”. Let M and
M ′ be two nonempty closed subsets of R

N ,

dHaus(M, M ′) := sup{ sup
x∈M

dM ′(x), sup
x∈M ′

dM (x)}.

We briefly recall the definitions of the different nonsmooth tools that we use
in this paper. Let the function f : Ω → R be given, where Ω is a subset of R

N .
Let x ∈ Ω; we say that ζ is a proximal subgradient (see Rockafellar [34]) of f
at x (written ζ ∈ ∂P f(x)) if and only if there exists ρ, σ > 0 such that for any
y ∈ x + ρB ∩ Ω,

f(y) − f(x) + σ|y − x|2 ≥ 〈ζ, y − x〉.
We now define the limiting subdifferential2 of f at x by

∂Lf(x) := lim sup
x′→x

∂P f(x′).

We define ∂P f and ∂Lf by

∂P f(x) := −∂P (−f)(x) and ∂Lf(x) := −∂L(−f)(x).

Finally, if the function f is Lipschitz on a neighborhood of x, we define Clarke’s
generalized gradient as follows: for any x ∈ R

N we set

∂f(x) := co∂Lf(x) = co∂Lf(x)

1 Throughout this paper, R denotes the set of real numbers. If x = (x1, ..., xN ) and y =

(y1, ..., yN ) belong to R
N , we denote by 〈x, y〉 =

∑N
i=1 xiyi, the canonical scalar product of R

N ,

|x| =
√

〈x, x〉, the corresponding Euclidean norm. We denote by B(x, r) = {y ∈ R
N | |x − y| <

r}, B(x, r) = {y ∈ RN | |x − y| ≤ r} and S(x, r) = {y ∈ RN | |x − y| = r}. We denote by

B = B(0, 1), B = B(0, 1), and SN−1 = S(0, 1). For (x, y) ∈ R
N × R

N and (x′, y′) ∈ R
N × R

N ,
we denote by d∞((x, y), (x′, y′)) = sup{|x − x′|, |y − y′|} to avoid any confusion with‖f‖∞, and

B∞((x, y), r) = {(x′, y′) ∈ R
N × R

N | d∞((x, y), (x′, y′)) ≤ 1}. If X ⊂ R
N , Y ⊂ R

N , and
x ∈ R

N , we let dX(x) = infy∈X |x − y|, X \ Y = {x ∈ X|x /∈ Y } be the set-difference of
the sets X and Y , X + Y = {x + y|x ∈ X, y ∈ Y } the sum of the sets X and Y , clX the
closure of X, intX the interior of X, bdX = clX \ intX the boundary of X, and coX the
convex hull of X. Consider a function f : X → R; its epigraph, denoted by epif , is defined by
epif := {(x, y) ∈ X ×R|y ≥ f(x)}. The function f is locally Lipschitz if, for every x ∈ X, there is
ε > 0 and K > 0 such that |f(x1)− f(x2)| ≤ K|x1 − x2| for every x1 and x2 in B(x, ε). If F is a
correspondence (or multivalued map) from X to R

N , its graph, denoted by graph(F ), is defined
by graph(F ) = {(x, y) ∈ X × R

N |y ∈ F (x)}.
2See Mordukhovich [26] for the geometric presentation.
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4472 MARC-OLIVIER CZARNECKI AND LUDOVIC RIFFORD

and we recall that

∂f(x) = co{ζ|∃(xn)n∈N ⊂ Dom(∇f), xn → x,∇f(xn) → ζ},
which is nonempty by Rademacher’s Theorem [32]. Let M be a subset of R

N and
let x ∈ RN . The projection of x on M is the set of points of M nearest to x:

projM (x) := {y ∈ R
N ||x − y| = dM (x)}.

The proximal normal cone to M at x is the set of the perpendicular vectors to M
at x (see Bourbaki [7]), precisely defined by

NP
M (x) := {v ∈ R

N |∃α > 0, B(x + αv, α‖v‖) ∩ M = ∅}.3

The limiting normal cone (see Mordukhovich [26]) NL
M (x) and the Clarke normal

cone NC
M (x) are then defined by

NL
M (x) := lim sup

x′→x
NP

M (x′),

NC
M (x) := clcoNL

M (x).

The set M is said to be epi-Lipschitz at x ∈ M if it can be written as the epigraph of
a Lipschitz function on a neighborhood of x, up to an isometry. Equivalently, from
Rockafellar [33], if NC

M (x)∩−NC
M (x) = {0}. The relations between subdifferentials

and generalized gradients of the function f at x ∈ Ω and normal cones to the
epigraph of f are the following:

ζ ∈ ∂P f(x) ⇔ (ζ,−1) ∈ NP
M ((x, f(x)),

ζ ∈ ∂Lf(x) ⇔ (ζ,−1) ∈ NL
M ((x, f(x)),

ζ ∈ ∂Cf(x) ⇔ (ζ,−1) ∈ NC
M ((x, f(x)).

Federer [17] introduces sets of positive reach as follows.4 Let M ⊂ R
N , define

reach(M) as the radius of the largest tube around M on which there exists a unique
projection on M , precisely

reach(M) := sup{r|∀x ∈ M + B(0, r), projM (x) is a singleton}.
Then M is of positive reach if reach(M) > 0.

2.2. Statements of the results. Our first main result specifies Theorem A given
in the Introduction and thus provides a negative answer to Question 1(a). We
first recall the example of Warga [37] who exhibits a function f : R

2 → R and a
sequence (fn)n∈N of its mollified functions such that 0 ∈ ∂f(0) and the gradient of
the approximating function remains “far” from 0. It is clearly not possible to require
this last property to hold for any convolution since one may build a convolution
kernel ad hoc in order to obtain, for example, 0 ∈ ∂fn(0) (see Rockafellar and
Wets [35, Theorem 9.67]). However, one may wonder if Question 1(a) would have
a positive answer with the Lasry-Lions regularization, in view of its many nice
regularizing properties. This is not the case as shown by Theorem 2.1, part (b).
The special case where N = 1 is examined in Section 2.4, Proposition 2.4.

3In other words, NP
M (x) = {v ∈ R

N |∃α > 0, x ∈ projM (x + αx)}.
4Sets of positive reach are an important notion and have been studied with various applications

by many authors. They are called proximally smooth sets by Clarke, Stern and Wolenski [10],
prox regular sets by Poliquin and Rockafellar [30], Poliquin, Rockafellar and Thibault [31], and
sets with property ρ by Plaskacz [28].
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Theorem 2.1. The function f : R
2 → R defined by (see Figure 1)

(2.1) f(x1, x2) =
∣∣∣|x1| + x2

∣∣∣ +
1

2
x1

is
√

13
2 -Lipschitz and satisfies

0 ∈ ∂f(0).

Moreover:
(a) [37, Warga] (Convolution) There exists a convolution kernel θ such that, for

every λ > 0, the convoluted (or mollified) function f ∗ θλ : R
2 → R defined by

f ∗ θλ(x) :=

∫

R2

θλ(y)f(x + y)dy, for every x ∈ R
2, where θλ(y) = λ−2θ

( y

λ

)
,

is of class C∞,
√

13
2 -Lipschitz, and moreover

lim
λ→0

‖f − f ∗ θλ‖∞ = 0,(2.2)

|∇(f ∗ θλ)| ≥ 1

5
,(2.3)

hence in particular 0 /∈ lim supλ→0 graph(∇f ∗ θλ).
(b) (Lasry-Lions regularization) For every 0 < µ < λ, the function fλ,µ defined

by

fλ,µ(x) = − inf
{
− inf{f(z) +

1

2λ
|y − z|2, z ∈ R

2} +
1

2µ
|x − y|2, y ∈ R

2
}

is of class C1,
√

13
2 -Lipschitz, and moreover

lim
λ,µ→0

‖f − fλ,µ‖∞ = 0,(2.4)

|∇fλ,µ| ≥
1√
2
.(2.5)

(c) Moreover, for every 0 < µ < λ,

∇fλ,µ(R2) = co

{(
1

2
, 0

)
,

(
3

2
, 1

)
,

(
−1

2
, 1

)}

∪ co

{(
1

2
, 0

)
,

(
−1

2
,−1

)
,

(
3

2
,−1

)}
,

and if (fn) is a sequence of locally Lipschitz functions from R
N to R which converges

uniformly to f on compact sets, then:

{0} ×
(

co

{(
1

2
, 0

)
,

(
3

2
, 1

)
,

(
−1

2
, 1

)}
∪ co

{(
1

2
, 0

)
,

(
−1

2
,−1

)
,

(
3

2
,−1

)})

⊂ lim inf
n→+∞

graph(∂fn).

The proof of Theorem 2.1, parts (a), (b) and (c), is given in Section 6.

Remark 2.1. Let us briefly comment on Theorem 2.1. Though it is the “best”
(smallest) convex generalized gradient for locally Lipschitz functions, it is well
known that Clarke’s generalized gradient may be too large. Here the fact that
0 ∈ ∂f(0) for Warga’s function does not give much useful information on the func-
tion f . The element 0 is not really a critical point of the function f . On the
contrary, part (c) shows that, at least for Warga’s function, the gradients of the
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Figure 1. f(x1, x2) =
∣∣∣|x1| + x2

∣∣∣ + 1
2x1

( 3
2
, 1)(− 1

2
, 1)

( 3
2
,−1)(− 1

2
,−1)

( 1
2
, 0)

The set ∇fλ,µ(R2)

Lasry-Lions regularization capture all the useful “differential” information on the
function f .

Remark 2.2. Theorem 2.1(b) shows that the converse inclusion of Benoist [5, Théo-
rème 3] does not hold in general. The same implies that, in general, one cannot
remove the convexification in the left-hand side of Georgiev and Zlateva [18, The-
orem 5.1].

Remark 2.3. In view of part(c), we raise the following question: for every locally
Lipschitzian function f (possibly defined on a Hilbert space), does its Lasry-Lions
regularization give the smallest container, namely

graph(Λf) := lim inf
‖g−f‖∞→0,g of class C1

graph∇g = lim inf
λ,µ→0

graph(∇fλ,µ)?
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As pointed out above for Warga’s function, the answer to this question would be of
great importance in order to capture the useful differential information on a locally
Lipschitz function, between the (too large) Clarke generalized gradient on one side,
and the proximal and limiting gradients on the other side, which obviously miss
some good information before their convexification (as a mean value statement).

We now state our second main result, which is a more precise version of Theo-
rem B given in the Introduction and thus gives a positive answer to Question 1(b).
The local statement given below is important for applications where global esti-
mates may not be sufficient (see for example, Sections 3.4 and 3.5).

Theorem 2.2. Let Ω be an open subset of R
N and let f : Ω → R be a locally

Lipschitz function. Then, for every continuous function ε : Ω → R+ \ {0}, there
exists a function fε : Ω → R of class C∞ such that for every x ∈ Ω, we have

|fε(x) − f(x)| ≤ ε(x)(2.6)

and

∇fε(x) ∈ ∂f(B(x, ε(x)) ∩ Ω) + B(0, ε(x)),(2.7)

∂f(x) ⊂ ∇fε(B(x, ε(x)) ∩ Ω) + B(0, ε(x)).(2.8)

Theorem 2.2 is proved in Section 4. Moreover, in view of the following easy
corollary, Theorem B given in the Introduction is a consequence of Theorem 2.2.

Corollary 2.1. Under the assumptions of Theorem 2.2, taking ε to be constant,
then

‖fε − f‖∞ ≤ ε,

dHaus(graph∇fε, graph∂f) ≤ ε.

Remark 2.4. The sequence (fn)n∈N given by Theorem B clearly satisfies ∀x ∈
Ω, ∀ζ ∈ ∂f(x), ∃(xn)n∈N such that

∇f(xn) →n→∞ ζ.

2.3. Convergence of sets. First note that Theorem 2.1 provides a negative an-
swer to Question 2(a) in the Introduction, in dimension N ≥ 3, that we now
precisely state.

Proposition 2.1. Let M = epif and Mn = epifn, where f and (fn)n∈N are given
by Theorem 2.1. Then limn→+∞ dHaus(M, Mn) = 0 and

(
(0, 0, 0), (0, 0,−1)

)
∈ graphNC

M \ lim sup
n→+∞

graphNC
Mn

.

Remark 2.5. Thus, in general, one cannot convexify the left-hand side of Benoist [6,
Lemma 6.2], one cannot remove the convexification in the right-hand side of Cor-
net and Czarnecki [12, Lemma 4.1] and one cannot replace the left-hand side of
Jourani [20, Theorem 1.2] with Clarke’s normal cone.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4476 MARC-OLIVIER CZARNECKI AND LUDOVIC RIFFORD

We now state the consequence of Theorem 2.2 in terms of sets.

Theorem 2.3. Let M be a closed epi-Lipschitz subset of R
N and let ε : R

N →
R+ \ {0} be a continuous function. Then there exists a closed C∞ submanifold of
R

N with a boundary of full dimension M ′ such that, for every x ∈ M and x′ ∈ M ′,

x′ ∈ M + B (0, ε(x′)) ,(2.9)

x ∈ M ′ + B (0, ε(x)) ,(2.10)

NP
M ′(x′) ∩ SN−1 ⊂ NC

M (B(x′, ε(x′))) ∩ SN−1 + B (0, ε(x′)) ,(2.11)

NC
M (x) ∩ SN−1 ⊂ NP

M ′ (B(x, ε(x))) ∩ SN−1 + B (0, ε(x)) .(2.12)

Note that (2.9) to (2.12) can be equivalently reformulated as follows, up to a
change of ε:

NP
M ′(x′) ∩ B ⊂ NC

M (B(x′, ε(x′))) ∩ B + B (0, ε(x′)) ,

NC
M (x) ∩ B ⊂ NP

M ′ (B(x, ε(x))) ∩ B + B (0, ε(x)) .

Note that Theorem 2.3 holds true in the more general case where the space R
N

is replaced by an open subset Ω of R
N . Under this generalization, we have the

equivalence between the set and functional formulations.

Theorem 2.4. (Theorem 2.2) ⇔ (Theorem 2.3).

The proof of Theorem 2.3 is given in Section 5. In view of the following easy
corollary, Theorem C given in the Introduction is a consequence of Theorem 2.3.

Corollary 2.2. Under the assumptions of Theorem 2.3, taking ε to be constant,
then

dHaus(M
′, M) ≤ ε,

dHaus(graph(NP
M ′ ∩ S), graph(NC

M ∩ S)) ≤ ε.

Remark 2.6. The sequence (Mn)n∈N given by Theorem C is a smooth normal ap-
proximation of M in the sense of [12]. It thus enjoys additional properties; see [12,
Theorem 2.2].

Remark 2.7. Theorem C improves [12, Theorem 2.1], on the smooth normal ap-
proximation of epi-Lipschitz sets, by replacing the inclusion lim sup graph(NC

Mn
) ⊂

graph(NC
M ) by an equality, where M and Mn are defined in Theorem C. In fact,

by a careful reading of the proofs of [12] and also [11], one deduces that, in [12,
Theorem 2.1], lim sup graph(NC

Mn
) can be equal to the graph of a smaller cone,

namely graph(ÑM ), where ÑM is defined in Section 3.5. In view of the forth-
coming Proposition 3.4, the inclusion lim sup graph(NC

Mn
) ⊂ graph(NC

M ) in [12,
Theorem 2.1] may be strict.

Theorem 2.3 may clearly not hold for any choice of the sets M and M ′. How-
ever, if the set M is of positive reach, we have the following result, which specifies
Proposition B in the Introduction. Since the set M is of positive reach, the different
normal cones NP

M (·), NL
M (·) and NC

M (·) coincide.
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Proposition 2.2. Let M be a closed subset of R
N of positive reach, r ∈ R+ \

{0} such that r ≤ reach(M), and let M ′ be a closed subset of R
N . If ε :=

dHaus(M, M ′) < r
2 , then

(2.13) graph(NP
M ∩ SN−1) ⊂ graph(NP

M ′ ∩ SN−1) +

√
ε2 + 4εr

min{r/4, 1}B∞

in the space R
N × R

N .

Proposition 2.2 is proved in Section 5.3. It may clearly not be true if the set M
is not of positive reach; take for example, in R

2, M = epif with f(x) = x2 sin(1/x),
f(0) = 0.

2.4. The special cases of dimension 1 for functions and 2 for sets. Contrary
to what happens in dimension N ≥ 2, we can state the following result for functions
on the real line, which provides a positive answer to Question 1(a) in dimension 1.

Proposition 2.3. Let f : R → R be a locally Lipschitz function and let (fn)n∈N :
R → R be a sequence of locally Lipschitz functions epi-converging (or Γ-converging)
to f . Then

graph(∂f) ⊂ lim inf
n→+∞

graph(∂fn).

We now state the set version of Proposition 2.3, which extends Proposition B in
the Introduction to the case of Clarke’s normal cone in dimension 2.

Proposition 2.4. Let M be an epi-Lipschitz set in R
2 and let (Mn)n∈N be a se-

quence of epi-Lipschitz sets in R
2, such that M =lim supn→∞ Mn =lim infn→∞ Mn.

Then

graph(NC
M ) ⊂ lim inf

n→∞
graph(NC

Mn
).

Proposition 2.4 is proved in Section 7.6. In fact Proposition 2.3 is a consequence
of Darboux’s theorem, i.e., for every x, y in R, the set ∂f([x, y]) is a segment. It
can also be seen as a corollary of the following remarkable property.

Lemma 2.1. Let f : R → R be a locally Lipschitz function. Then for any (x, y) ∈
R × R,

∂f(x) = ∂P f(x) ∪ ∂Lf(x) = ∂Lf(x) ∪ ∂P f(x).

This lemma, which will be proved in Section 7.3, somehow provides a new vision
of the Clarke generalized gradient in dimension 1. It can also be stated for epi-
Lipschitz sets in dimension 2, a result which will easily imply Proposition 2.4.

Lemma 2.2. Let M be an epi-Lipschitz closed set in R
2. Then for any x ∈ M , we

have

NC
M (x) = NP

M (x) ∪ NL
R2\int M (x) = NL

M (x) ∪ NP
R2\int M (x).

We will prove Lemma 2.2 in Section 7.4.

3. Related results, remarks and consequences

This section is devoted to the presentation of related results (Propositions 3.1
and 3.2) which motivated our study and of some direct consequences of our results
(Corollaries 3.2 and 3.3, Proposition 3.4). Note that Propositions 3.1 and 3.2 are
used to prove the results of Section 2.4.
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3.1. Stability of normal cones. The next result, which yields Proposition B
in the Introduction, is a slight generalization of Lemma 6.2 from Benoist [6] (see
also Theorem 3 from Ioffe [19], Theorem 2.3 from Mordukhovich [27] and Theorem
P.3 from Kruger and Mordukhovich [21]). Jourani [20] extended the first part of
Proposition 3.1 to the Hilbert setting.

