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ON THE EXISTENCE OF LOCAL SMOOTH REPULSIVE

STABILIZING FEEDBACKS IN DIMENSION THREE

LUDOVIC RIFFORD

Abstract. Given an affine control system in R
3 subject to the Hörman-

der’s condition at the origin, we prove the existence of a local smooth
repulsive stabilizing feedback at the origin. Our construction is based on
the classical homogeneization procedure, on the existence of a semicon-
cave control-Lyapunov function, and on the classification of singularities
of semiconcave functions in dimension two.

1. Introduction

This paper is concerned with the local stabilization problem for control
systems of the form

ẋ =
m
∑

i=1

uiXi(x), (1)

where X1, · · · , Xm are smooth vector fields on Rn which satisfy the Hörman-
der’s bracket generating condition at the origin, namely,

Lie{X1, · · · , Xm}(0) = Rn. (2)

According to the classical Chow-Rashevsky theorem (see [6, 12, 33]), under
the latter assumption, the control system (1) is locally controllable at the
origin. This implies that there exists some neighbourhood of the origin V
such that, for every x ∈ V, there exists some open-loop control

u(·) = (u1(·), · · · , um(·)) ∈ L∞ ([0, 1]; Rm)

for which the (unique) solution of

x(0) = x and ẋ(t) =
m
∑

i=1

ui(t)Xi(x(t)) for almost every t ≥ 0,

satisfies x(1) = 0. A natural question is to wonder if such a control system
is locally asymptotically stabilizable at the origin. In other words, do there
exist some neighbourhood of the origin W and some continuous function

k = (k1, · · · , km) : W −→ Rm,

such that for any ǫ > 0 sufficiently small, there is δ > 0 such that all the
trajectories of the closed-loop system

ẋ(t) =

m
∑

i=1

ki(x(t))Xi(x(t)), ∀t ≥ 0,
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with |x(0)| < δ satisfy |x(t)| < ǫ for any t ≥ 0 (property of Lyapunov stabil-
ity) , and tend to the origin as t tends to infinity (property of attractivity)?
In fact, the so-called stabilization problem can be stated in the much more
general case of control systems of the form (1) which are locally asymptoti-
cally controllable at the origin.

The control system (1) is said to be locally asymptotically controllable at
the origin if the following property is satisfied: There exists some constant
ρ > 0 such that for every ǫ > 0, there is δ > 0 such that, for each x ∈ Rn

with |x| ≤ δ there is a control u(·) ∈ L∞([0,∞); Rm) such that ‖u(·)‖∞ ≤ ρ,
the unique solution x(·) of

x(0) = x and ẋ(t) =
m
∑

i=1

ui(t)Xi(x(t)) for almost every t ≥ 0,

tends to 0 as t tends to ∞ and |x(t)| ≤ ǫ for all t ≥ 0.
In general, such control systems are not locally asymptotically stabilizable at
the origin. The Brockett’s necessary condition ([10], or [17] for the stronger
Coron’s necessary condition) asserts that if the control system (1) is locally
asymptotically stabilizable at the origin, that is if there exist some neigh-
bourhood of the origin W and some continuous feedback k : W → Rm which
satisfy the property above, then for any µ > 0 sufficiently small, there is
ν > 0 (such that νB ⊂ W, where B denotes the open unit ball in Rn) such
that

µB ⊂
{

m
∑

i=1

ki(x)Xi(x) : x ∈ νB

}

⊂
{

m
∑

i=1

uiXi(x) : x ∈ νB, u ∈ Rm

}

.

Moreover, many control systems which satisfy the Hörmander’s condition
(2) do not satisfy the Brockett’s necessary condition. For instance the well-
known ”nonholonomic integrator”, given by

ẋ = u1X1(x) + u2X2(x) = u1





1
0
x2



+ u2





0
1

−x1



 ,

satisfies the Hörmander’s condition (2), but




0
0
µ



 /∈
{

u1X1(x) + u2X2(x) : x ∈ R3, (u1, u2) ∈ R2
}

,

for any µ 6= 0. More generally, any control system of the form

ẋ = u1X1(x) + u2X2(x),

which satisfies the Hörmander’s condition (2) and such thatX1(0) andX2(0)
are linearly independent, is locally controllable at the origin but not locally
asymptotically stabilizable at the origin.