Proposition 3.1. Let M be a nonempty closed subset of R
N , and let (Mn)n∈N

be a sequence of closed subsets of R
N , such that M = lim supn→∞ Mn. Then the

following hold:

graph(NP
M ) ⊂ lim sup

n→∞
graph(NP

Mn
),(3.1)

graph(NL
M ) ⊂ lim sup

n→∞
graph(NP

Mn
) ⊂ lim sup

n→∞
graph(NL

Mn
).(3.2)

In addition if we assume that M = lim supn→∞ Mn = lim infn→∞ Mn, then

graph(NP
M ) ⊂ lim inf

n→∞
graph(NP

Mn
),(3.3)

graph(NL
M ) ⊂ lim inf

n→∞
graph(NP

Mn
) ⊂ lim inf

n→∞
graph(NL

Mn
).(3.4)

We give a short proof of Proposition 3.1 in Section 7.1. As we said in the
Introduction, in general it does not hold for Clarke normal cones. However, since all
the different normal cones coincide in the case of sets of positive reach, Proposition
3.1 can be stated for Clarke normal cones if the limit set M is assumed to be (locally)
of positive reach. As an immediate consequence, the following result illustrates what
can be done with Clarke’s normal cone.

Corollary 3.1. Let (Mn)n∈N be a sequence of closed subsets of R
N , and let M =

lim supn→∞ Mn. Then for every x ∈ M ,

NC
M (x) ⊂ cl

(
co lim sup

x′→x,n→∞
NL

Mn
(x′)

)
.

If we additionally assume that the set co lim supx′→x,n→∞ NL
Mn

(x′) is pointed, then
we can suppress “cl” in the above assertion, and in particular the set M is epi-
Lipschitz.

We refer to [12] for the proof of Corollary 3.1 and more details.

3.1.1. Remarks on Proposition 3.1.

Remark 3.1. The inclusion (3.1) may be strict. Consider Mn = R × R− ∪ R− ×
(0, 1/n] (n ≥ 1), M = R×R−, NP

M (0) = {0}×R+, lim supx′→0,n→∞ NP
Mn

(x′) = R
2
+.

Remark 3.2. The inclusion (3.1) may no longer be true if we replace the assumption
M = lim supMn by M = lim inf Mn. Consider M2n = R− × R, M2n+1 = R × R−,
M = R

2
−, NP

M (0) = R
2
+, lim supx′→0,n→∞ NP

Mn
(x′) = R+ × {0} ∪ {0} × R+.

Remark 3.3. The inclusion (3.3) may no longer be true if we only assume that
M = lim inf Mn, resp. M = lim sup Mn (without assuming M = lim sup Mn, resp.
M = lim inf Mn). Consider M = R

2
−, resp. M = R

2 \ intR
2
+, and the sequence

(Mn) defined in Remark 3.2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



APPROXIMATION AND REGULARIZATION OF LIPSCHITZ FUNCTIONS 4479

3.1.2. Remark on Corollary 3.1.

Remark 3.4. In Corollary 3.1, one cannot exchange the convexification and the
limsup operations, i.e., one cannot replace the set co lim supx′→x,n→∞ NL

Mn
(x′) by

the set lim supx′→x,n→∞ NC
Mn

(x′). When both M and Mn are epi-Lipschitz, see
Proposition 2.1. If either M or Mn is not epi-Lipschitz, then see the elementary
counterexamples below to the inclusion NC

M (x) ⊂ lim supx′→x,n→∞ NC
Mn

(x′).

Example 1. If M is not epi-Lipschitz, take Mn =
(
[1/n, +∞) × [1/n, +∞)

)
∪

(
(−∞,−1/n] × (−∞,−1/n]

)
(n ≥ 1), M = R

2
+ ∪ R

2
−. Then NM (0) = R

2 and

lim supx→0,n→∞ NMn
(x) = R

2
+ ∪ R

2
−.

Example 2. Consider M = {(x, y) ∈ R
2|y ≤ |x|}, Mn = {(x, y) ∈ R

2|y ≤ |x| +√
|x|/k. Then NM (0) = {(x, y) ∈ R

2|y ≥ |x|}, lim supx→0,n→∞ NMn
(x) = R =

R × {0}. In this case M is epi-Lipschitz, δ(M ∩ B(0, p), Mn ∩ B(0, p)) converges
to 0 for every p, but Mn is not epi-Lipschitz, and lim supx→0,n→∞ NMn

(x) is not
pointed.

3.2. Stability of subdifferentials. In terms of functions, Proposition 3.1 can be
interpreted as follows. ∂Df denotes the Dini-subgradient of f (see for example [9]).
Note that (3.7) corresponds to Lebourg [24].

Proposition 3.2. Let f : R
N → R be a lower semicontinuous function and let

(fn)n∈N be a sequence of lower semicontinuous functions from R
N into R which

epi-converges (or Γ-converges) to f . Then the following properties hold:

graph(∂P f) ⊂ lim inf
n→+∞

graph(∂P fn),(3.5)

graph(∂Lf) ⊂ lim inf
n→+∞

graph(∂P fn) ⊂ lim inf
n→+∞

graph(∂Lfn),(3.6)

graph(∂Df) ⊂ lim inf
n→+∞

graph(∂P fn) ⊂ lim inf
n→+∞

graph(∂Dfn).(3.7)

In fact, one easily sees that assertions (3.5), (3.6) and (3.7) are equivalent. The
short proof of Proposition 3.2 is given in Section 7.2. In view of Theorem 2.1, the
corresponding property does not hold for Clarke generalized gradients in the case
of locally Lipschitz functions.

3.3. The topological viewpoint. The regularization part of Proposition A in the
Introduction can be viewed as a density result: endow the space C1(Ω, R) with the
C1 pseudo-norm (‖f‖C1 := ‖f‖∞ + ‖∇f‖∞) Then

C1(Ω, R) = C∞(Ω, R)‖.‖C1 .

As we explained in the Introduction, we want to extend the result to the Lipschitzian
setting. The C1 pseudo-norm can be naturally extended into the Lip pseudo-
norm to the space Liploc(Ω, R) (‖f‖Lip := ‖f‖∞ + Lip(f), where Lip(f) is the
Lipschitz constant of f . In view of Rademacher’s theorem, which asserts that f is
differentiable almost everywhere in R

N , we have ‖f‖Lip = ‖f‖∞ + ‖∇f‖∞). But
one easily sees that the subspace C1(Ω, R) is closed for the corresponding topology
T ‖.‖Lip . For our purpose of approximating Lipschitz functions by C∞ functions,
the topology T ‖.‖Lip is too fine: for example, x �→ |x| and x �→ |x − v| are “far”,
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even for small v, since ‖ |.| − |. − v| ‖Lip ≥ 2. The next step is to introduce the
pseudo-distance dLip, defined by

dLip(f, g) := ‖f − g‖∞ + dHaus(graph(∂g), graph(∂g)),

and we obtain

Liploc(Ω, R) = C∞(Ω, R)dLip .

Note that

dLip(f, g) ≤ ‖f − g‖Lip,

hence T dLip ⊂ T ‖.‖Lip . Also, dLip cannot be induced by a norm (it could only be the
pseudo-norm ‖.‖Lip...), but it yields a structure of topological vector space (either
directly on Lipschitz functions, with a prescribed Lipschitz constant, or defining on
Liploc(Ω, R) the distance d(f, g) :=

∑
n∈N

1
2n min{1, dLip(f |Kn

, g|Kn
)}, where (Kn)

is a sequence of compact subsets of Ω such that Ω =
⋃

n∈N
Kn).

3.4. Quasi-smoothing of Lipschitz functions. The following result improves
the smoothing results of [15] and also [14, Theorem 4.1], [16, Chapitre 1, Lemma
4.2], [11, Lemma 4.2]. In particular some properties (see below) in the above
results were obtained in the special case where f = dM , the distance function to a
nonempty (and different from the whole space R

N ) set M , and also f = dM−dRN\M ,
the signed distance function to M . The proofs of these properties resulted from a
geometrical observation on the distance function ([16, Chapitre 1, Proposition 4.4]).
In the following results, these properties, stated in Proposition 3.3, are extended
to any locally Lipschitz function f : Ω → R. We recall that the smoothing results
mentioned above are the key tools for the approximation results developed in [12]
and [14] and also for the study of the existence of (generalized) equilibria developed
in [13] and [14]. The precision brought by Corollary 3.2 is exactly assertion (3.11).
Assertions (3.8), (3.9) and (3.10) are shown in [15] et al. with a convolution-type
argument.

Corollary 3.2. Let U be an open subset of R
N , let f : U → R be a locally Lipschitz

function, and let δ : U → R+ be a lower semicontinuous function. Then there is a
function fδ : U → R such that:

fδ is locally Lipschitz on U , and C∞ on {x ∈ U |δ(x) > 0},(3.8)

|fδ(x) − f(x)| ≤ δ(x), ∀x ∈ U,(3.9)

∂fδ(x) ⊂ ∂f
(
B(x, δ(x)) ∩ U

)
+ B(0, δ(x)), ∀x ∈ U,(3.10)

∂f(x) ⊂ ∂fδ

(
B(x, δ(x)) ∩ U

)
+ B(0, δ(x)), ∀x ∈ U.(3.11)

The proof of Corollary 3.2 is given in Section 8.1. The following property can
immediately be deduced from Corollary 3.2 (from assertions (3.10) and (3.11)).

Proposition 3.3. Under the assumptions of Corollary 3.2, let x ∈ U such that
δ(x) = 0. Then

∂fδ(x) = ∂f(x) if δ(x) = 0.

Moreover, if additionally δ ≤ dδ−1({0}) on a neighborhood of x, then

lim sup
x′→x,δ(x′)>0

∂fδ(x
′) = lim sup

x′→x,δ(x′)>0

∂f(x′).
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The first part was proved in the special cases f = ∆M , respectively f = dM , in
[16, Chapitre 1, Lemma 4.2], respectively [15], by using [16, Chapitre 1, Proposition
4.4]. The second part, shown for the distance function dM in [15] (again by using [16,
Chapitre 1, Proposition 4.4]) is a key tool for [14, Theorem 2.1 and Theorem 2.2].

3.5. Smooth normal approximation of proximally nondegenerate sets.
Before stating the result, we recall the essential definitions introduced in [14]. Let

M be a closed subset of R
N . For x ∈ M , the cone ÑM (x) is defined by

ÑM (x) =
⋃

λ≥0

λ lim sup
x′→x,dM (x′)>0

∂dM (x′).

The cone ÑM (x) contains the limiting normal cone NL
M (x) and is included in

Clarke’s normal cone NC
M (x). It may be nonconvex. The set M is said to be

proximally nondegenerate if

(3.12) 0 /∈ lim sup
x′→x,dM (x′)>0

∂dM (x′) for every x ∈ M.

Closed epi-Lipschitz sets and sets of positive reach are proximally nondegenerate.
The following result improves [14, Theorem 2.1], replacing an inclusion by an equal-
ity in assertion (cn).

Corollary 3.3. Let M be a compact proximally nondegenerate subset of R
N . Then

the set M admits a smooth normal approximation (Mn) in the sense that:

(i) for every n, Mn is a compact and smooth subset of R
N , i.e., is a closed

C∞ submanifold with a boundary of R
N of full dimension;

(ii) for every n, Mn+1 ⊂ Mn ⊂ B(M, 1), and M =
⋂

n∈N
Mn;

(ret) for every n, M is a deformation retract of Mn;

(cn) graph(ÑM ) = lim supn→∞ graph(NMn
).

The proof of Corollary 3.3 is given in Section 8.2.

3.6. Strict inclusion ÑM ⊂ NC
M . In [14], there is a simple example showing that

the cone ÑM may be strictly smaller than Clarke’s normal cone NC
M if the set M

is assumed to be proximally nondegenerate. It remained an open question in the
epi-Lipschitz case. The counterexample given in Theorem 2.1 shows that the cone

ÑM may be strictly smaller than Clarke’s normal cone NC
M even if the set M is

epi-Lipschitz.

Proposition 3.4. Let f : R
2 → R be defined by f(x1, x2) =

∣∣∣|x1|+x2

∣∣∣+ 1
2x1. Then

NC
epi f (0) =

⋃

λ≥0

λ∂f(0) × {−1}

=
⋃

λ≥0

λ

(
co

{(
3

2
, 1

)
,

(
−1

2
, 1

)
,

(
−1

2
,−1

)
,

(
3

2
,−1

)}
× {−1}

)
,

Ñepi f (0) =
⋃

λ≥0

λ

(
co

{(
1

2
, 0

)
,

(
3

2
, 1

)
,

(
−1

2
, 1

)}

∪co
{(

1

2
, 0

)
,

(
−1

2
,−1

)
,

(
3

2
,−1

)}
× {−1}

)
,

which is strictly smaller than Clarke’s cone NC
epi f (0).
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The computation of Clarke’s normal cone NC
epi f (0) amounts to the knowledge

of ∂f(0) and is straightforward. The remainder of the proof of Proposition 3.4 is
given in Section 8.3. As a consequence of Proposition 3.4, [14, Theorem 2.2] on the
existence of equilibria is strictly stronger than the previous results in the literature,
even in the epi-Lipschitz case. Also, it implies that Corollary 3.3 and Theorem 2.3
are not comparable.

4. Regularization of functions: Proof of Theorem 2.2

The main idea of the proof is the following. With traditional approximation
schemes, such as the convolution or the Lasry-Lions regularization, we may lose
some elements of the subdifferential ∂f as shown by Theorem 2.1. On the other
hand, two categories of functions do not have this drawback, namely the C1 func-
tions and the convex functions. If we were able to approach f by C1 functions
which keep all the values of the subdifferential ∂f , the proof of Theorem 2.2 would
be finished. In view of Attouch’s Theorem ([1] and [2] Theorem 3.66), if f is con-
vex and (fn) is a sequence of functions which Mosco converges to f (which here
amounts to the epi-convergence of (fn) to f), then graph∂f = lim inf graph∂fn =
lim sup graph∂fn. So the main idea of the proof of Theorem 2.2 is to locally replace
the function f by a convex5 function close to f , whose subdifferential has almost
the same values than ∂f . This is achieved by using the support function σK for K
close to ∂f in a neighborhood of a point x ∈ Ω.

The proof of Theorem 2.2 is organized as follows. In Section 4.1, we first prove
an easier version of Theorem 2.2 involving the proximal subgradient, which in par-
ticular gives Theorem 2.2 in the lower and upper C2 cases. In Section 4.2, in the
general case, we apply the idea that we just described to obtain a smooth approxi-
mation of f satisfying the conclusions of Theorem 2.2 in a neighborhood of a given
element x ∈ Ω. In Section 4.3, we put together the local approximations in order
to obtain a global upper C2 approximation. We finally conclude in Section 4.4.

4.1. Involving the P -subgradient (regularization in the lower and upper
C2 cases).

Proposition 4.1. Let Ω be an open subset of R
N . Let f : Ω → R be a locally

Lipschitz function. For every continuous function ε : Ω → R+ \ {0}, there exists a

function f̃ : Ω → R of class C∞ such that for every x ∈ Ω, we have

|f̃(x) − f(x)| ≤ ε(x),(4.1)

∇f̃(x) ⊂ ∂f(x + ε(x)B ∩ Ω) + ε(x)B,(4.2)

∂P f(x) ∪ ∂P f(x) ⊂ ∇f̃(x + ε(x)B ∩ Ω) + ε(x)B.(4.3)

Moreover, if the function f is convex, then the function f̃ can be taken to be convex
as well on a given compact subset of Ω and

(4.4) ∇f̃(x) ⊂ co∂f(x + αB).

Remark 4.1. Poliquin’s extension of Attouch’s theorem [29, Theorem 2.1] is not
of immediate help for the proof of Proposition 4.1, since [29] requires an equi-
semiconvexity (equi-primal lower nice) assumption on the approximation. This
could clearly not be satisfied in our case.

5Concave functions would of course do as well. The point is to eliminate the effect of the
saddle-type behavior such as the function defined in Theorem 2.1.
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4.1.1. Preliminary results. Before beginning the proof of Proposition 4.1, we need
some preliminary results.

Lemma 4.1. Let M and M ′ be two nonempty closed subsets of R
N . Let x ∈ M

and v ∈ R
N such that x ∈ projM (x + v). Then, for every x′ ∈ projM ′

(
x + v

2

)
,

(4.5) |x − x′|2 ≤ dHaus(M, M ′)2 + 4dHaus(M, M ′)|v|.
The majoration in (4.5) is sharp. For example, in R

2 take M = {(0, 0), (0, 1)},
M ′ = {(0,−1/4), (0, 3/4)}, x = (0, 0), v = (0, 1/2), x′ = (0, 3/4).

Proof of Lemma 4.1. Consider x′ ∈ projM ′(x + v
2 ). Set δ := dHaus(M, M ′). There

exists s′ ∈ M ′ such that |x − s′| ≤ δ. Hence we deduce

|x +
v

2
− x′| = dM ′

(
x +

v

2

)
≤ |x +

v

2
− s′|

≤ |x +
v

2
− x| + |x − s′|

≤ 1

2
|v| + δ.(4.6)

But we can compute

dM ′

(
x +

v

2

)2

= |x − x′|2 +
1

4
|v|2 + 〈v, x − x′〉.

This equality combined with (4.6) gives

(4.7) |x − x′|2 + 〈v, x − x′〉 ≤ δ2 + δ|v|.
On the other hand, there exists s ∈ M such that |x′ − s| ≤ δ. Thus the fact that
x ∈ projM (x + v) implies that

|v| = |x + v − x| = dM (x + v) ≤ |x + v − s| ≤ |x + v − x′| + |x′ − s|
≤ |x + v − x′| + δ.(4.8)

Assume now |v| ≥ δ. From (4.8), we deduce

(|v| − δ)2 ≤ |x − x′|2 + |v|2 + 2〈v, x − x′〉,
which implies

δ2 − 2δ|v| ≤ |x − x′|2 + 2〈v, x − x′〉.
Combined with (4.7), we deduce

|x − x′|2 ≤ δ2 + 4δ|v|.
Consider now the case |v| < δ. Since |x−x′| ≤ |x+ v

2 −x′|+ 1
2 |v|, then (4.6) implies

|x − x′|2 ≤ δ2 + 2δ|v| + |v|2.
Since |v| < δ, then |v|2 ≤ δ|v|, and from above |x − x′|2 ≤ δ2 + 3δ|v|, which
proves (4.5) as well. �

Lemma 4.2. For every continuous function ε : Ω → R+ \ {0}, there exists a
continuous map α : Ω → R+ \ {0} such that, for every x ∈ Ω, B(x, α(x)) ⊂ Ω and

co∂f(x + α(x)B) ⊂ ∂f(B(x, ε(x)) ∩ Ω) + B(0, ε(x)).(4.9)
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Proof of Lemma 4.2. Since the multivalued map x �→ ∂f(x) is upper semicontin-
uous on Ω, for every x ∈ Ω there exists αx ∈ (0, ε(x)) such that B(x, αx) ⊂ Ω
and

∀y ∈ B(x, αx), ∂f(y) ⊂ ∂f(x) +
ε(x)

2
B.

Since the right-hand side of the inclusion above is convex, we can deduce that

co∂f(y + αxB) ⊂ ∂f(x) +
ε(x)

2
B.(4.10)

Furthermore by continuity of ε(·), for every x ∈ Ω there exists a constant βx ∈
(0, αx) such that

y ∈ B(x, βx) =⇒ ε(y) ≤ 2ε(x).(4.11)

The family (B(x, βx

2 ))x∈Ω is an open covering of Ω, thus it admits a locally finite

refinement (B(y,
βy

2 ))y∈Y , where Y is a countable subset of Ω, and associate with it
a subordinated C∞ partition of unity (λy)y∈Y . Define the function α : Ω �→ (0,∞)
by

α(x) :=
1

2

∑

y∈Y

λy(x)βy, ∀x ∈ Ω.

Let us now prove that (4.9) is satisfied. Fix x ∈ Ω. By definition of α(x) there
exists y ∈ Y such that

α(x) ≤ βy

2
and x ∈ B

(
y,

βy

2

)
.(4.12)

Thus we deduce that

∂f(x + α(x)B) ⊂ ∂f

(
y +

(
βy

2
+ α(x)

)
B

)
⊂ ∂f(y + βyB).

Hence by (4.10) and since βy < αy, this implies

co [∂f(x + α(x)B)] ⊂ ∂f(y) +
ε(y)

2
B

⊂ ∂f(x +
βy

2
B) +

ε(y)

2
B (by (4.12))

⊂ ∂f(x + ε(x)B) + ε(x)B (by (4.11)).

The proof is complete. �

4.1.2. Proof of Proposition 4.1. For every x ∈ Ω, we set

δ(x) := min
{1

2
d(RN \ Ω, x), 1

}
.

Since the set Ω is open, then δ(x) > 0 and clearly B(x, δ(x)) ⊂ Ω. Furthermore, for
every x ∈ Ω the function f is globally Lipschitz on the compact ball B(x, δ(x)). Let
us denote by Lf

x the Lipschitz constant of f on this ball, i.e., there is no constant
L < Lf

x such that f is L-Lipschitz on B(x, δ(x)). The function x �→ Lf
x may

not be continuous, but by construction it is locally bounded. Thus there exists
a continuous function Lip(f, ·) : Ω → [1, +∞) such that for every x ∈ Ω, Lf

x ≤
Lip(f, x) and hence such that

for every x′, x′′ in B(x, δ(x)), |f(x′) − f(x′′)| ≤ Lip(f, x)|x′ − x′′|.
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In order to obtain a C∞ approximation, we shall use a classical convolution ar-
gument rather than a Lasry-Lions regularization. By Lemma 4.2, there exists a
function α : Ω → R+ \ {0} such that, for every x ∈ Ω,

co∂f(x + α(x)B) ⊂ ∂f(B(x, ε(x)) ∩ Ω) + B

(
0,

ε(x)

2

)
.(4.13)

For every x ∈ Ω, we set

(4.14) δ1(x) :=
1

9Lip(f, x)
min

{
δ(x)2,

ε(x)2

Lip(f, x)4

}
.

As an immediate consequence of [11, Lemma 4.3], there exists a function ρ : Ω →
R+ \ {0} of class C∞ such that for every x ∈ Ω,

ρ(x) ≤ min

{
δ(x), α(x),

ε(x)

Lip(f, x)
,
min{δ1(x

′), x′ ∈ B(x, δ(x))}
Lip(f, x)

}
,(4.15)

|∇ρ(x)| ≤ ε(x)

2Lip(f, x)
.(4.16)

Note that if we only want an approximation of f on a compact subset of Ω, we can
take ρ to be constant. We define the function f̃ : R

N → R by

f̃(x) :=

∫

B

θ(t)f(x − ρ(x)t)dt, ∀x ∈ R
N ,

where θ is a mollifier.6 The function f̃ is of class C∞, and it satisfies

f̃(x) − f(x) =

∫

B

θ(t)f(x − ρ(x)t) − f(x)dt.

Since ρ(x) ≤ δ(x), then x − ρ(x)t ∈ B(x, δ(x)) for every t ∈ B. Since the function
f is Lf

x-Lipschitz on B(x, δ(x)), |f(x − ρ(x)t) − f(x)| ≤ Lf
xρ(x)|t|. Hence

(4.17) |f̃(x) − f(x)| ≤ Lf
xρ(x) ≤ ε(x)

and (4.1) is satisfied. From Rademacher’s Theorem [32], since f is locally Lipschitz,
it is differentiable almost everywhere in R

N , and for every point x where it is
differentiable, we have

∇f(x) ⊂ ∂f(x).(4.18)

On the other hand, since the function f is locally Lipschitz and the function ρ is of
class C1, from Lebesgue’s Theorem we deduce that for every x ∈ R

N ,

∇f̃(x) =

∫

B

θ(t)∇xf(x − ρ(x)t)dt

=

∫

B

θ(t)
(
∇f(x − ρ(x)t) − 〈∇f(x − ρ(x)t), t〉∇ρ(x)

)
dt.(4.19)

For every t ∈ B, since the function f is Lf
x-Lipschitz on B(x, δ(x)) and x− ρ(x)t ∈

B(x, δ(x)), |∇f(x − ρ(x)t)| ≤ Lf
x for a.e. t, and we deduce from (4.18) and (4.19)

(4.20) ∇f̃(x) ⊂ co(∂f(x + ρ(x)B)) + B(0, Lf
x|∇ρ(x)|).

6I.e., θ : R
N → R is a C∞ function satisfying the following three conditions: (i) for all

x ∈ R
N , θ(x) ≥ 0, (ii) suppθ ⊂ B, and (iii)

∫
RN θ(t)dt = 1.
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Since ρ(x) ≤ α(x) and |∇ρ(x)| ≤ ε(x)
2Lip(f,x) , in view of (4.13), we obtain

∇f̃(x) ⊂ ∂f(B(x, ε(x)) ∩ Ω) + B(0, ε(x)),

and the assertion (4.2) is satisfied. Let us now prove the property (4.3). Consider
x ∈ Ω and ζ ∈ ∂P f(x). Then

ζ ∈ ∂P f(x) ⇐⇒ (ζ,−1) ∈ NP
epi (f)(x, f(x)).

In order to apply Lemma 4.1 to the sets

M := epif ∩ B

(
x,

δ(x)

2

)
× R,

M ′ := epi f̃ ∩ B

(
x,

δ(x)

2

)
× R,

we first claim
dHaus(M, M ′) ≤ δ1(x).

Indeed, if (x1, y1) ∈ M , then in view of (4.17), y1 ≥ f(x1) ≥ f̃(x1) − Lf
x1

ρ(x1).

Since (x1, y1 + Lf
x1

ρ(x1)) ∈ M ′, we have dM ′(x1, y1) ≤ Lf
x1

ρ(x1). If (x1, y1) ∈ M ′,
we also get dM (x1, y1) ≤ Lf

x1
ρ(x1). We obtain the bound on dHaus(M, M ′) by

showing

(4.21) ∀x1 ∈ B

(
x,

δ(x)

2

)
, Lf

x1
ρ(x1) ≤ δ1(x).

Indeed, since x1 ∈ B(x, δ(x)
2 ), we have B(x1, δ(x)) ⊂ B(x, 2δ(x)) ⊂ Ω, and hence

d(RN \ Ω, x1) ≥ δ(x) and δ(x1) ≥ δ(x)
2 . In particular, x ∈ B(x1, δ(x1)). In view

of (4.15), we deduce Lf
x1

ρ(x1) ≤ δ1(x). Note also that

(x, f(x)) ∈ projM ((x, f(x)) + (ζ,−1)) .

Take (x′, y′) ∈ projM ′

(
(x, f(x)) + 1

2 (ζ,−1)
)
. From Lemma 4.1

|(x, f(x)) − (x′, y′)| ≤ (δ1(x)2 + 4δ1(x)
√
|ζ|2 + 1)1/2.

Since ζ ∈ ∂f(x), |ζ| ≤ Lf
x ≤ Lip(f, x). Recalling that 1 ≤ Lip(f, x) and noting

that δ1(x) ≤ 1, we have
(
δ1(x)2 + 4δ1(x)

√
|ζ|2 + 1

)1/2

≤
(
(1 + 4

√
2)Lip(f, x)δ1(x)

)1/2

≤ min

{
δ(x),

ε(x)

Lip(f, x)2

}
,

hence

|(x, f(x)) − (x′, y′)| ≤ min

{
δ(x),

ε(x)

Lip(f, x)2

}
.

Since |x′−x| < δ(x), then (x′, y′) ∈ epi f̃ . On the other hand, (x, f(x))+ 1
2 (ζ,−1)−

(x′, y′) ∈ NP
M (x′, y′), hence (x′, y′) ∈ bdepi f̃ , i.e., y′ = f(x′). We thus deduce

(ζ ′,−1) :=

(
x − x′ + 1

2ζ
1
2 − f(x) + f̃(x′)

,−1

)
∈ NP

epi f̃
(x′, f(x′)),

which implies ζ ′ = ∇f̃(x′) since f̃ is of class C1. Since |x′ − x| < ε(x)
Lip(f,x)2 and

in view of (4.17), we have |f(x) − f̃(x′)| ≤ |f(x) − f(x′)| + |f(x′) − f̃(x′)| ≤
Lf

x
ε(x)

Lip(f,x)2 + Lf
x′ρ(x′). In view of (4.21), Lf

x′ρ(x′) ≤ δ1(x) ≤ ε(x)
Lip(f,x) , assuming
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without any loss of generality that ε ≤ 1. Hence |f(x) − f̃(x′)| ≤ 2 ε(x)
Lip(f,x) ≤ 1

4

(assuming without any loss of generality Lip(f, x) ≥ 8ε(x)).

|ζ ′ − ζ| =
|x − x′ − ζ(−f(x) + f̃(x′))|

1
2 − f(x) + f̃(x′)|

≤ 1

4
(|x − x′| + |ζ||f̃(x′) − f(x)|)

≤ 1

4

(
ε(x)

Lip(f, x)2
+ 2Lf

x

ε(x)

Lip(f, x)

)

≤ ε(x).

Since additionally |x′ − x| < ε(x), and recalling ζ ′ = ∇f̃(x′), we conclude that

ζ ∈ ∇f̃(x + ε(x)B) + ε(x)B. Hence ∂P f(x) ⊂ ∇f̃(x + ε(x)B ∩ Ω) + ε(x)B. By

considering the hypographs of f and f̃ for vectors in ∂P f(x), we obtain ∂P f(x) ⊂
∇f̃(x + ε(x)B ∩ Ω) + ε(x)B, which gives (4.3). �

Remark 4.2. Note that if ρ is constant and if f is convex, the function f̃ is also
convex on R

N . As a matter of fact, in this case we can verify that for any x, y ∈ R
N

and λ ∈ [0, 1],

f̃(λx + (1 − λ)y) =

∫

B

θ(t)f(λx + (1 − λ)y − ρt)dt

≤
∫

B

θ(t)
(
λf(x − ρt) + (1 − λ)f(y − ρt)

)
dt

≤ λf̃(x) + (1 − λ)f̃(y).

Since in this case ∇ρ = 0, we obtain (4.4) from (4.20).

4.2. Local approximation.

Lemma 4.3. Let Ω be an open subset of R
N , let f : Ω → R be a locally Lipschitz

function, and let Let x ∈ Ω and ε > 0 such that B(x, ε) ⊂ Ω. Denote by L the
Lipschitz constant of f on the set B(x, ε). For every α > 0, there exists a function
g̃ : B(x, ε) → R of class C∞ such that, for every x ∈ B(x, ε),

g̃(x) ≥ f(x) + ε|x − x| − α,(4.22)

g̃(x) ≤ f(x) + (2L + ε)|x − x| + α,(4.23)

∇g̃(x) ∈ ∂f(x + εB) + εB,(4.24)

∂f(x) + εB ⊂ ∇g̃(x + αB) + αB.(4.25)

Proof of Lemma 4.3. Set

K := ∂f(x + εB) + εB

and define the function g : R
N �→ R by, for every x ∈ R

N ,

(4.26) g(x) := f(x) + σK(x − x),

where σK is the support function of the convex set K, precisely defined by

σK(x) := max{〈x, p〉 : p ∈ K}.
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We now claim that the function g is convex and satisfies, for every x ∈ R
N ,

g(x) ≥ f(x) + ε|x − x|,(4.27)

g(x) ≤ f(x) + (2L + ε)|x − x|,(4.28)

∂g(x) ⊂ K,(4.29)

∂g(x) = K.(4.30)

Indeed, the convexity of g, and assertions (4.29) and (4.30) are direct consequences
of the properties of the support function σK of the convex set K.7 �

Lemma 4.4. For any q ∈ R
N , ∂σK(q) ⊂ K and in particular, ∂σK(0) = K.

Let us now prove (4.27) and (4.28). Let x ∈ B(x, ε), we can compute

g(x) − f(x) = f(x) − f(x) + σK(x − x)

= 〈ζ, x − x〉 + σK(x − x),(4.31)

for some ζ ∈ ∂f(z) and z ∈ [x, x], in view of Lebourg’s theorem (see for example
[8]). Since [x, x] ⊂ x + εB, we have ζ ∈ ∂f(x + εB) and we deduce

ζ + ε
x − x

|x − x| ∈ ∂f(x + εB) + εB = K.

From the definition of σK , we have σK(x−x) ≥ 〈x−x, ζ +ε x−x
|x−x| 〉, and then (4.31)

implies

g(x) − f(x) ≥ 〈ζ, x − x〉 + 〈ζ + ε
x − x

|x − x| , x − x〉 = ε|x − x|,(4.32)

which proves (4.27). In view of Cauchy-Schwarz inequality

σK(x − x) ≤ max
k∈K

|k||x − x|.

Since K = ∂f(x+εB)+εB and since f is L-Lipschitz on the set B(x, ε), we deduce
that

σK(x − x) ≤ (L + ε)|x − x|.
From (4.26), and since f(x) ≤ f(x) + L|x − x|, we obtain

g(x) ≤ f(x) + (2L + ε)|x − x|,(4.33)

which proves (4.28). In view of Proposition 4.1, we can regularize the convex
function g and obtain a smooth function g̃ : B(x, ε) → R such that for every
x ∈ B(x, ε),

|g̃(x) − g(x)| ≤ α,(4.34)

∇g̃(x) ⊂ co∂g(x + αB),(4.35)

∂g(x) ⊂ ∇g̃(x + αB) + αB.(4.36)

By definition, the function g̃ is of class C∞. Assertions (4.22) and (4.23) are
immediate consequences of (4.27) and (4.28) combined with (4.34). Let us now
verify the properties concerning the gradients. Since ∇g̃(x) ∈ co∂g(x + αB) and
∂g(x) ⊂ K, we obtain ∇g̃(x) ∈ ∂f(x+εB)+εB, which proves the inclusion (4.24).
Since ∂f(x) ⊂ K, K = ∂g(x), and ∂g(x) ⊂ ∇g̃(x + αB) + αB, we deduce (4.25).

7 We refer to [4] for the following lemma.
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4.3. Global upper C2 approximation. In this section, we complete the proof
of Theorem 2.2. Recall that f : Ω → R is a locally Lipschitz function and ε : Ω →
R+ \ {0} is a continuous function. We shall construct an upper C2 approximation
of f on the whole set Ω by combining together the local approximations given by
the previous section. So we first need to define the points around which we will
consider local approximations (given by Lemma 4.3), and the associated constants
(named ε and α in Lemma 4.3). For every x ∈ Ω, we set

δ(x) := min
{1

2
d(RN \ Ω, x), 1

}
.

Since the set Ω is open, then δ(x) > 0 and clearly B(x, δ(x)) ⊂ Ω. We recall (see
the proof of Proposition 4.1) that there exists a continuous function Lip(f, ·) : Ω →
[1, +∞) such that for every x ∈ Ω, f is Lip(f, x)-Lipschitz on B(x, δ(x)). For every
x ∈ Ω, we set

ε1(x) := min
{1

2
min{ε(x′), x′ ∈ B(x, δ(x))}, δ(x)

}
,(4.37)

ε2(x) := min{ε1(x
′), x′ ∈ B(x, δ(x))}.(4.38)

Since the functions x �→ ε(x) and x �→ δ(x) are continuous, so are the functions
x �→ ε1(x) and x �→ ε2(x). Moreover as an immediate consequence of [11, Lemma
4.3], there exists a function ρ : Ω → R+ \{0} of class C∞ such that for every x ∈ Ω,

ρ(x) ≤ min

{
δ(x)

3
,

ε2(x)

24Lip(f, x)

}
,(4.39)

|∇ρ(x)| ≤ 1

4
.(4.40)

Since the function ρ has positive values, the family (B(x, ρ2(x)))x∈Ω is an open
covering of Ω. Thus it admits a locally finite refinement (B(y, ρ2(y)))y∈Y . Precisely,
there exists a locally finite set Y ⊂ Ω such that

Ω ⊂
⋃

y∈Y

B
(
y, ρ2(y)

)
.

By construction of the function ρ, for every y ∈ Ω the ball B(y, 3ρ(y)) is included
in Ω. Hence we can define for every y ∈ Y , the set Z(y) by

Z(y) := {y′ ∈ Y, y′ ∈ B(y, 3ρ(y)) and y′ �= y}.
Since the set Y is locally finite and since, for every y ∈ Y , the set B(y, 3ρ(y)) is
compact and the set Z(y) is finite. For every y ∈ Y , we define8

(4.41) αy := ε2(y). min
{min{ρ(y′), y′ ∈ Z(y) ∪ {y}}

16
,
min{|y − y′|, y′ ∈ Z(y)}

6Lip(f, y) + 4

}
.

For every y ∈ Y , note that by construction, αy > 0, ε1(y) > 0, B(y, ε1(y)) ⊂
B(y, δ(y)) ⊂ Ω. We apply Lemma 4.3 with the function f and with the con-
stants ε = ε1(y) and α = αy. Thus for every y ∈ Y , we obtain a function
g̃y : B(y, ε1(y)) → R which is of class C∞ on B(y, ε1(y)) and such that (4.27)-
(4.30) are satisfied. For every x ∈ Ω, since ε2(x) ≤ ε1(x) and 1 ≤ Lip(f, x), and
from the definition of the function ρ, we have

ρ(x) ≤ ε1(x).

8We take the convention min ∅ = +∞. But in view of the forthcoming Lemma 4.6, of (4.3),
and since ρ(y)2 < ρ(y), we can deduce that Z(y) = ∅.
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Hence, for every y ∈ Y , the function g̃y is defined on B(y, ρ(y)). Besides, note that
since ρ2 ≤ ρ ≤ 1, the family (B(y, ρ(y))y∈Y defines an open covering of Ω. Hence
we can define on Ω the map h : Ω → R by

h(x) := inf{g̃y(x), y ∈ Y such that x ∈ B(y, ρ(y))}.
Lemma 4.5. The function h is locally a minimum of a finite number of functions
of class C∞, hence locally Lipschitz and upper C2, and it satisfies for every x ∈ Ω,

|f(x) − h(x)| ≤ ε(x),(4.42)

and

∂h(x) ∈ co∂f(x + ε(x)B ∩ Ω) + ε(x)B,(4.43)

∂f(x) ⊂ ∂h(x + ε(x)B ∩ Ω) + ε(x)B.(4.44)

Proof of Lemma 4.5. Let us prove that the function h is locally a minimum of a
finite number of functions of class C∞. In order to do that, we first compare g̃y(x)
and g̃y′(x) for x ∈ Ω, y �= y′ in Y such that x ∈ B(y, ρ(y)) ∩ B(y′, ρ(y′)). From
Lemma 4.3, we write

g̃y′(x) − g̃y(x) ≥ ε1(y
′)|x − y′| − (2Lip(f, y) + ε1(y))|x − y| − αy − αy′ .

Since ε1(y) ≤ 1 ≤ Lip(f, y), we deduce

(4.45) g̃y′(x) − g̃y(x) ≥ ε1(y
′)|x − y′| − 3Lip(f, y)|x − y| − αy − αy′ .