The absence of continuous stabilizing feedbacks motivated several authors
to define new types of stabilizing feedbacks; contributions in that direction
have been made by Sussmann [49], Artstein [4], Coron [18, 19], Clarke,
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Ledyaev, Sontag and Subbotin [15], Ancona and Bressan [1], and the au-
thor [34, 35, 38, 41, 42]1. For instance, Ancona and Bressan proved in
[1] (see also [38]), that if the control system (1) is locally (resp. globally)
asymptotically controllable at the origin, then there exists a feedback law
k : Rn → Rm which is locally bounded (and indeed piecewise constant) such
that the closed-loop system is locally (resp. globally) asymptotically stable
at the origin in the sense of Carathéodory. This means that we can construct
some neighbourhood of the origin W and some function k : W → Rm which
is locally bounded, such that, for any ǫ > 0 sufficiently small, there is δ > 0
such that for any x ∈ W with |x| < δ, all the absolutely continuous arcs
x(·) : [0,∞) → Rn which are solutions (such arcs exist) of

x(0) = x and ẋ(t) =
m
∑

i=1

ki(x(t))Xi(x(t)), a.e. t ∈ [0,∞),

satisfy |x(t)| < ǫ for any t ≥ 0 (property of Lyapunov stability), and tend to
the origin as t tends to infinity (property of attractivity). These solutions
are called the Carathéodory solutions of the closed-loop system

ẋ =

m
∑

i=1

ki(x)Xi(x). (3)

To be clear, whenever we will say that some feedback k : W → Rm stabilizes
(locally or globally) the system (1) to the origin in the sense of Carathéodory,
we mean that the Carathéodory solutions of the closed-loop system (3) ex-
ist and that all of them satisfy both properties of Lyapunov stability and of
attractivity.

In our previous paper [42], we viewed that the Carathéodory stabilizing
feedback k can indeed be taken to be smooth outside some stratified closed
set S (called the singular set of the stabilizing feedback) in such a way that
the Carathéodory solutions of (3) remain outside the set S for all time t ≥ 0
except for t in a locally finite subset of [0,∞). In other words, for every
Carathéodory solution x(·) : [0,∞) → Rn of the closed-loop system (3), the
set of times t for which x(t) belongs to S is a locally finite subset of [0,∞).
In view of this result, it is natural to wonder if we can avoid crossing the
singular set S for positive time. It is proved in [38] that such a property
holds for control systems of the form (1) with m = 1; and also, whenever the
control system (1) admits a certain type of semiconcave control-Lyapunov
function. Let us clarify the type of stabilizing feedback we would like to
construct.

Definition 1.1. We say that the control system (1) admits a local smooth
repulsive stabilizing feedback at the origin (abreviated LSRS0 feedback in
the sequel) if there exist a neighbourhood of the origin W, a set S ⊂ W
containing the origin and a feedback kS : W → Rm such that the following
properties are satisfied:

1For more details on the stabilization problem, we recommend to the reader the his-
torical accounts of Coron [20] and Sontag [48]; and for a survey of the contribution of the
author, we refer the reader to [40].
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(i) The set S is closed.
(ii) The feedback kS is locally bounded on Rn and smooth on Rn \ S.
(iii) The closed-loop system (3) is locally asymptotically stable at the origin
in the sense of Carathéodory.
(iv) For any Carathéodory trajectory x(·) of (3),

x(t) /∈ S, ∀t > 0.

From the point of view of applications, we notice that the smooth repul-
sive stabilizing feedbacks share the same properties of robustness as the dis-
continuous stabilizing feedbacks which were constructed in [15, 14, 38] (see
also [2, 32]). Moreover, we stress the fact that, whenever a control system is
stabilized by means of a smooth repulsive stabilizing feedback, then this feed-
back depends smoothly on time (for positive times) along any trajectory of
the corresponding closed-loop system. We proved in [41] that, if the control
system (1) evolves on a smooth surface M , and if the Hörmander’s bracket
generating condition is satisfied for every x ∈M , then for any x0 ∈M there
exists a smooth repulsive stabilizing feedback which stabilizes the control
system globally to the point x0. In the present paper, our objective is to
prove a similar result locally in dimension three. More precisely, we will
prove:

Theorem 1. If n = 3 and if the control system (1) satisfies the Hörmander’s
bracket generating condition at the origin (2), then it admits a local smooth
repulsive stabilizing feedback at the origin.

Our proof is based on the concept of semiconcave control-Lyapunov func-
tions, on the classification of singularities of some stabilizing feedbacks for
control systems on surfaces that we proved in [39], and on some classical tech-
niques of homogeneization for control systems satisfying the Hörmander’s
bracket generating condition. The paper is organized as follows. In Sec-
tion 2, we provide preliminaries on homogeneous control systems, proving a
converse-Lyapunov result for globally asymptotically controllable homoge-
neous control systems. In Section 3, we prove Theorem 1 in the special case
of homogeneous control systems of degree zero with respect to the standard
dilation. Then we deduce in Section 4 a proof of Theorem 1. In Section
5, we announce corollaries concerning the stabilization by smooth periodic
feedbacks. In Appendix, we present an example of an analytic homogeneous
control system in R3 which is globally asymptotically stable at the origin
and which does not admit a smooth repulsive stabilizing feedback at the
origin.