For every x ∈ Ω, set

I(x) :=
{

y ∈ Y, x ∈ B
(
y,

ρ(y)

2

)}
and J(x) :=

{
y ∈ Y, x ∈ B

(
y,

2ρ(y)

3

)}
.

We claim that the sets I(x) and J(x) are finite. Indeed, let us first prove the
inclusions

(4.46) I(x) ⊂ J(x) ⊂ {y ∈ Y, x ∈ B(y, ρ(y))} ⊂ {y ∈ Y, y ∈ B(x, δ(x))}.
The first two inclusions are immediate. Consider now y ∈ Y such that x ∈
B(y, ρ(y)). From (4.39), ρ(y) ≤ δ(y), hence x ∈ B(y, δ(y)). From (4.38) and (4.37),
we deduce ε2(y) ≤ ε1(x) ≤ δ(x). Hence by (4.39) this implies

ρ(y) ≤ ε2(y)

24Lip(f, y)
≤ ε1(x) ≤ δ(x).

In conclusion we deduce

y ∈ B(x, δ(x))

which proves the last inclusion. Since the covering (B(y, ρ2(y)))y∈Y is locally finite

and since the set B(x, δ(x)) is a compact subset of Ω, the set

{y ∈ Y, B(x, δ(x)) ∩ B(y, ρ2(y)) �= ∅}
is finite and nonempty. Moreover, this set contains the set {y ∈ Y, y ∈ B(x, δ(x))}.
In view of (4.46), we conclude that the sets I(x) and J(x) are finite.

We now claim the following properties on the function h:

h(x) = min{g̃y(x), y ∈ I(x)}, ∀x ∈ Ω,(4.47)

h(x′) = min{g̃y(x′), y ∈ J(x)}, ∀x ∈ Ω, ∀x′ ∈ B(x,
ρ(x)

8
),(4.48)

h(x) = g̃y(x), ∀y ∈ Y,∀x ∈ B(y, αy).(4.49)
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Let us first prove the first equation. If y′ ∈ Y \ I(x) (i.e., x /∈ B(y′, ρ(y′)
2 )) and

x ∈ B(y′, ρ(y′)), take y ∈ Y such that x ∈ B(y, ρ(y)2). From (4.45) we have

g̃y′(x) − g̃y(x) ≥ ε1(y
′)

ρ(y′)
2

− 3Lip(f, y)ρ(y)2 − αy − αy′ .

�

Lemma 4.6. Let y and y′ be in Y such that B(y, ρ(y)) ∩ B(y′, ρ(y′)) �= ∅. Then

1

2
ρ(y) ≤ ρ(y′) and y′ ∈ B(y, 3ρ(y)).

Proof of Lemma 4.6. If ρ(y) ≤ ρ(y′), the result is clear. If ρ(y′) < ρ(y), since
B(y, ρ(y)) ∩ B(y′, ρ(y′)) �= ∅, we have |y − y′| ≤ ρ(y) + ρ(y′) < 2ρ(y). From the
mean-value theorem, we deduce

ρ(y) − ρ(y′) ≤ sup{|∇ρ(z)|, z ∈ B(y, 2ρ(y))}.2ρ(y).

From (4.40), |∇ρ| ≤ 1
4 , hence ρ(y) − ρ(y′) ≤ 1

2ρ(y), hence

1

2
ρ(y) ≤ ρ(y′). �

We now return to the proof of Lemma 4.5. Since B(y, ρ(y)) ∩ B(y′, ρ(y′)) �= ∅,
from Lemma 4.6, 1

2ρ(y) ≤ ρ(y′) and we deduce

g̃y′(x) − g̃y(x) ≥ ε1(y
′)

ρ(y)

4
− 3Lip(f, y)ρ(y)2 − αy − αy′ .

From Lemma 4.6, y′ ∈ B(y, 3ρ(y)). In view of (4.39) ρ(y) ≤ δ(y)
3 , hence y′ ∈

B(y, δ(y)). Hence, from (4.37), ε2(y) ≤ ε1(y
′). Since from (4.39), ρ(y) ≤ ε2(y)

32Lip(f,y) ,

we have, ρ(y) ≤ ε1(y
′)

24Lip(f,y) . Hence

g̃y′(x) − g̃y(x) ≥ ρ(y)

8

(
ε1(y

′) − 24Lip(f, y)ρ(y)
)

+ ε1(y
′)

ρ(y)

8
− αy − αy′

≥ ε1(y
′)

ρ(y)

8
− αy − αy′ .(4.50)

From (4.41), since ε2(y) ≤ ε1(y
′) and clearly y ∈ Z(y) ∩ {y}, we deduce

αy ≤ ε1(y
′)

ρ(y)

16
.

From Lemma 4.6, y ∈ B(y′, 3ρ(y′)), hence y ∈ Z(y′) ∩ {y′}. Hence from (4.41),
since clearly ε2(y

′) ≤ ε1(y
′), we deduce

αy′ ≤ ε1(y
′)

ρ(y)

16
.

In view of (4.50), we deduce

g̃y′(x) − g̃y(x) ≥ 0,

which ends the proof of the first equation.

We now prove the second equation. Let x′ ∈ B(x, ρ(x)
8 ), and let y ∈ I(x′). Then

|x′ − y| ≤ ρ(y)
2 and |x − y| < ρ(x)

8 , hence

(4.51) |x − y| ≤ ρ(y)

2
+

ρ(x)

8
.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4492 MARC-OLIVIER CZARNECKI AND LUDOVIC RIFFORD

We distinguish the two cases ρ(x) ≤ ρ(y) and ρ(x) > ρ(y). If ρ(x) ≤ ρ(y), then
from (4.51), |x − y| ≤ 5

8ρ(y) ≤ 2
3ρ(y), hence y ∈ J(x). If ρ(x) > ρ(y), then

|x − y| < 5
8ρ(x). From (4.40), |∇ρ| ≤ 1

4 , hence from the mean-value theorem, we

deduce ρ(x) − ρ(y) ≤ 1
4 |x − y| ≤ 5

16ρ(x). Hence

9

16
ρ(x) ≤ ρ(y).

Then from (4.51), |x − y| ≤ 73
128ρ(y) ≤ 2

3ρ(y), hence y ∈ J(x). We proved the
inclusion I(x′) ⊂ J(x), which clearly implies the second equation.

For the third equation, take y ∈ Y , x ∈ B(y, αy) and y′ �= y. From (4.45),

g̃y′(x) − g̃y(x) ≥ ε1(y
′)|y − y′| − (3Lip(f, y) + ε1(y

′))|x − y| − αy − αy′

≥ ε1(y
′)|y − y′| − (3Lip(f, y) + 2)αy − αy′ ,(4.52)

recalling that ε1(y
′) ≤ 1. From Lemma 4.6, y′ ∈ B(y, 3ρ(y)) and y ∈ B(y′, 3ρ(y′)),

hence y′ ∈ Z(y) and y ∈ Z(y′). From (4.41), since ε2(y) ≤ ε1(y
′), we deduce

αy ≤ ε1(y
′)

|y − y′|
6Lip(f, y) + 4

.

Again from (4.41), since y ∈ Z(y′) and clearly ε2(y
′) ≤ ε1(y

′), we deduce

αy′ ≤ ε1(y
′)

|y − y′|
6Lip(f, y′) + 4

≤ ε1(y
′)
|y − y′|

2
.

In view of (4.52), we deduce

g̃y′(x) − g̃y(x) ≥ ε1(y
′)|y − y′|

(
1 − 1

2
− 1

2

)
≥ 0,

which ends the proof of the third equation.
Let us now verify the conclusions of Lemma 4.5. From (4.47), the function h is

locally a minimum of a finite number of functions of class C∞. For every x ∈ Ω,
from the definition of the function h, there exists y ∈ Y such that x ∈ B(y, ρ(y))
and h(x) = g̃y(x). On the other hand, by Lemma 4.3 we have

f(x) + ε1(y)|x − y| − αy ≤ g̃y(x) ≤ f(x) + (2Lip(f, y) + ε1(y))|x − y| + αy.

From (4.41), and since clearly y ∈ Z(y) ∪ {y}, we obtain

αy ≤ ε1(y)
ρ(y)

16
≤ ε1(y)

16
.

In addition, (4.39) yields

ρ(y) ≤ ε1(y)

24Lip(f, y)
.

Since |x − y| < ρ(y) and h(x) = g̃y(x), we deduce

f(x) − ε1(y) ≤ h(x) ≤ f(x) + ε1(y).

Recall that x ∈ B(y, ρ(y)) implies x ∈ B(y, δ(y)). Hence we obtain ε1(y) ≤ ε(x)
2

which implies (4.42). Since the function h is locally a minimum of a finite number
of C∞ functions g̃y, one elementarily shows (see for example [9, ex. 11.17, p. 48,
ex. 4.6, p. 83])

(4.53) ∂P h(x) = ∂h(x) = co
⋃

y∈Y,g̃y(x)=h(x)

{∇g̃y(x)}.
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By (4.48) we can write,

∂h(x) ⊂ co
⋃

y∈J(x)

{∇g̃y(x)} ⊂ co
⋃

y∈J(x)

∂f(y + ε1(y)B) + ε1(y)B.

Since ρ(y) ≤ ε1(y) ≤ ε(x)
2 , we deduce that y + ε1(y)B ⊂ B(x, ε(x)), hence

∂h(x) ⊂ co∂f(x + ε(x)B) + ε(x)B,

which proves (4.43).
Let us now prove (4.44). Consider x ∈ Ω and y ∈ Y such that x ∈ B(y, ρ(y)2).

From Lemma 4.3, ∂f(x) ⊂ ∇g̃y(y + αyB) + αyB. But from (4.49), for every
x′ ∈ B(y, αy), ∇h(x′) = ∇g̃y(x′). Hence

∂f(x) ⊂ ∇h(y + αyB) + αyB.

Since ρ(y)2 ≤ ρ(y)δ(y) ≤ 1 we have x ∈ B(y, δ(y)), hence ε1(y) ≤ ε(x). In

addition, from (4.41), αy ≤ ε2(y)
16 , and it is easy to verify that αy ≤ ε(x) and

y+αyB ⊂ x+ε(x)B. In conclusion, for every x ∈ Ω, ∂f(x) ⊂ ∂h(x+ε(x)B)+ε(x)B,
and (4.44) is proved. �

4.4. Conclusion. We now apply Proposition 4.1 to the map h defined in the pre-
vious section, and we obtain a function fε : Ω → R of class C∞ such that for every
x ∈ Ω

|fε(x) − h(x)| ≤ ε(x),

∇fε(x) ⊂ ∂h(x + ε(x)B ∩ Ω) + ε(x)B,

∂P h(x) ⊂ ∇fε(x + ε(x)B ∩ Ω) + ε(x)B.

From (4.53), ∂h(x) = ∂P h(x). In view of Lemma 4.5, and assuming without any
loss of generality that we considered the function ε/2 instead of the function ε, the
function fε satisfies the conclusions of Theorem 2.2.

5. Convergence of sets: Proof of Theorem 2.3 and Proposition 2.2

Going from the functional point of view to the set point of view should be
quite straightforward, but it usually proves longer than first expected. In our case,
epi-Lipschitz sets can be locally written, up to an isometry, as the epigraph of
a Lipschitz function, to which the previous regularization (Theorem 2.2) can be
applied. This is the scheme of our proof, and the difficulty lies mainly in gluing
together the regularizated like we do, but so introducuing an obnoxious step (related
to (5.11) below). Also, one can work more accurately, using Corollary 3.2, but thus
obtaining only a C1 approximation to be regularized itself. A tempting approach
is to use a representation of the set M , for example the distance function dM or
the signed distance function, and to regularize it with Theorem 2.2. But through
this approach, one is not able to retrieve information on the precise location of
the gradients of the regularized representation. At present, this point prevents
us from obtaining Theorem 2.2 for a wider class of sets (for example proximally
nondegenerate sets). Also, proving Theorem 2.3 without using functions by copying
the technique of the proof of Theorem 2.2 would quite surely amount to a much
longer proof.
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5.1. Local representations and their approximations. For every x ∈ R
N , we

set

(5.1) ε′(x) :=
1

3
min

{
min

{
ε(x′), x′ ∈ B(x, 1)

}
, 1

}
.

Since the set M is epi-Lipschitz, the correspondence x �→ NC
M (x) ∩ S is upper

semicontinuous with compact values, and there exists a sequence (xn)n∈N in M

and a sequence (rn)n∈N of positive real numbers such that (B(xn,
r2

n

2 ))n∈N is a
locally finite covering of M and, for every n,

NC
M (B(xn, 2rn) ∩ M) ∩ S ⊂ NC

M (xn) ∩ S + B (0, ε′(xn)) ,(5.2)

rn ≤ ε′(xn).(5.3)

Take en ∈ intTC
M (xn) ∩ S. From (5.2), en ∈ intTC

M (B(xn, 2rn) ∩ M), and in view
of Rockafellar [33], we may assume without any loss of generality that

(5.4) y + tw ∈ M for every (y, w, t) ∈ B(xn, 2rn) × B(en, 2rn) × [0, 2rn].

For every n, we define the function λn : B(xn, r2
n) → R by

(5.5) λn(x) := inf
{
t ∈ R|x + ten ∈ M ∩ B(xn, r2

n)
}

.

The fact that the function λn is well defined (together with the following assertions)
is detailed in [16, Chapitre 1, Appendix] and partially stated in [11, Proposition 4.4]:

The function λn is
1

rn
− Lipschitz,(5.6)

M ∩ B(xn, r2
n) = {x ∈ B(xn, r2

n)|λn(x) ≤ 0},(5.7)

bdM ∩ B(xn, r2
n) = {x ∈ B(xn, r2

n)|λn(x) = 0},(5.8)

λn(x + ten) = λn(x) − t for every x ∈ B(xn, r2
n) and t ∈ R(5.9)

such that x + ten ∈ B(xn, r2
n),

∂λn(x) = NM (x + λn(x)en) ∩ {v ∈ R
N |〈v, en〉 = −1}.(5.10)

Equation (5.9) highlights the fact that the function λn is built by a projection
on the hyperplane e⊥n . Precisely (see [16, Chapitre 1, Appendix, claim 5.5]), let
π1 : R

N−1×R → R
N−1, respectively π2 : R

N−1×R → R, be the projection defined
by π1(x1, x2) = x1, respectively π2(x1, x2) = x2. We define the linear map An :
R

N → R
N−1×R by An(u+λen) = (Ln(u), λ) for all (u, λ) ∈ e⊥n ×R, and if Ln is an

isometry from e⊥n to R
N−1. Let Un = B(xn, r2

n) and let Vn = π1(An(Un)). If x ∈ Vn,
and if (y, z) ∈ R

2 are such that (x, y) ∈ An(Un) and (x, z) ∈ An(Un), then clearly
A−1

n (x, y)−yv = A−1
n (x, z)−zv, hence λn(A−1

n (x, y))+y = λn(A−1
n (x, z))+z. Hence

the function ϕn : Vn → R defined by ϕn(x) = λn(A−1
n (x, y))+y if (x, y) ∈ An(Un) is

well defined. The map ϕn is clearly Lipschitzian, and λn = ϕn◦π1◦An|Un
−π2◦A|Un

.

Now consider a sequence of positive real numbers (r′n)n∈N such that r′n ∈ (0,
r2

n

2 )
and

B(xn, r′n) ∩
⋃

p	=n

B(xp, r
′
p) = ∅.

Let (αn)n∈N be a C∞ partition of unity subordinated to the covering (B(xn,
r2

n

2 ))n∈N

and such that
αn|B(xn,r′

n) = 1.

Remark that the function f :=
∑

n∈N
αkλk is “almost” a Lipschitzian inequality

representation of M on R
N , in the sense that it satisfies assertions (i) to (iv) of [11,
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Definition 2.1]. I.e., M = {x ∈ R
N |f(x) ≤ 0} and NM (x) =

⋃
λ≥0 λ∂f(x) to-

gether with other nice properties. Our proof consists in smoothing the functions
λn rather than the function f itself, for reasons that are announced at the begin-
ning of the section and that will precisely appear below. For every x ∈ bdM ,∑

k∈N
αk(x)∂λk(x) is a nonempty compact subset of NM (x) \ {0} (see [16]), and

we set

δ(x) := d

(
∑

k∈N

αk(x)∂λk(x), 0

)
.

The correspondences ∂λk are upper semicontinuous with compact values, the func-
tions αk are continuous, and locally we take the sum of a finite number of terms,
hence there exists a sequence (yn)n∈N in bdM , and a sequence (ρn)n∈N of positive
real numbers in (0, 1) such that (B(yn, ρn))n∈N is a locally finite covering of bdM
and, for every n,
(5.11)

∑

k∈N

αk(B(yn, ρn))∂λk(B(yn, ρn)) ⊂
∑

k∈N

αk(yn)∂λk(yn) + B

(
0,

δ(yn)

3
ε′(yn)

)
.

Since the family (yn)n∈N, respectively (xn)n∈N, is locally finite and since, for every
n ∈ N, the set B(xn, 1) is compact, the set {p|yp ∈ B(xn, 1)}, respectively {k|xk ∈
B(xn, 1)}, is finite. We set, for every n ∈ N,

(5.12) εn := min

{
ε′(xn), r′nrn,

1

2
min{r2

k, xk ∈ B(xn, 1)},

ε′(xn)

card{k|xk ∈ B(xn, 1)} min

{
rk

2‖∇αk‖∞
, xk ∈ B(xn, 1)

}

·min

{
δ(yp)

3
, yp ∈ B(xn, 1)

}}
.

From Theorem 2.2, there exists a C∞ regularization ϕ′
n of the function ϕn associ-

ated to the map λn, which yields a C∞ regularization λ′
n : B(xn, r2

n) → R of λn

by setting λ′
n = ϕ′

n ◦ π1 ◦ An|Un
− π2 ◦ A|Un

. The function λ′
n satisfies, for every

x ∈ B(xn, r2
n),

|λ′
n(x) − λn(x)| ≤ εn,(5.13)

∇λ′
n(x) ∈ ∂λn(B(x, εn)) + B(0, εn),(5.14)

∂λn(x) ⊂ ∇λ′
n(B(x, εn)) + B(0, εn),(5.15)

and additionally

λ′
n(x + ten) = λ′

n(x) − t for every x ∈ B(xn, r2
n)(5.16)

and t ∈ R such that x + ten ∈ B(xn, r2
n),

∇λ′
n(x + ten) = ∇λ′

n(x) − t for every x ∈ B(xn, r2
n)(5.17)

and t ∈ R such that x + ten ∈ B(xn, r2
n).

5.2. The regularized set and proof of Theorem 2.3. We set

(5.18) f ′ :=
∑

k∈N

αkλ′
k and M ′ = {x ∈ Ω|f ′(x) ≤ 0},
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with Ω =
⋃

n∈N
B(xn,

r2
n

2 ), and we now show that the set M ′ satisfies the conclusions
of Theorem 2.3. We first prove that the set M ′ is smooth and afterwards the
estimations and inclusions (2.9) to (2.12).

5.2.1. The set M ′ is smooth. The function f ′ is clearly of class C∞, and we now
prove that ∇f ′(x) �= 0 for every x ∈ Ω such that f ′(x) = 0, which implies by
definition that the set M ′ is a closed C∞ submanifold of R

N with a boundary of
full dimension. For every x ∈ Ω, we set

I(x) := {n ∈ N|αn(x) > 0}
and we note that, from the definition of the partition (αn)n∈N, we have the inclusion

I(x) ⊂ {n ∈ N|x ∈ B(xn,
r2

n

2 )}. We now claim the following.

Claim 5.1. For every x such that f ′(x) = 0,

d(bdM, x) ≤ max{εn, n ∈ I(x)},
and, for every n ∈ I(x)

|λ′
n(x)| ≤ 1

3‖∇αn‖∞cardI(x)
min

{
δ(yq)

3
, yq ∈ B

(
x,

2

3

)}
min{ε(x), 1}.

Proof of Claim 5.1. Since f ′(x) =
∑

k∈N
αk(x)λ′

k(x) = 0, there exist p and q in
I(x) such that λ′

p(x) ≤ 0 and λ′
q(x) ≥ 0, hence λp(x) ≤ εp and λq(x) ≥ −εq. Since

εp ≤ r2
p

2 and εq ≤ r2
q

2 , x + εpep ∈ B(xp, r
2
p) and λp(x + εpep) = λp(x) − εp ≤ 0,

x − εqeq ∈ (xq, r
2
q) and λq(x − εqeq) = λq(x) + εq ≥ 0. In view of (5.7) and (5.8),

x + εpep ∈ M and x − εqeq /∈ intM . Hence there exists θ ∈ [0, 1] such that
x + θεpep − (1 − θ)εqeq ∈ bdM . Then

d(bdM, x) ≤ |θεpep − (1 − θ)εqeq| ≤ θεp + (1 − θ)εq ≤ max{εn, n ∈ I(x)}.
Take n ∈ I(x) and k0 ∈ I(x) such that εk0

= max{εk, k ∈ I(x)}. Then x ∈
B(xn,

r2
n

2 ) ∩ B(xk0
,

r2
k0

2 ), hence |xn − xk0
| <

r2
n

2 +
r2

k0

2 ≤ 1, i.e., xn ∈ B(xk0
, 1).

From (5.12), we have εk0
≤ r2

n

2 . Then

|θεpep − (1 − θ)εqeq| ≤ max{εk, k ∈ I(x)} ≤ εk0
≤ r2

n

2
,

hence x + θεpep − (1 − θ)εqeq ∈ B(xn, r2
n) and λn(x + θεpep − (1 − θ)εqeq) = 0.

Since the function λn is 1
rn

-Lipschitz, |λn(x)| ≤ εk0

rn
and |λ′

n(x)| ≤ εk0

rn
+ εn. Since

rn ≤ 1 and εn ≤ εk0
, we have |λ′

n(x)| ≤ 2εk0

rn
. On the other side, from (5.12) and

since xn ∈ B(xk0
, 1),

εk0
≤ ε′(xk0

)

card{k|xk ∈ B(xk0
, 1)}

rn

2‖∇αn‖∞
min

{
δ(yp)

3
, yp ∈ B(xk0

, 1)

}
.

Noting that k ∈ I(x) ⇒ xk ∈ B(xk0
, 1), we deduce I(x) ⊂ {k|xk ∈ B(xk0

, 1)} and
the corresponding inequality on the cardinals. Also, we remark that yp ∈ B(x, 2

3 ) ⇒
yp ∈ B(xk0

, 1) and ε′(xk0
) ≤ 1

3 min{ε(x), 1}. We deduce

εk0
≤ min{ε(x), 1}

3cardI(x)

rn

2‖∇αn‖∞
min

{
δ(yp)

3
, yp ∈ B(x,

2

3
)

}
,

which proves Claim 5.1. �
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We now come back to the smoothness of M ′. Consider x ∈ Ω such that f ′(x) = 0.
Noting that

∇f ′(x) =
∑

k∈N

αk(x)∇λ′
k(x) +

∑

k∈N

∇αk(x)λ′
k(x),

we estimate separately each term. For every n ∈ I(x), ∇λ′
n(x) ∈ ∂λn(B(x, εn)) +

B(0, εn), hence
∑

k∈N

αk(x)∇λ′
k(x) ∈

∑

k∈N

αk(x)∂λk(B(x, εk)) +
∑

k∈N

αk(x)B(0, εk).

From Claim 5.1, d(bdM, x) ≤ max{εn, n ∈ I(x)}. Take n ∈ I(x) such that εn

realizes the maximum. Then there is y ∈ bdM such that |x − y| ≤ εn. Since
bdM ⊂ ⋃

p∈N
B(yp,

ρp

3 ), there exists p ∈ N such that y ∈ B(yp,
ρp

3 ). Then |xn −
yp| ≤ |xn − x| + |x − y| + |y − yp| ≤ 1. Hence yp ∈ B(xn, 1) and, in view of (5.12),

εn ≤ ρp

3 ε′(xn). In particular, |x−y| ≤ ρp

3 , hence x ∈ B(yp,
2ρp

3 ). Consider k ∈ I(x),
then εk ≤ εn and B(x, εk) ⊂ B(yp, ρp). From the definition of ρp, we have

∑

k∈N

αk(x)∂λk(B(x, εk)) ⊂
∑

k∈N

αk(B(yp, ρp))∂λk(B(yp, ρp))

⊂
∑

k∈N

αk(yp)∂λk(yp) + B

(
0,

δ(yp)

3
ε′(yp)

)
,

hence

∑

k∈N

αk(x)∇λ′
k(x) ∈

∑

k∈I(x)

αk(yp)∂λk(yp) + B

⎛
⎝0,

∑

k∈I(x)

αk(x)εk +
δ(yp)

3
ε′(yp)

⎞
⎠ .

But
∑

k∈I(x) αk(x)εk ≤ max{εk, k ∈ I(x)} ≤ δ(yp)
3 ε′(xn). Since x ∈ B(xn, 1) and

x ∈ B(yp, 1), then ε′(xn) ≤ 1
3 min{ε(x), 1} and ε′(yp) ≤ 1

3 min{ε(x), 1}. Hence

(5.19)
∑

k∈N

αk(x)∇λ′
k(x) ∈

∑

k∈I(x)

αk(yp)∂λk(yp) + B

(
0,

2δ(yp)

9
min{ε(x), 1}

)
.

Let us now estimate the other term. From Claim 5.1, for every k ∈ I(x), λ′
k(x) ≤

1
3‖∇αk‖∞card I(x) min

{
δ(yq)

3 , yq ∈ B(x, 2
3 )
}

min{ε(x), 1}. But |x − yp| ≤ 2ρp

3 ≤ 2
3 ,

hence yp ∈ B(x, 2
3 ). Hence λ′

k(x) ≤ 1
3‖∇αk‖∞card I(x)

δ(yp)
3 min{ε(x), 1} and

(5.20)

∣∣∣∣∣
∑

k∈N

∇αk(x)λ′
k(x)

∣∣∣∣∣ =

∣∣∣∣∣∣

∑

k∈I(x)

∇αk(x)λ′
k(x)

∣∣∣∣∣∣
≤ δ(yp)

9
min{ε(x), 1}.

In view of (5.19) and (5.20), we deduce

(5.21) ∇f ′(x) ∈
∑

k∈I(x)

αk(yp)∂λk(yp) + B

(
0,

δ(yp)

3
min{ε(x), 1}

)
.

In particular, from the definition of the function δ, we deduce that

|∇f ′(x)| ≥ 2δ(yp)

3
> 0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4498 MARC-OLIVIER CZARNECKI AND LUDOVIC RIFFORD

5.2.2. Proof of (2.9) and (2.10). Take x ∈ M ′. Then f ′(x) ≤ 0, hence there exists
n ∈ I(x) such that λ′

n(x) ≤ 0, λn(x) ≤ εn, λn(x + εnen) ≤ 0, x + εnen ∈ M and
d(M, x) ≤ εn Since εn ≤ ε′(xn) ≤ ε(x), we deduce (2.9). Now take x ∈ M . Then
there exists n ∈ N such that x ∈ B(xn, rn). Then λn(xn) ≤ 0, λn(xn+εnen) ≤ −εn

and λ′
n(xn + εnen) ≤ 0. But xn + εnen ∈ B(xn, r′n), hence I(xn + εnen) = {n} and

f ′(xn + εnen) = λ′
n(xn + εnen) ≤ 0, hence xn + εnen ∈ M ′ and d(M ′, x) ≤ εn + rn.

Since εn ≤ rn and 2rn ≤ ε′(xn) ≤ ε(x), we deduce (2.10). �

5.2.3. Proof of (2.11). Take x ∈ bdM ′ and v ∈ NC
M ′(x)∩S. Then v = ∇f ′(x)

|∇f ′(x)| . In

view of (5.21), recall that there exists p ∈ N such that x ∈ B(yp,
2ρp

3 ) and ∇f ′(x) ∈
∑

k∈I(x) αk(yp)∂λk(yp) + B
(
0,

δ(yp)
3 min{ε(x), 1}

)
. Since

∑
k∈I(x) αk(x)∂λk(yp) ⊂

NC
M (yp) \ {0}, we have

∇f ′(x)

|∇f ′(x)| ∈ NC
M (yp) + B

(
0,

δ(yp)

3|∇f ′(x)| min{ε(x), 1}
)

.

From above |∇f ′(x)| ≥ 2δ(yp)
3 , hence ∇f ′(x)

|∇f ′(x)| ∈ NC
M (yp)+B(0, 1

2 min{ε(x), 1}. Take

v ∈ NC
M (yp) such that

∣∣∣∣
∇f ′(x)

|∇f ′(x)| − v

∣∣∣∣ ≤
1

2
min{ε(x), 1}.

Then v �= 0 and
∣∣∣∣
∇f ′(x)

|∇f ′(x)| −
v

|v|

∣∣∣∣ =
1

|v|

∣∣∣∣|v|
∇f ′(x)

|∇f ′(x)| − |v|v + |v|v − v

∣∣∣∣

≤
∣∣∣∣
∇f ′(x)

|∇f ′(x)| − v

∣∣∣∣ + ||v| − 1|

≤ 2

∣∣∣∣
∇f ′(x)

|∇f ′(x)| − v

∣∣∣∣ ≤ ε(x).

On the other hand, |x − yp| ≤ ρp ≤ ε(x), and we deduce (2.11). �

5.2.4. Proof of (2.12). Take x ∈ bdM and v ∈ NC
M (x)∩S. Then there exists n ∈ N

such that x ∈ B(xn, rn) and v ∈ NC
M (xn) ∩ S + B(0, ε′(xn)). In view of (5.10),

NC
M (xn) =

⋃
λ>0 λ∂λn(xn), hence there exists ζ ∈ ∂λn(xn) such that

|v − ζ

|ζ| | < ε′(xn).

From (5.15), ∂λn(xn) ⊂ ∇λ′
n(B(xn, εn))+B(0, εn), hence there exists x′∈B(xn, εn)

such that

|ζ −∇λ′
n(x′)| < εn.

Since NC
M (xn) �= {0}, xn ∈ bdM and λn(xn) = 0. The function λn being 1

rn
-

Lipschitz, |λn(x′)| ≤ εn

rn
, hence |λ′

n(x′)| ≤ εn

rn
+ εn. Then the two points x′ +

εn(1 + 1
rn

)en and x′ − εn(1 + 1
rn

)en belong to the ball B(xn, εn(2 + 1
rn

)). In view

of (5.12), εn(2+ 1
rn

)) ≤ r′n, and the two points belong to the ball B(xn, r′n), which is

contained in B(xn, r2
n). Then λ′

n(x′+εn(1+ 1
rn

)en) ≤ 0 and λ′
n(x′−εn(1+ 1

rn
)en) ≥

0. Hence there exists θ ∈ [−εn(1+ 1
rn

), εn(1+ 1
rn

)] such that λ′
n(x′+θen) = 0. Also

x′ + θen ∈ B(xn, r′n) and I(x′ + θen) = {n}. We thus deduce that f ′(x′ + θen) =
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λ′
n(x′ + θen) = 0, x′ + θen ∈ bdM and ∇f ′(x′ + θen) = ∇λ′

n(x′ + θen) = ∇λ′
n(x′)

in view of (5.17). Then v′ := ∇f ′(x′+θen)
|∇f ′(x′+θen)| ∈ NC

M ′(x′ + θen) ∩ S. On one hand,

|x′ + θen − x| ≤ εn + |θ| ≤ r′n ≤ rn ≤ ε(x).

On the other hand,

|v′ − v| =

∣∣∣∣v
′ − ζ

|ζ| +
ζ

|ζ| − v

∣∣∣∣(5.22)

≤
∣∣∣∣
∇λ′

n(x′)
|∇λ′

n(x′)| −
ζ

|ζ|

∣∣∣∣ + ε′(xn).(5.23)

But ∣∣∣∣
∇λ′

n(x′)
|∇λ′

n(x′)| −
ζ

|ζ|

∣∣∣∣ =
1

|∇λ′
n(x′)||ζ|

∣∣∣∣|ζ|∇λ′
n(x′) − |∇λ′

n(x′)|∇λ′
n(x′)

+|∇λ′
n(x′)|∇λ′

n(x′) − |∇λ′
n(x′)|ζ

∣∣∣∣

≤ 1

|ζ|

∣∣∣∣|ζ| − |∇λ′
n(x′)|

∣∣∣∣ +
1

|ζ| |∇λ′
n(x′) − ζ|

≤ 2|ζ −∇λ′
n(x′)| < 2εn.

Hence |v′ − v| ≤ 2εn + ε′(xn) ≤ 3ε′(xn) ≤ ε(x), and we deduce (2.12). �

5.3. Proof of Proposition 2.2. Consider x ∈ M and v ∈ NP
M (x) ∩ SN−1. Since

r ≤ reach(M), in view of [17, Theorem 4.8-(12)],

x ∈ projM (x + rv).

Take x′ ∈ projM ′(x + r
2v). Recalling that ε := dHaus(M, M ′), from Lemma 4.1

|x − x′|2 ≤ ε2 + 4εr.

Let v′ = 2
r (x + r

2v − x′) (assuming that r �= 0). From the definition of x′, we have

v′ ∈ NP
M ′(x′). Then

|v − v′| =
2

r
|x − x′|.

On the other hand, note that d(x + r
2v, M) = r

2 . Since dHaus(M, M ′) < r
2 , then

x + r
2v /∈ M ′ and x′ �= x + r

2v, which implies v′ �= 0. Then v′

|v′| ∈ NP
M ′(x′) ∩ S and

∣∣∣∣v − v′

|v′|

∣∣∣∣ ≤ |v − v′| +
∣∣∣∣v

′ − v′

|v′|

∣∣∣∣

≤ |v − v′| + |v′|
∣∣∣∣1 − 1

|v′|

∣∣∣∣
≤ |v − v′| + ||v′| − 1|
≤ |v − v′| + ||v′| − |v||

≤ 2|v − v′| ≤ 4

√
ε2 + 4εr

r
.

Hence (x′, v′

|v′| ) ∈ graphNP
M ′ ∩ S and

d∞

(
(x, v),

(
x′,

v′

|v′|

))
≤

√
ε2 + 4εr

min{r/4, 1} .

�
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6. Proof of Theorem 2.1

Clearly

f(x1, x2) = 3
2x1 + x2 on E1 := {(x1, x2) ∈ R

2|x1 ≥ 0, x2 ≥ −x1},
f(x1, x2) = −1

2x1 + x2 on E2 := {(x1, x2) ∈ R
2|x1 ≤ 0, x2 ≥ x1},

f(x1, x2) = 3
2x1 − x2 on E3 := {(x1, x2) ∈ R

2|x1 ≤ 0, x2 ≤ x1},
f(x1, x2) = −1

2x1 − x2 on E4 := {(x1, x2) ∈ R
2|x1 ≥ 0, x2 ≤ −x1}.

Since the gradient of f equals ( 3
2 , 1) on intE1, (−1

2 , 1) on intE2, ( 3
2 ,−1) on intE3,

and (−1
2 ,−1) on intE4, we deduce that f is

√
13
2 -Lipschitz and that

0 ∈ ∂f(0) = co

{(
3

2
, 1

)
,

(
−1

2
, 1

)
,

(
−1

2
,−1

)
,

(
3

2
,−1

)}

E1E2

E3 E4

∇f = ( 3
2
, 1)∇f = (− 1

2
, 1)

∇f = ( 3
2
,−1) ∇f = (− 1

2
,−1)

The proofs of part (a) and part (b) are independent and cannot be deduced one
from the other. They are given in next two sections. In the third section, we prove
part (c).

6.1. Proof of part (a). It is briefly outlined in Warga [37, Examples 3.3 and
2.4] and extensively developed here for the sake of completeness, moreover with a
precise bound. For α > 0 small enough, define two squares C and Cα as follows:

C := co {(1, 0), (0, 1), (−1, 0), (0,−1)} ,

Cα := co {(1 + α, 0), (0, 1 + α), (−1 − α, 0), (0,−1 − α)} .

Let θ : R
2 → R be a C∞ function satisfying the four following conditions:

∀x ∈ R
2, θ(x) ∈ [0,

1 − α

2
],(6.1)

∀x ∈ C, θ(x) =
1 − α

2
,(6.2)

suppθ ⊂ Cα,(6.3)
∫

R2

θ(t)dt = 1.(6.4)
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For every λ > 0, we define the function fλ : R
2 → R by

fλ(x) :=

∫

R2

θ(t)f(x + λt)dt, for every x ∈ R
2.

It is C∞, since it is a convolution of a C∞ function and a Lipschitz function. On

the other hand, since f is
√

13
2 −Lipschitz, we have for every x ∈ R

2,

|f(x) − fλ(x)| ≤
∫

R2

θ(t) |f(x + λt) − f(x)|dt ≤ λ

∫

R2

θ(t)

√
13

2
|t|dt,

which proves the uniform convergence of fλ to f as λ tends to zero, i.e., assertion
(2.2).

We now prove (2.3). First note that, since the function f is differentiable almost
everywhere (by Rademacher’s Theorem), we have for every x ∈ R

2,

∇fλ(x) =

∫

R2

θ(t)∇f(x + λt)dt.

Hence |∇fλ(x)| ≤
√

13
2 and moreover

∇fλ(x) =

∫

Cα

θ(t)∇f(x + λt)dt +

∫

Cα \C

θ(t)∇f(x + λt)dt.

Then
∣∣∣
∫

Cα \C

θ(t)∇f(x + λt)dt
∣∣∣ ≤ meas(Cα \ C) ‖∇f‖∞ = 2(2α + α2)

√
13

2
.

Since θ(t) = 1−α
2 for every t ∈ C,

∫

C

θ(t)∇f(x + λt)dt

=
1 − α

2

∫

C

∇f(x + λt)dt

=
1 − α

2λ−2

∫

x+λC

∇f(t)dt

=
1 − α

2λ−2

∣∣∣meas(E1 ∩ x + λC)(
3

2
, 1) + meas(E2 ∩ x + λC)(−1

2
, 1)

+ meas(E3 ∩ x + λC)(
3

2
,−1) + meas(E4 ∩ x + λC)(−1

2
,−1)

∣∣∣.

In view of the following lemma, if we choose α > 0 small enough, we obtain

|∇fλ(x)| ≥ 1

5
.

Lemma 6.1. For every λ > 0 and every x ∈ R
2, we have

λ−2
∣∣∣meas(E1 ∩ x + λC)

(
3

2
, 1

)
+ meas(E2 ∩ x + λC)

(
−1

2
, 1

)

+ meas(E3 ∩ x + λC)

(
3

2
,−1

)
+ meas(E4 ∩ x + λC)

(
−1

2
,−1

) ∣∣∣

≥
(
− 1 + (

√
2 +

√
3)

1
3 (3

√
3 − 9

√
2) + (

√
2 +

√
3)

2
3 (−9 + 6

√
2
√

3)
) 1

2

with possible equality in the above equation.
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Proof of Lemma 6.1. The proof of Lemma 6.1 is elementary and is achieved by
considering 8 different cases (not necessarily disjoints). Note that one can also
study the corresponding optimization problem, but the proof would not be shorter.
We set x := (x1, x2), E1 := meas(E1 ∩ x + λC), E2 := meas(E2 ∩ x + λC),
E3 := meas(E3 ∩ x + λC), E4 := meas(E4 ∩ x + λC), and

gλ(x) := λ−2

∣∣∣∣E1

(
3

2
, 1

)
+ E2

(
−1

2
, 1

)
+ E3

(
3

2
,−1

)
+ E4

(
−1

2
,−1

)∣∣∣∣

= λ−2

((
3

2
E1 − 1

2
E2 +

3

2
E3 − 1

2
E4

)2

+ (E1 + E2 − E3 − E4)2
)1/2

.

Note that E1 + E2 + E3 + E4 = 2λ2, hence we have

gλ(x) = λ−2
(
(2(E1 + E3) − λ2)2 + (2(E1 + E2) − 2λ2)2

)1/2

.

Without any loss of generality, noting that gλ(λx) = g1(x), we now assume that
λ = 1. We now distinguish 8 (not necessarily disjoint) cases in order to give a
minoration of g1(x):

Case 1: 1 ≤ x1. Then E2 = E3 = 0, E1 + E4 = 2, hence

g1(x) =
(
8E2

1
− 12E1 + 5

)1/2

≥ 1√
2
,

with possible equality in the above equation.

Case 2: x1 ≤ −1. Then E1 = E4 = 0, E2 + E3 = 2, hence

g1(x) =
(
8E2

2
− 20E2 + 13

)1/2

≥ 1√
2
.

Case 3: 1 + x1 ≤ x2 or 1 − x1 ≤ x2. Then E3 = E4 = 0, E1 + E2 = 2, hence

g1(x) =
(
(2E1 − 1)2 + 4

)1/2

≥ 2.

Case 4: x2 ≤ −1 + x1 and x2 ≤ −1 − x1. Then E1 = E2 = 0, E3 + E4 = 2,
hence

g1(x) =
(
(2E3 − 1)2 + 4

)1/2

≥ 2.

Case 5: x2 ≤ −1 + x1 and −1 − x1 ≤ x2. Then E2 = 0, E1 ≤ 2, hence

g1(x) =
(
8E2

1
+ 4E2

3
+ 8E1E3 − 12E1 − 4E3 + 5

)1/2

=
(
(2E1 + 2E3 − 1)2 + 4E2

1
− 8E1 + 4

)1/2

≥ 2.

Case 6: −1 + x1 ≤ x2 and x2 ≤ −1 − x1. Then E1 = 0,

g1(x) =
(
(2E3 − 1)2 + (2E2 − 2)2

)1/2

.

If x2 ≤ x1, then E3 ≥ 3/4 and g1(x) ≥ 1/2. If x1 + 1 ≤ x2, then Case 3 applies
and g1(x) ≥ 2. If x1 + 1 ≥ x2 ≥ x1, then one easily shows that

g1(x) ≥ g1

((
x1 +

−x1 − x2 − 1

2
, x2 +

−x1 − x2 − 1

2

))
,
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with possible equality. Hence, without any loss of generality, we assume −x1−x2−
1 = 0. Then E2 = 1 + x2 − x1 and E3 = 1

4 (3 + x2 − x1)(1 − (x2 − x1)) and

g1(x) =
1

2
((x2 − x1)

4 + 4(x2 − x1)
3 + 18(x2 − x1)

2 − 4(x2 − x1) + 1)1/2.

One easily deduces g1(x) ≥ 1
2 (18(x2 − x1)

2 − 4(x2 − x1) + 1)1/2 ≥
√

7
6 . More

accurately, the polynomial P (X) = X4 +4X3+18X2−4X +1 attains its minimum
over the interval [0, 1] at the point

−1 + (4 + 2
√

6)
1
3 + (4 + 2

√
6)

2
3

(
1 −

√
6

2

)
.

Indeed, it is the unique real root of P ′, and moreover P ′(0) = −4 < 0 and P ′(1) =
48 > 0, hence it is the unique candidate for the minimization of P over [0, 1]. The
corresponding minimum of g1 is

(
− 1 + (

√
2 +

√
3)

1
3 (3

√
3 − 9

√
2) + (

√
2 +

√
3)

2
3 (−9 + 6

√
2
√

3)
) 1

2

and is attained for the corresponding values of x1 and x2.

Case 7: 0 ≤ x1, −1 + x1 ≤ x2, x2 ≤ 1 − x1. Set a := d(R(1, 1), x + (0,−1)) =
x1−x2+1√

2
and b := d(R(1,−1), x + (0,−1)) = −x1−x2+1√

2
. Then

0 ≤ b ≤ a ≤
√

2,

E1 = 2 −
√

2b − (
√

2 − a)2/2,
E1 + E2 = 2 − ab,
E3 = b2/2.

Then E1 + E3 ≥ 2 −
√

2b − (
√

2 − b)2/2 + b2/2 = 1 and g1(x) ≥ 1.

Case 8: x1 ≤ 0, x2 ≤ 1 + x1, −1 − x1 ≤ x2. Set a := d(R(1, 1), x + (0,−1)) =
x1−x2+1√

2
and b := d(R(1,−1), x + (0,−1)) = −x1−x2+1√

2
. Then

0 ≤ a ≤ b ≤
√

2,

E1 = a(
√

2 − b) + (
√

2 − b)2/2,
E1 + E2 = 2 − ab,
E3 = ab − a2/2.

Note that if a ≤ 2
√

2 −
√

5, then E1 + E2 ≥ 2 −
√

2a and g1(x) ≥ 2
√

10 − 6. If√
2 ≥ a ≥ 2

√
2−

√
5, then E1+E3 ≥

√
2a−a2/2 ≥

√
10−5/2 and g1(x) ≥ 2

√
10−6.

More accurately, g1(x) = P (a, b), where

P (a, b) = a4 + 2a2b2 − 4
√

2a3 + 4
√

2a2b + 4
√

2ab2 − 4
√

2b3 + 6a2 − 24ab + 10b2

+ 4
√

2a − 4
√

2b + 5.

The solution of the minimization problem min{P (a, b), 0 ≤ a ≤ b ≤
√

2} is now
classical. In order to solve the first order necessary condition, we compute the
gradient of P :

dP

da
= 4 a3 + 4 a b2 − 12

√
2 a2 + 8

√
2 a b + 4

√
2 b2 + 12 a − 24 b + 4

√
2,

dP

db
= 4 b3 + 4 a2 b − 12

√
2 b2 + 4

√
2 a2 + 8

√
2 a b + 20 b − 24 a − 4

√
2.
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In order to show that the gradient is nonzero on the domain, we compute the
resultants in a and b,

Resultant

(
dP

da
,
dP

db
, a

)
= 2−12(36a7 − 126

√
2a6 + 203a5 + 83

√
2a4

− 287a3 + 97
√

2a2 − 11a − 3
√

2),

Resultant

(
dP

da
,
dP

db
, b

)
= 2−12(36b7 − 138

√
2b6 + 359b5 − 117

√
2b4

− 221b3 + 179
√

2b2 − 79b + 5
√

2).

A direct study shows that there is only one possible candidate (a, b) with 0 ≤ a ≤
b ≤

√
2 for the equation

{
Resultant

(
dP
da , dP

db , a
)

= 0,

Resultant
(

dP
da , dP

db , b
)

= 0.

Moreover, it satisfies a ∈ [0.52, 0.58] and b ∈ [0.72, 0.78]. But

dP

db
([0.52, 0.58] × [0.72, 0.78]) ⊂ (−∞,−1].

By a direct estimation of P (a, b), or using the first order necessary condition, one

easily shows that the minimum is not attained for a = 0 or a = b. For b =
√

2,
0 < a <

√
2 the only real root of dP

da (a,
√

2) is a =
√

2 − (
√

(2) +
√

(3))(1/3) +

(
√

(2) +
√

(3))(2/3)(
√

(3)−
√

(2)). In fact we can observe that we obtain the same
point as in Case 6, hence the same optimal value of g1. This concludes the proof
of Lemma 6.1. �

6.2. Proof of part (b). It is in fact deduced from the exact computation of the
inf sup convoluted function of f . In the next section, we compute the inf convoluted
function fλ of f , and in the following section, we compute the inf sup convoluted
function fλ,µ.

6.2.1. Calculus of fλ, the inf convoluted function of f . For λ > 0, we define the sets
Λi on which we give an analytic formula of the inf convoluted function fλ which is
given in the following lemma:

Λ1 = {(x1, x2) ∈ R
2, x1 − 3λ

2 ≥ 0, x1 + x2 − 5λ
2 ≥ 0},

Λ2 = {(x1, x2) ∈ R
2, x1 + λ

2 ≤ 0, x1 − x2 + 3λ
2 ≤ 0},

Λ3 = {(x1, x2) ∈ R
2, x1 − λ

2 ≤ 0, −x1 + x2 + 5λ
2 ≤ 0},

Λ4 = {(x1, x2) ∈ R
2, x1 − λ

2 ≥ 0, x1 + x2 + 3λ
2 ≤ 0},

Λ1,2 = {(x1, x2) ∈ R
2, x1 ∈ [−λ

2 , 3λ
2 ], x2 ≥ λ},

Λ2,3 = {(x1, x2) ∈ R
2, x1 + x2 − λ

2 ≤ 0, x1 − x2 + 3λ
2 ≥ 0, −x1 + x2 + 5λ

2 ≥ 0,
x1 − λ

2 ≤ 0},
Λ4,1 = {(x1, x2) ∈ R

2, x1 − x2 − λ
2 ≥ 0, x1 + x2 − 5λ

2 ≤ 0, x1 + x2 + 3λ
2 ≥ 0,

x1 − λ
2 ≥ 0},

Λ0 = {(x1, x2) ∈ R
2, x1 + x2 − λ

2 ≥ 0, x1 − x2 − λ
2 ≤ 0, x2 ≤ λ}.
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Lemma 6.2. Let λ > 0 and let x ∈ R
2. Then

fλ(x) = 3
2x1 + x2 −13λ

8 if x ∈ Λ1,

fλ(x) = −1
2x1 + x2 −5λ

8 if x ∈ Λ2,

fλ(x) = 3
2x1 − x2 −13λ

8 if x ∈ Λ3,

fλ(x) = −1
2x1 − x2 −5λ

8 if x ∈ Λ4,

fλ(x) = 1
2λx2

1 + x2 −λ
2 if x ∈ Λ1,2,

fλ(x) = 1
4λx2

1 + 1
4λx2

2 − 1
2λx1x2 + 1

4x1 + 1
4x2 − λ

16 if x ∈ Λ2,3,

fλ(x) = 1
4λx2

1 + 1
4λx2

2 + 1
2λx1x2 + 1

4x1 − 1
4x2 − λ

16 if x ∈ Λ4,1,

fλ(x) = 1
2λx2

1 + 1
2λx2

2 if x ∈ Λ0.

Λ1Λ1,2Λ2

Λ0

Λ2,3 Λ4,1

Λ3 Λ4

Proof of Lemma 6.2. We first compute fλ(x) = inf{f(z) + 1
2λ |x − z|2, z ∈ R

2}. In

fact the infimum in the preceding formula is attained at a point z ∈ R
2 which

satisfies the first order necessary condition

(6.5) 0 ∈ ∂f(z) +
1

λ
(z − x).

One could consider the stronger necessary condition 0 ∈ ∂P f(z) + 1
λ (z − x), but

the proof with Clarke’s generalized gradient is more basic and does not require the
computation of ∂P f . We distinguish the nine cases (i) z ∈ intE1, (ii) z ∈ intE2,
(iii) z ∈ intE3, (iv) z ∈ intE4, (v) z ∈ (E1 ∩ E2) \ {0}, (vi) z ∈ (E2 ∩ E3) \ {0},
(vii) z ∈ (E3 ∩E4) \ {0}, (viii) z ∈ (E4 ∩E1) \ {0}, (ix) z = 0. Wet let x = (x1, x2)
and z = (z1, z2).

Case (i), z ∈ intE1. Then ∇f(z) = ( 3
2 , 1) and z1 > 0, z1 + z2 > 0. The first

order necessary condition can be rewritten as

{
0 = 3

2 + 1
λ (z1 − x1),

0 = 1 + 1
λ (z2 − x2).
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This implies that x1 − 3λ
2 > 0, x1 +x2 − 5λ

2 > 0 and that the candidate for fλ(x) is

f(z) +
λ

2
|x − z|2 =

3

2
x1 + x2 −

13λ

8
.

Case (ii), z ∈ intE2. Then ∇f(z) = (−1
2 , 1) and z1 < 0, z1 − z2 < 0, and the

first order necessary condition implies that x1 + λ
2 < 0, x1 − x2 + 3λ

2 < 0 and that
the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 = −1

2
x1 + x2 −

5λ

8
.

Case (iii), z ∈ intE3. Then ∇f(z) = ( 3
2 ,−1) and z1 < 0, −z1 + z2 < 0, and the

first order necessary condition implies that x1 − 3λ
2 < 0, −x1 + x2 + 5λ

2 < 0 and
that the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 =

3

2
x1 − x2 −

13λ

8
.

Case (iv), z ∈ intE4. Then ∇f(z) = (−1
2 ,−1) and z1 > 0, z1 + z2 < 0, and the

first order necessary condition implies that x1 + λ
2 > 0, x1 + x2 + 3λ

2 < 0 and that
the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 = −1

2
x1 − x2 −

5λ

8
.

Case (v), z ∈ (E1 ∩E2) \ {0}. Then ∂f(z) = [(−1
2 , 1), ( 3

2 , 1)] and z1 = 0, z2 > 0,

and the first order necessary condition implies that x1 ∈ [−λ
2 , 3λ

2 ], x2 > λ and that
the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 =

1

2λ
x2

1 + x2 −
λ

2
.

Case (vi), z ∈ (E2 ∩ E3) \ {0}. Then ∂f(z) = [(−1
2 , 1), ( 3

2 ,−1)] and z1 < 0,

z1 − z2 = 0, and the first order necessary condition implies that x1 + x2 − λ
2 < 0,

−x1 + x2 + 5λ
2 ∈ [0, 4λ], and that the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 =

1

4λ
x2

1 +
1

4λ
x2

2 −
1

2λ
x1x2 +

1

4
x1 +

1

4
x2 −

λ

16
.

Case (vii), z ∈ (E3 ∩ E4) \ {0}. Then ∂f(z) = [(−1
2 ,−1), ( 3

2 ,−1)] and z1 = 0,

z2 < 0, and the first order necessary condition implies that x1 ∈ [−λ
2 , 3λ

2 ], x2 < −λ,
and that the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 =

1

2λ
x2

1 − x2 −
λ

2
.

Case (viii), z ∈ (E4 ∩ E1) \ {0}. Then ∂f(z) = [(−1
2 ,−1), ( 3

2 , 1)] and z1 > 0,

z1 + z2 = 0, and the first order necessary condition implies that x1 − x2 − λ
2 > 0,

−x1 − x2 + 5λ
2 ∈ [0, 4λ], and that the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 =

1

4λ
x2

1 +
1

4λ
x2

2 +
1

2λ
x1x2 +

1

4
x1 −

1

4
x2 −

λ

16
.
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Case (ix), z = 0. Then ∂f(z) = co{( 3
2 , 1), (−1

2 , 1), ( 3
2 ,−1), (−1

2 ,−1)}, and

the first order necessary condition implies that x ∈ co{( 3λ
2 , λ), (−λ

2 , λ), ( 3λ
2 ,−λ),

(−λ
2 ,−λ)} and that the candidate for fλ(x) is

f(z) +
1

2λ
|x − z|2 =

1

2λ
x2

1 +
1

2λ
x2

2.

Then, comparing the candidates in the sets where more necessary conditions
apply, we obtain the values of fλ, hence also of its subdifferential. �

6.2.2. Calculus of fλ,µ, the inf sup convoluted function of f . For 0 < µ < λ, we
define the sets and the sets ΛMi on which we give an analytic formula of the inf
sup convoluted function fλ,µ which is given in the following lemma:

ΛM1 = {(x1, x2) ∈ R
2, x1 − 3(λ−µ)

2 ≥ 0, x1 + x2 − (5λ−µ)
2 ≥ 0},

ΛM2 = {(x1, x2) ∈ R
2, x1 + (λ−µ)

2 ≤ 0, x1 − x2 + 3(λ−µ)
2 ≤ 0},

ΛM3 = {(x1, x2) ∈ R
2, x1 − (λ−3µ)

2 ≤ 0, −x1 + x2 + 5(λ−µ)
2 ≤ 0},

ΛM4 = {(x1, x2) ∈ R
2, x1 − (λ+µ)

2 ≥ 0, x1 + x2 + 3(λ−µ)
2 ≤ 0},

ΛM1,2 = {(x1, x2) ∈ R
2, x1 ∈ [− (λ−µ)

2 , 3(λ−µ)
2 ], x2 − (λ − µ) ≥ 0},

ΛM2,3 = {(x1, x2) ∈ R
2, x1 + x2 − (λ−µ)

2 ≤ 0, x1 − x2 + 3(λ−µ)
2 ≥ 0,

−x1 + x2 + 5(λ−µ)
2 ≥ 0, x1 − µ

2λ−µx2 − (λ−µ)
2 ≤ 0},

ΛM4,1 = {(x1, x2) ∈ R
2, x1 − x2 − (λ−µ)

2 ≥ 0, x1 + x2 − 5(λ−µ)
2 ≤ 0,

x1 + x2 + 3(λ−µ)
2 ≥ 0, x1 + µ

2λ−µx2 − (λ−µ)
2 ≥ 0},

ΛM0 = {(x1, x2) ∈ R
2, x1 + x2 − (λ−µ)

2 ≥ 0, x1 − x2 − (λ−µ)
2 ≤ 0,

x2 ≤ (λ − µ)},
ΛM2,3∩4,1 = {(x1, x2) ∈ R

2, x2 ∈ [−2λ + µ, 0], x1 + µ
2λ−µx2 − (λ−µ)

2 ≤ 0,

−x1 + µ
2λ−µx2 + (λ−µ)

2 ≤ 0},
ΛM3∩4 = {(x1, x2) ∈ R

2, x2 ≤ −2λ + µ, x1 ∈ [λ−3µ
2 , λ+µ

2 ]}.

Lemma 6.3. Let 0 < µ < λ and let x ∈ R
2. Then

fλ,µ(x) = 3
2
x1 + x2 − 13(λ−µ)

8
if x ∈ ΛM1,

fλ,µ(x) = − 1
2
x1 + x2 − 5(λ−µ)

8
if x ∈ ΛM2,

fλ,µ(x) = 3
2
x1 − x2 − 13(λ−µ)

8
if x ∈ ΛM3,

fλ,µ(x) = − 1
2
x1 − x2 − 5(λ−µ)

8
if x ∈ ΛM4,

fλ,µ(x) = 1
2(λ−µ)

x2
1 + x2 − (λ−µ)

2
if x ∈ ΛM1,2,

fλ,µ(x) = 1
4(λ−µ)

x2
1 + 1

4(λ−µ)
x2

2 − 1
2(λ−µ)

x1x2 + 1
4
x1 + 1

4
x2 −

(λ−µ)
16

if x ∈ ΛM2,3,

fλ,µ(x) = 1
4(λ−µ)

x2
1 + 1

4(λ−µ)
x2

2 + 1
2(λ−µ)

x1x2 + 1
4
x1 − 1

4
x2 −

(λ−µ)
16

if x ∈ ΛM4,1,

fλ,µ(x) = 1
2(λ−µ)

x2
1 + 1

2(λ−µ)
x2

2 if x ∈ ΛM0,

fλ,µ(x) = − 1
2µ

x2
1 − 1

2(2λ−µ)
x2

2 − λ
2µ

x1 + λ(λ−µ)
8µ

if x ∈ ΛM2,3∩4,1,

fλ,µ(x) = −
x2
1

2µ
+ λ

2µ
x2

2 −x2 − λ2−4µ2+7λ

8µ
if x ∈ ΛM3∩4.
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ΛM1ΛM1,2ΛM2

ΛM0

ΛM2,3 ΛM4,1

ΛM3 ΛM4

ΛM2,3∩4,1

ΛM3∩4

Once the infsup convoluted function fλ,µ is computed, one immediately deduces
the values of its gradient, which in particular implies Theorem 2.1, case (b).

Corollary 6.1. Let 0 < µ < λ. Then

∇fλ,µ(R2) = co

{(
1

2
, 0

)
,

(
3

2
, 1

)
,

(
−1

2
, 1

)}

∪ co

{(
1

2
, 0

)
,

(
−1

2
,−1

)
,

(
3

2
,−1

)}
,

which does not contain 0.

Proof of Lemma 6.3. We now compute fλ,µ(x) = −(−fλ)µ(x) = − inf{−fλ(z) +
1
2λ |x − z|2, z ∈ R

2}. In fact the infimum in the preceeding formula is attained at a

point z ∈ R
2 which satisfies the first order necessary condition

(6.6) 0 ∈ ∂(−fλ)(z) +
1

µ
(z − x).

Noting that fλ is of class C1 on R
2 \ {λ

2 } × R−, we distinguish the (not necessarily

disjoint) cases (i) z ∈ Λ1, (ii) z ∈ Λ2, (iii) z ∈ Λ3\{λ
2 }×R−, (iv) z ∈ Λ4\{λ

2 }×R−,

(v) z ∈ Λ1,2, (vi) z ∈ Λ2,3 \ {λ
2 } × R−, (vii) z ∈ Λ4,1 \ {λ

2 } × R−, (viii) z ∈ Λ0, (ix)
z ∈ Λ2,3 ∩ Λ4,1, (x) z ∈ Λ3 ∩ Λ4.

Case (i), z ∈ Λ1. Then ∇fλ(z) = ( 3
2 , 1) and z1 − 3λ

2 ≥ 0, z1 + z2 − 5λ
2 ≥ 0. The

first order necessary condition implies that x1 + (λ−µ)
2 ≤ 0, x1 − x2 + 3(λ−µ)

2 ≤ 0
and that the candidate for (−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 = −3

2
x1 − x2 +

13(λ − µ)

8
.
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Case (ii), z ∈ Λ2. Then ∇fλ(z) = (−1
2 , 1) and z1 + λ

2 ≤ 0, z1 − z2 + 3λ
2 ≤ 0. The

first order necessary condition implies that x1 − 3(λ−µ)
2 > 0, x1 + x2 − 5(λ−µ)

2 > 0
and that the candidate for (−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 =

1

2
x1 − x2 +

5(λ − µ)

8
.

Case (iii), z ∈ Λ3 \ {λ
2 } × R−. Then ∇fλ(z) = ( 3

2 ,−1) and z1 − λ
2 < 0,−z1 +

z2 + 5λ
2 ≤ 0. The first order necessary condition implies that x1 − λ

2 + 3µ
2 <

0,−x1 + x2 + 5(λ−µ)
2 ≤ 0 and that the candidate for (−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 = −3

2
x1 + x2 +

13λ

8
.

Case (iv), z ∈ Λ4 \ {λ
2 } × R−. Then ∇fλ(z) = (−1

2 ,−1) and z1 − λ
2 > 0, z1 +

z2 + 3λ
2 ≤ 0. The first order necessary condition implies that x1 − λ

2 + µ
2 >

0, x1 + x2 + 3(λ−µ)
2 ≤ 0 and that the candidate for (−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 =

1

2
x1 + x2 +

5(λ − µ)

8
.

Case (v), z ∈ Λ1,2. Then ∇fλ(z) = ( z1

λ , 1) and z1 ∈ [−λ
2 , 3λ

2 ], z2 ≥ λ. The first

order necessary condition implies that x1 ∈ [− (λ−µ)
2 , 3(λ−µ)

2 ], x2 ≥ (λ−µ) and that
the candidate for (−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 = − 1

2(λ − µ)
x2

1 − x2 +
(λ − µ)

2
.

Case (vi), z ∈ Λ2,3 \ {λ
2 } × R−. Then ∇fλ(z) = ( z1

2λ − z2

2λ + 1
4 ,− z1

2λ + z2

2λ + 1
4 )

and z1 + z2 − λ
2 ≤ 0, z1 − z2 + 3λ

2 ≥ 0,−z1 + z2 + 5λ
2 ≥ 0, z1 − λ

2 < 0. The first

order necessary condition implies that x1 + x2 − (λ−µ)
2 ≤ 0, x1 − x2 + 3(λ−µ)

2 ≥
0,−x1 + x2 + 5(λ−µ)

2 ≥ 0, 2λ−µ
λ−µ x1 − µ

λ−µx2 + µ
2 − λ < 0 and that the candidate for

(−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 = − 1

4(λ − µ)
x2

1 −
1

4(λ − µ)
x2

2

+
1

2(λ − µ)
x1x2 −

1

4
x1 −

1

4
x2 +

(λ − µ)

16
.

Case (vii), z ∈ Λ4,1 \ {λ
2 } × R−. Then ∇fλ(z) = ( z1

2λ + z2

2λ + 1
4 , z1

2λ + z2

2λ − 1
4 )

and z1 − z2 − λ
2 ≥ 0, z1 + z2 − 5λ

2 ≤ 0, z1 + z2 + 3λ
2 ≥ 0, z1 − λ

2 > 0. The first

order necessary condition implies that x1 − x2 − (λ−µ)
2 ≥ 0, x1 + x2 − 5(λ−µ)

2 ≤
0, x1 + x2 + 3(λ−µ)

2 ≥ 0, 2λ−µ
λ−µ x1 + µ

λ−µx2 + µ
2 − λ > 0 and that the candidate for

(−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 = − 1

4(λ − µ)
x2

1 −
1

4(λ − µ)
x2

2

− 1

2(λ − µ)
x1x2 −

1

4
x1 +

1

4
x2 +

(λ − µ)

16
.

Case (viii), z ∈ Λ0. Then ∇fλ(z) = ( z1

λ , z2

2λ) and z1 + z2 − λ
2 ≥ 0, z1 − z2 − λ

2 ≤
0, z2 ≤ λ. The first order necessary condition implies that x1 + x2 − (λ−µ

2 ≥
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0, x1 − x2 − (λ−µ)
2 ≤ 0, x2 ≤ (λ − µ) and that the candidate for (−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 = − 1

2(λ − µ)
x2

1 −
1

2(λ − µ)
x2

2.

Case (ix), z ∈ Λ2,3 ∩ Λ4,1. Then ∂fλ(z) = [( 1
2 + z1

2λ , z2

2λ), ( 1
2 − z1

2λ , z2

2λ )] and

z1 = λ
2 , z2 ∈ [−2λ, 0]. The first order necessary condition implies that x2 ∈ [−2λ +

µ, 0], x1 + µ
2λ−µx2 − (λ−µ)

2 ≤ 0,−x1 + µ
2λ−µx2 + (λ−µ)

2 ≤ 0 and that the candidate

for (−fλ)µ(x) is

x1 − fλ(z) +
µ

2
|x − z|2 =

1

2µ
x2

1 −
1

2(2λ − µ)
x2

2 −
λ

2µ
x1 +

λ(λ − µ)

8µ
.

Case (x), z ∈ Λ3 ∩Λ4. Then ∂fλ(z) = [(−1
2 ,−1), ( 3

2 ,−1)] and z1 = λ
2 , z2 ≤ −2λ.

The first order necessary condition implies that x2 ≤ −2λ + µ, x1 ∈ [λ−3µ
2 , λ+µ

2 ]
and that the candidate for (−fλ)µ(x) is

−fλ(z) +
µ

2
|x − z|2 =

x2
1

2µ
− λ

2µ
x2

2 + x2 +
λ2 − 4µ2 + 7λ

8µ
.

Then, comparing the candidates in the sets where more necessary conditions
apply, we obtain the values of (−fλ)µ, hence of fλ,µ(x) = −(−fλ)µ(x), hence also
of its gradient. �

6.3. Proof of part (c). Let (fn) be a sequence of locally Lipschitz functions from
R

N to R which converges uniformly to f on compact sets. From Proposition 3.2,
the set lim infn→+∞ graph(∂fn) contains graph∂P f and graph∂Lf . The calculus
of the proximal subgradient and of the limiting uppergradient is elementary. For
example, the computations given below in Section 8.3 (considering the points which
have only one projection on the set epif) are sufficient to obtain the set ∂P f(0).
Anyway, we have

∂P f(0) = co

{(
1

2
, 0

)
,

(
3

2
, 1

)
,

(
−1

2
, 1

)}
∪
[(

−1

2
, 1

)
,

(
3

2
,−1

)]

∪
[(

−1

2
,−1

)
,

(
3

2
, 1

)]
,

∂Lf(0) =

[(
−1

2
,−1

)
,

(
3

2
,−1

)]
∪
{(

−1

2
, 1

)
,

(
3

2
, 1

)}
.

So the proof of part (c) will be finished once we prove

{0} × intco

{(
1

2
, 0

)
,

(
−1

2
,−1

)
,

(
3

2
,−1

)}
⊂ lim inf

n→+∞
graph(∂fn).

It is a consequence of the following lemma.

Lemma 6.4. For every v ∈ int co
{(

1
2 , 0

)
,
(
−1

2 ,−1
)
,
(

3
2 ,−1

)}
and every α > 0,

there exists β > 0 such that, for every locally Lipschitz function g : R
N → R such

that ‖f − g‖∞ ≤ β,9 there exists x ∈ [−α, α]2 and ζ ∈ ∂f(x) such that

‖ζ − v‖ ≤ α.

9It is sufficient to assume ‖f |[−α,α]2 − g|[−α,α]2‖∞ ≤ β.
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Proof of Lemma 6.4. First note that one can approach a locally Lipschitz function
g by C∞ functions having their gradients close to the generalized gradient of g by
using a classical convolution argument. Hence, without loss of generality, we only
prove Lemma 6.4 for C∞ functions.

Consider an element v = (v1, v2) ∈ int co
{(

1
2 , 0

)
,
(
−1

2 ,−1
)
,
(

3
2 ,−1

)}
, i.e., v2 <

v1 − 1
2 , v2 < −v1 + 1

2 and −1 < v2. Take a real number α > 0. We define the
elements A and B by

A :=
α

2

(
1 + v2
1
2 + v1

,−1

)
,

B :=
α

2

(
1,

3
2 − v1

v2 − 1

)
.

A straightforward computation gives the level sets of the function fv := f − 〈v, .〉.
In particular, we note that the value of fv on the set [A, 0]∪ [0, B] is zero, and that
the set {x ∈ R

2|fv(x) ≥ 0} \ {0} has two connected components, a component C1,2

(containing B) in the set E1 ∩ E2 and a component C3,4 (containing A) in the set
E3 ∩E4. An elementary calculus shows that, given the assumption on the element
v, we have d(A, C1,2) > 0 and d(B, C3,4) > 0.

We now choose a real number β > 0 small enough, namely β ≤ α2

6 , β ≤
α
3 d(A, C1,2), β ≤ α

3 d(B, C3,4). Take a C∞ function g : R
N → R such that

‖f − g‖∞ ≤ β and assume that Lemma 6.4 does not hold, i.e.,

‖∇g(x) − v‖ > α for every x ∈ [−α, α]2.

Define gv := g − 〈v, .〉 and note that ‖∇gv(x)‖ > α for every x ∈ [−α, α]2. Let
(t, x) �→ ϕ(t, x) be the flow of the following differential equation:

ẋ(t) =
∇gv

‖∇gv‖2
(x(t)), x(0) = x0, with x0 ∈

[
−α

2
,
α

2

]2

.

Noting that ‖ẋ(t)‖ < 1
α , and in view of the Peano existence theorem, or a theorem

on the extension of solutions, any solution of the above differential equation is

defined on the interval [−α2

2 , α2

2 ], which contains the interval [0, 3β] (since β ≤ α2

6 ).
Since

fv([A, 0] ∪ [0, B]) = {0},
then

gv([A, 0] ∪ [0, B]) ⊂ [−β, β].

Note that
∂

∂t
gv(ϕ(t, x)) = 1.

Hence

gv (ϕ (3β, [A, 0] ∪ [0, B])) ⊂ [2β, 4β],

which implies

fv (ϕ (3β, [A, 0] ∪ [0, B])) ⊂ [β, 3β].

Note that the set

{x|fv(x) ≥ β}
has two connected components, a component D1,2 in the set E1 ∩E2 and a compo-
nent D3,4 in the set E3∩E4. Since ∇gv is locally Lipschitz, the flow ϕ is continuous,
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hence the set ϕ (3β, [A, 0] ∪ [0, B]) is connected. Hence it is included in one of the
connected components of {x|fv(x) ≥ β}. On the other hand, for every x,

‖ϕ(3β, x) − x‖ ≤ 3β

α
.

We remark that

d(A, D1,2) > d(A, C1,2) ≥
3β

α
,

d(B, D3,4) > d(B, C3,4) ≥
3β

α
.

•
0

•
B

•A

D1,2 : {fv ≥ β}

D3,4 : {fv ≥ β}

Consequently, ϕ(3β, A) /∈ D1,2 and ϕ(3β, B) /∈ D3,4, a contradiction. �

7. Proofs of the special cases: Dimension 1 for functions

and 2 for sets, and the related results

In this section, we first prove Proposition 3.1 on the stability of normal cones,
which implies Proposition 3.2 on the stability of subgradients. We then prove the
results of Section 2.4.

7.1. Proof of Proposition 3.1. First note that (3.2), respectively (3.4), is de-
duced from (3.1), respectively (3.3), by observing that graph(NL

M ) = clgraph(NP
M ).

We first prove (3.3) and then deduce (3.1).

7.1.1. Proof of (3.3). Let x ∈ M and ζ ∈ NP
M (x). By definition of the prox-

imal normal cone, there exists λ > 0 such that x = projM (y + λζ). Since
M = lim supn→+∞ Mn = lim infn→+∞ Mn, then10

lim
n→+∞

dHaus

(
M ∩ B(x, 1) ∪ S(x, 1), Mn ∩ B(x, 1) ∪ S(x, 1)

)
= 0.

10Recall that, if (Mn) is a sequence of nonempty closed subsets of R
N , then M =

lim infn→+∞ Mn = lim supn→+∞ Mn if and only if, for every nonempty bounded subset B,

limn→+∞ dHaus(M ∩ B ∪ bdB, Mn ∩ B ∪ bdB) = 0.
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For every n ∈ N, take

xn ∈ projMn∩B(x,1)∪S(x,1)

(
x +

ζ

2

)

and set 2ζn = x + ζ
2 − xn. From Lemma 4.5, limn→+∞ |xn − x| = 0, hence

limn→+∞ |ζn − ζ| = 0. But, by construction, ζn ∈ NP
Mn∩B(x,1)∪S(x,1)

(xn). For

n large enough xn ∈ B(x, 1), which implies xn ∈ Mn and

NP
Mn∩B(x,1)∪S(x,1)

(xn) = NP
Mn

(xn),

which completes the proof of (3.3). �

7.1.2. Proof of (3.1). It can be found in [12, Lemma 4.1], but we give here a shorter
argument. Let x ∈ M and ζ ∈ NP

M (x). Since x ∈ lim supn→+∞ Mn, there is a subse-
quence (Mϕ(n)) such that x ∈ lim infn→+∞ Mϕ(n). Up to a subsequence, in view of
the generalized Bolzano-Weierstrass theorem (see [22, §25, VIII]), we may assume
that lim infn→+∞ Mϕ(n) = lim supn→+∞ Mϕ(n). Since lim infn→+∞ Mϕ(n) ⊂ M

and x ∈ lim infn→+∞ Mϕ(n), then NP
M (x) ⊂ NP

lim infn→+∞ Mϕ(n)
(x). Applying (3.3)

to the sequence (Mϕ(n)), we obtain that (x, ζ) ∈ lim supn→∞ graph(NP
Mϕ(n)

) ⊂
lim supn→∞ graph(NP

Mn
). �

7.2. Proof of Proposition 3.2.

7.2.1. Proof of (3.5). Let x ∈ R
N and ζ ∈ ∂P f(x). We immediately obtain by defi-

nition of the proximal subdifferential that (ζ,−1) ∈ NP
epi (f)(x). On the other hand,

since the sequence (fn)n∈N epi-converges to f , then epif = lim supn→+∞ epifn =
lim infn→+∞ epifn. Hence by Proposition 3.1 (3.1), since these sets are closed, there
exists a sequence (xn)n∈N converging to x and a sequence (ζn, λn)n∈N of points in
R

N × R which converges to (ζ,−1) and such that

∀n ∈ N, (ζn, λn) ∈ NP
epi (fn)(xn).

Therefore we deduce that for n large enough − 1
λn

ζn ∈ ∂P fn(xn), and that the

sequence (− 1
λn

ζn)n∈N converge to ζ. �

7.2.2. Proof of (3.6). It follows immediately by construction of the limiting sub-
differential and by the closedness of the lim inf of sets. �

7.2.3. Proof of (3.7). This is a consequence of Proposition 4.5, Chapter 3, page
138, of the book of Clarke, Ledyaev, Stern and Wolenski [9], which follows from
Subbotin’s theorem [36, Theorem 4.2] which asserts that every D-subdifferential
can be approximated by proximal subgradients. �

7.3. Proof of Lemma 2.1. Let x ∈ R and ζ ∈ ∂f(x). We want to prove that
ζ ∈ ∂P f(x) ∪ ∂Lf(x) (the second equality is left to the reader). Adding an affine
function if necessary, we can assume that ζ = 0. We argue by contradiction, hence
we suppose that 0 /∈ ∂P f(x) and that 0 /∈ ∂Lf(x). Since the multivalued mapping
y �→ ∂Lf(y) is upper semicontinuous, this means that there exists two positive
constants α, β such that for any y with |y − x| < ε,

∂Lf(y) ∩ (−α, β) = ∅.
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Let us remark that if a function has a local extrema at a point z ∈ R, then
0 ∈ ∂P f(z) ∪ ∂P f(z). Therefore, we deduce that our function f has neither lo-
cal maximum nor local minimum and hence that f is either increasing or decreas-
ing. But if a function is increasing, then its proximal superdifferential has values
in [0,∞), and if it is decreasing, then its proximal superdifferential has values in
(−∞, 0]. We deduce in both cases that the limiting supergradient has a constant
sign. Since 0 ∈ ∂f(x) = co∂Lf(x0) and since ∂Lf(x) ∩ (−α, β) = ∅, we get a
contradiction. �

7.4. Proof of Lemma 2.2. Let x be in M . If x is in the interior of M , then the
conclusion of the lemma is obvious. If x is on the boundary of M , then since M is
epi-Lipschitz there exists a neighbourhood V of x such that M ∩ V can be seen as
the epigraph of some Lipschitz function. In fact, without loss of generality, we can
assume that x = 0 and that there exists f : H → R Lipschitz such that

M ∩ V = epi(f) ∩ V ,

where H denotes the hyperplane such that H
⊕
⊥ eN = R

N (where eN = (0, · · · , 0, 1)
is the last vector of the canonical basis of R

N ). Hence by the fundamental properties
of the proximal sub- and superdifferentials, we have that for any y ∈ H ∩ V ,

ζ ∈ ∂P f(y) ⇐⇒ (ζ,−1) ∈ NP
M (y, f(y)),

ζ ∈ ∂P f(y) ⇐⇒ (ζ,−1) ∈ NP
M̂

(y, f(y)).

The same equivalences hold for the limiting sup- and superdifferentials, and more-
over

ζ ∈ ∂f(y) ⇐⇒ (ζ,−1) ∈ NC
M (y, f(y)).

We let the reader deduce the conclusions of the lemma from Lemma 2.1. �

7.5. Proof of Proposition 2.3. It is an immediate consequence of Proposition 3.2
and Lemma 2.1. �

7.6. Proof of Proposition 2.4. It is an immediate consequence of Proposition 3.1
and Lemma 2.2. �

8. Proof of the consequences

8.1. Proof of Corollary 3.2. Let Ω = {x ∈ U |δ(x) > 0}. Since Theorem 2.2
corresponds to the case Ω = U , the proof of Corollary 3.2 consists in properly gluing
the approximation obtained on Ω and the function f on U \Ω. This kind of gluing
was largely developed in [15], where equivalence was shown between formulations
with Ω = U and Ω �= U . So the techniques used below can already be found in [15]
and the associated references. Let

ε(x) = min
{

δ(x),
d(RN \ U, x)

2
, d(RN \ Ω, x), d(RN \ Ω, x)2

}
.

Noting that ε(x) > 0 ⇔ δ(x) > 0 ⇔ x ∈ Ω, let fε : Ω → R be given by Theorem 2.2
(associated to the function ε). Let us define the function fδ : U → R by

fδ(x) := fε(x) if x ∈ Ω,(8.1)

fδ(x) := f(x) if x ∈ U \ Ω.
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Proof of (3.8). Let W be a compact convex subset of U . Let L be the Lipschitz
constant of f on the compact set

⋃
x∈W B(x, ε(x)). Consider x and x′ in W . If

(x, x′) ∈ U \ Ω × U \ Ω, clearly |fδ(x) − fδ(x
′)| = |f(x) − f(x′)| ≤ L|x − x′|. If

max{d(RN \Ω, x), d(RN\Ω, x′)} ≤ |x−x′|, since |fδ(x)−f(x)| ≤ δ(x) ≤ d(RN \Ω, x)
and |fδ(x

′) − f(x′)| ≤ δ(x′) ≤ d(RN \ Ω, x′), we obtain

|fδ(x) − fδ(x
′)| ≤ d(RN \ Ω, x) + d(RN \ Ω, x′) + |f(x) − f(x′)| ≤ (L + 2)|x − x′|.

Without any loss of generality, let us finally consider the case |x−x′| < d(RN \Ω, x).
Then [x, x′] ⊂ B(x, d(RN \ Ω, x)) ⊂ Ω, and, for some z ∈ [x, x′],

|fδ(x) − fδ(x
′)| ≤ |∇fε(x)(z)| |x − x′|.

But [x, x′] ⊂ W and from (2.7), ∇fε(z) ∈ ∂f(z+ε(z)B)+ε(z)B. Hence |∇fε(x)(z)|
≤ L + ε(z) and |fδ(x)− fδ(x

′)| ≤ (L + max ε(W ))|x− x′|, which finishes the proof
of (3.8). �

Proof of (3.9). It is immediate from (2.6) and from (8.1). �

We now need the following result.

Lemma 8.1. Let x ∈ U \ Ω. Then f is differentiable at x if and only if fδ is
differentiable at x, and then

∇fδ(x) = ∇f(x).

Proof of Lemma 8.1. From (8.1), the proof is immediate if x ∈ U\clΩ. Now assume
that x ∈ bdΩ. We first assume that f is differentiable at x. Then, for every x′ ∈ U ,

f(x′) = f(x) + 〈∇f(x), x′ − x〉 + o(|x′ − x|).11

We proved |fε − f | ≤ ε, we recall ε(x′) ≤ d(RN \ Ω, x′)2, and moreover
d(RN \ Ω, x′) ≤ |x′ − x| since x ∈ bdΩ. Hence

|fε(x
′) − f(x′)| ≤ |x′ − x|2 = o(|x′ − x|).

Since ε(x) = 0, we have fε(x) − f(x) = 0, and we obtain

fε(x
′) = fε(x) + 〈∇f(x), x′ − x〉 + o(|x′ − x|).

Thus fε is differentiable at x and ∇fε(x) = ∇f(x). The converse is proved in the
same way. �

Proof of (3.10). If x ∈ Ω, the inclusion is immediate from (2.8). It is also clear
if x ∈ U \ clΩ. Now consider x ∈ bdΩ. In view of the definition of ∂fδ and the
convexity of ∂f , it is sufficent to prove the following inclusion:

{
lim

n→+∞
∇fδ(xn), (xn) ⊂ Dom(∇fδ), xn → x

}
⊂ ∂f(x).

Indeed, let v ∈ R
N and let (xn) be a sequence in Dom(∇fδ) converging to x such

that v = limn→+∞ ∇fδ(xn). Without any loss of generality, we may assume that
one of the two following cases holds: (a) (xn) ⊂ U \ Ω or (b) (xn) ⊂ Ω. In case
(a), then, from Lemma 8.1, f is differentiable at xn and ∇fδ(xn) = ∇f(xn). Hence
v = limn→+∞ ∇f(xn) ∈ ∂f(x). Assume now that case (b) holds. Then ∇fδ(xn) =
∇fε(xn). But ∇fε(xn) ∈ ∂f(xn + ε(xn)B) + ε(xn)B. Since limn→+∞ ε(xn) = 0,
we obtain v = limn→+∞ ∇fε(xn) ∈ ∂f(x). �

11I.e., there is a function ε : R → R such that limt→0 ε(t) = 0, and o(|h|) = |h|ε(|h|) for all
h ∈ R

N .
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Proof of (3.11). In view of (2.8), the proof is done in the same way as the previous
one, when one notices additionally that B(x, ε(x)) ⊂ Ω for every x ∈ Ω. �

8.2. Proof of Corollary 3.3. Let fM be given by Corollary 3.2, for f = dM and
δ = dM

2 . For λ > 0, we define the set Mλ as follows:

Mλ = {x ∈ R
N |fM (x) ≤ λ}.

We claim that, for some λ0 > 0, the family (Mλ)λ0>λ>0 satisfies:
(i)′ for every λ, Mλ is a compact and smooth subset of R

n, i.e., is a
closed C∞ submanifold with a boundary of R

N , of full dimension;
(ii)′ for every λ′ < λ, Mλ′ ⊂ Mλ ⊂ B(M, 1), and M =

⋂
λ0>λ>0 Mλ;

(ret)′ for every λ, M is a deformation retract of Mλ;

(cn)′ graph(ÑM ) = lim supλ→0,λ0>λ>0 graph(NP
Mλ

).
We refer to [14, Proof of Theorem 2.1] for the definition of λ0, (i)′, (ii)′, (ret)′ and

the inclusion lim supλ0>λ>0 graph(NMλ
) ⊂ graph(ÑM ). We only note that, since

|f − dM | < dM

2 , we have the inclusion f−1
M ((0, 1/2]) ⊂ B(bdM, 1) which proves the

inclusion Mλ ⊂ B(M, 1) and the compacity of Mλ.

We now prove the inclusion graph(ÑM ) ⊂ lim supλ→0,λ0>λ>0 graph(NP
Mλ

). Take

(x, v) ∈ graph(ÑM ). From the definition of ÑM , there is an element w in the set
lim supx′→x,dM (x′)>0 ∂dM (x′) and µ ≥ 0 such that v = µw. Then there is a sequence

(xn, wn) in R
N × R

N such that x = limn→+∞ xn, dM (xn) > 0, wn ∈ ∂dM (xn) and
w = limn→+∞ wn. From Corollary 3.2

∂dM (xn) ⊂ ∂fM

(
B(x,

dM (xn)

2
)
)

+ B(0,
dM (xn)

2
)

= ∇fM

(
B(x,

dM (xn)

2
)
)

+ B(0,
dM (xn)

2
).

Hence there is x′
n ∈ B(x, dM (xn)

2 ) such that

|wn −∇fM (x′
n)| ≤ dM (xn)

2
.

Since x = limn→+∞ xn, then limn→+∞ dM (xn) = 0, hence x = limn→+∞ x′
n and

limn→+∞ dM (x′
n) = 0. Therefore limn→+∞ fM (x′

n) = 0, and for n large enough,
fM (x′

n) ≤ λ0, hence

∇fM (x′
n) �= 0, x′

n ∈ bdMfM (x′

n), and ∇fM (x′
n) ∈ NP

MfM (x′
n)

(x′
n).

Then
(x′

n, µ∇fM (x′
n)) ∈ graph(NP

MfM (x′
n)

),

(x, v) = (x, µw) = lim
n→+∞

(x′
n, µ∇fM (x′

n)).

Since limn→+∞ fM (x′
n) = 0, then (x, v) ∈ lim supλ→0,λ0>λ>0 graph(NP

Mλ
). The

proof of Corollary 3.3 is finished in view of the following lemma.

Lemma 8.2. Let (Gλ)λ>0 be a family of closed subsets of R
N . Then there is a

sequence (λn) ⊂ R+ \ {0} such that limn→+∞ λn = 0 and

lim sup
λ→0

Gλ = lim sup
n→+∞

Gλn
.

The proof of Lemma 8.2 is achieved by considering a dense countable subset of
the closed set lim supλ→0 Gλ and with a diagonal argument. It is left to the reader.
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8.3. Proof of Proposition 3.4. The proof of Proposition 3.4 is elementary and
is achieved by computing Clarke’s generalized gradients of depi f (x), the distance
function to the epigraph of f , at x /∈ epif , with x = (x1, x2, x3). Indeed, since
f(λx1, λx2)=λf(x1, x2), then proj epi f (λx)=λproj epi f (x), ∂depi f (λx)=∂depi f (x)
and

(8.2) lim sup
x→0,depi f (x)>0

∂depi f (x) = ∂depi f (R3 \ epif).

The proof is achieved by considering 11 different cases. For the comfort of the
reader, the number of each case corresponds to the place of proj epi f (x), as one can
see below. The sets E1, E2, E3 and E4 are defined in Section 6. We denote

n1 := ∇f |int E1
= (

3

2
, 1), n2 := ∇f |int E2

= (−1

2
, 1),

n3 := ∇f |int E3
= (

3

2
,−1), n4 := ∇f |int E4

= (−1

2
,−1),

e12 := (0, 1, 1), e23 := (−1,−1,−1

2
), e34 := (0,−1, 1), e41 := (1,−1,

1

2
),

and note

f(E1) = R+e41 + R+e12, f(E2) = R+e12 + R+e23,

f(E3) = R+e23 + R+e34, f(E4) = R+e34 + R+e41,

and graphf = f(E1) ∪ f(E2) ∪ f(E3) ∪ f(E4).
Case 1: det(n1, e41, x) ≤ 0 and det(n1, e12, x) ≤ 0, i.e., 2x1 + 7x2 + 10x3 ≥ 0

and 4x1 − 3x2 + 3x3 ≥ 0. The fact that x /∈ epif implies 3
2x1 + x2 − x3 > 0. Then

proj epi f (x) ∈ f(E1) and

∇depi f (x) =
2√
17

(
3

2
, 1,−1

)
.

Case 1 ∩ 2: det(n1, e12, x) ≥ 0, det(n2, e12, x) ≥ 0, and 〈e12, x〉 ≥ 0, i.e., 4x1 −
3x2 + 3x3 ≤ 0, −4x1 − x2 + x3 ≥ 0 x2 + x3 ≥ 0. Then proj epi f (x) ∈ R+e12 and

∇depi f (x) = λ

(
x1,

x2 − x3

2
,
x3 − x2

2

)
,

with λ = (x2
1 + 1

2 (x2 − x3)
2)−

1
2 .

Case 2: det(n2, e12, x) ≤ 0 and det(n2, e23, x) ≤ 0, i.e., −4x1 − x2 + x3 ≤ 0 and
2x1 − x2 − 2x3 ≥ 0. The fact that x /∈ epif implies −1

2x1 + x2 − x3 > 0. Then
proj epi f (x) ∈ f(E2) and

∇depi f (x) =
2

3

(
−1

2
, 1,−1

)
.

Case 2 ∩ 3: det(n2, e23, x) ≥ 0, det(n3, e23, x) ≥ 0 and 〈e23, x〉 ≥ 0, i.e., 2x1 −
x2 − 2x3 ≤ 0, 2x1 + x3 < 0 and −x1 − x2 − 1

2x3 ≥ 0. Then proj epi f (x) ∈ R+e23

and

∇depi f (x) = µ

(
5

9
x1 −

4

9
x2 −

2

9
x3,−

4

9
x1 +

5

9
x2 −

2

9
x3,−

2

9
x1 −

2

9
x2 +

8

9
x3

)
,

with µ = ( 5
9x2

1 + 5
9x2

2 + 8
9x2

3 − 8
9x1x2 − 4

9x2x3 − 4
9x1x3)

− 1
2 .

Case 3: det(n3, e23, x) ≤ 0 (d(f(E3), x) < d(f(E4), x) and det(n4, e41, x) ≤ 0)
or (d(f(E3), x) < d(R+e41, x) and det(n4, e41, x) ≥ 0), i.e., 2x1 − 7x2 + 10x3 ≥ 0,
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(11 + 3
√

17x1 + 4x2 + 4x3 < 0 and −2x1 − x2 + 2x3 ≥ 0) or (4x2
1 + 49x2

2 + 100x2
3 +

244x1x2 + 40x1x3 − 4x2x3 > 0 and −2x1 − x2 + 2x3 ≤ 0). The fact that x /∈ epif
implies 3

2x1 − x2 − x3 > 0. Then proj epi f (x) ∈ f(E3) and

∇depi f (x) =
2√
17

(
3

2
,−1,−1

)
.

Case 3∩4 a): det(n3, e23, x)≤0, det(n4, e41, x)≤0 and d(f(E3), x)=d(f(E4), x),

i.e., 2x1 − 7x2 + 10x3 ≥ 0, −2x1 − x2 + 2x3 ≥ 0 and 11 + 3
√

17x1 + 4x2 + 4x3 = 0.
Then proj epi f (x) has two elements, one in f(E3) and the other in f(E4), and

∂depi f (x) =

[
2√
17

(
3

2
,−1,−1

)
,
2

3

(
−1

2
,−1,−1

)]
.

Case 3∩ 4 b): det(n3, e23, x) ≤ 0, d(f(E3), x) = d(R+e41, x), and det(n4, e41, x)
≥ 0, i.e., 2x1−7x2 +10x3 ≥ 0, 4x2

1 +49x2
2 +100x2

3 +244x1x2 +40x1x3−4x2x3 = 0
and −2x1 − x2 + 2x3 ≤ 0. Then proj epi f (x) has two elements, one in f(E3) and
the other in R+e41 and

∂depi f (x) =

[
2√
17

(
3

2
,−1,−1

)
,

ν

(
5

9
x1 +

4

9
x2 −

2

9
x3,

4

9
x1 +

5

9
x2 +

2

9
x3,−

2

9
x1 +

2

9
x2 +

8

9
x3

)]
,

with ν = ( 5
9x2

1 + 5
9x2

2 + 8
9x2

3 + 8
9x1x2 + 4

9x2x3 − 4
9x1x3)

− 1
2 .

Case 2∩ 3
⋂

4∩ 1: det(n3, e23, x) ≥ 0, 〈e23, x〉 ≥ 0, 〈e41, x〉 ≥ 0 and d(R+e23, x)
= d(R+e41, x), i.e., 2x1 − 7x2 + 10x3 < 0, −x1 − x2 − 1

2x3 ≥ 0, x1 − x2 + 1
2x3 ≥ 0,

and −2x1 − x2 + 2x3 = 0. Then proj epi f (x) has two elements, one in R+e23 and
the other in R+e41, and

∂depi f (x) =

[
µ

(
5

9
x1 −

4

9
x2 −

2

9
x3,−

4

9
x1 +

5

9
x2 −

2

9
x3,−

2

9
x1 −

2

9
x2 +

8

9
x3

)
,

ν

(
5

9
x1 +

4

9
x2 −

2

9
x3,

4

9
x1 +

5

9
x2 +

2

9
x3,−

2

9
x1 +

2

9
x2 +

8

9
x3

)]
,

with µ = ( 5
9x2

1 + 5
9x2

2 + 8
9x2

3 − 8
9x1x2 − 4

9x2x3 − 4
9x1x3)

− 1
2 and ν = ( 5

9x2
1 + 5

9x2
2 +

8
9x2

3 + 8
9x1x2 + 4

9x2x3 − 4
9x1x3)

− 1
2 .

Case 4: det(n4, e41, x) ≤ 0 and d(f(E3), x) > d(f(E4), x), i.e., −2x1 − x2 +

2x3 ≥ 0 and 11 + 3
√

17x1 + 4x2 + 4x3 > 0. The fact that x /∈ epif implies
− 1

2x1 − x2 − x3 > 0. Then proj epi f (x) ∈ f(E4) and

∇depi f (x) =
2

3

(
−1

2
,−1,−1

)
.

Case 4 ∩ 1: det(n4, e41, x) ≥ 0, det(n1, e41, x) ≥ 0 and 〈e41, x〉 ≥ 0, i.e., −2x1 −
x2+2x3 ≤ 0, 2x1+7x2+10x3 ≤ 0 and x1−x2+ 1

2x3 ≥ 0. Then proj epi f (x) ∈ R+e41

and

∇depi f (x) = ν

(
5

9
x1 +

4

9
x2 −

2

9
x3,

4

9
x1 +

5

9
x2 +

2

9
x3,−

2

9
x1 +

2

9
x2 +

8

9
x3

)

with ν = ( 5
9x2

1 + 5
9x2

2 + 8
9x2

3 + 8
9x1x2 + 4

9x2x3 − 4
9x1x3)

− 1
2 .
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Case 0: 〈e12, x〉 ≤ 0, 〈e23, x〉 ≤ 0 and 〈e41, x〉 ≤ 0. Then proj epi f (x) = 0 and

∇depi f (x) =
x

|x| .

By a direct computation, and in view of the equality (8.2), one obtains the two

sets lim supx→0,depi f (x)>0 ∂depi f (x) and Ñepi f (0). �
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quelques résultats en densité. (French) C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 16,
A753–A755 MR0535804 (80d:49004)
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