Notations:
Throughout this paper, R denotes the set of real numbers, | · | the Euclidean
norm of Rn, B the open unit ball {x : |x| < 1} in Rn, B the closure of B
and B(x, r) = x + rB (resp. B(x, r) = x + rB) the ball (resp. the closed
ball) centered at x and with radius r. The unit sphere of Rn is denoted by
Sn−1 and for any x ∈ Sn−1 the tangent space to Sn−1 at x is denoted by
TxSn−1. In addition if A is a subset of Rn, then dA(·) denotes the distance
function to the set A in Rn. If m is a positive integer, | · |m denotes the
Euclidean norm of Rm, Bm the open unit ball of Rm, Bm the closure of Bm
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and Bm(x, r) = x + rBm (resp. Bm(x, r) = x + rBm) the ball (resp. the
closed ball) centered at x and with radius r. Furthermore, an admissible
control for the system (1) is a function u(·) : [0,∞) → Rm which belongs
to U := L∞([0,∞); Rm); we denote by ‖u(·)‖∞ the supremum norm of
u(·) ∈ U . We recall that if the vector fields X1, · · ·Xm are assumed to be
bounded on R3 (or on Rn if we work on Rn), then for every x ∈ R3 and
for any admissible control u(·), there exists a unique absolutely continuous
curve x(·) : [0,∞) → Rn which satisfies

ẋ(t) =
m
∑

i=1

ui(t)Xi(x(t))

for almost every t ∈ [0,∞) and such that x(0) = x. If x is some given
state in R3 and if u(·) is an admissible control, we denote by x(·;x, u(·))
the trajectory solution of the system above and such that x(0;x, u(·)) = x.
Let K∞ denote the set of all continuous functions ρ : [0,∞) → [0,∞) for
which (i) ρ(0) = 0 and (ii) ρ is strictly increasing and unbounded. We let
KL denote the set of all continuous functions β : [0,∞) × [0,∞) → [0,∞)
for which (1) β(·, t) ∈ K∞ for each t ≥ 0, (2) β(s, ·) is nonincreasing for each
s ≥ 0, and (3) β(s, t) → 0 as t→ +∞ for each s ≥ 0.

2. Preliminaries on homogeneous control systems

The aim of this section is to develop results about homogeneous control
systems which are of interest in the proof of Theorem 1. Until the end of
this section, we consider a general control system of the form

ẋ = Y (x, u) :=
m
∑

i=1

uiYi(x) (4)

where Y1, · · · , Ym are locally Lipschitz vector fields on Rn and where the
control u = (u1, · · · , um) belongs to Rm. First we introduce the definitions
of dilations and homogeneity, then we define the notion of homogeneous
control systems and we prove a homogeneous converse Lyapunov theorem for
homogeneous control systems which are globally asymptotically controllable
at the origin.

2.1. Dilations and homogeneity. For any ǫ > 0, the dilation δr
ǫ associ-

ated with a ”weight vector” r = (r1, · · · , rn) (where the ri’s are positive
integers), is the map δr

ǫ : Rn → Rn defined by

δr
ǫ (x1, · · · , xn) := (ǫr1x1, · · · , ǫrnxn).

If all ri = 1 we write δ1ǫ and call this the standard dilation.
A continuous function h : Rn → R is homogeneous of degree d ≥ 0 (where d
is an integer) with respect to δr

ǫ , if

∀ǫ > 0,∀x ∈ Rn, h(δr
ǫ (x)) = ǫdh(x).

A continuous vector field Z on Rn is said to be homogeneous of degree k ≤ 1
(where k is an integer) with respect to δr

ǫ if for every j ∈ {1, · · · , n} the j-th
component of Z (i.e. the function x 7→ Zj(x)) is homogeneous of degree
rj − k with respect to δr

ǫ .
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2.2. Homogeneous control systems. In this subsection, we will assume
that the control system (4) is homogeneous of degree k ≤ 1 with respect to
the dilation δr

ǫ , namely, that each vector field Yi (i = 1, · · · ,m) is homoge-
neous of degree k with respect to δr

ǫ , which means that for every i = 1, · · · ,m
and for any x ∈ Rn, ǫ > 0, we have

Yi(δ
r
ǫ (x)) = ǫ−kδr

ǫ (Yi(x)). (5)

Applying suitable coordinate and time transformations, Grüne showed in
[22] that we can considerably simplify the class of systems to be considered.
We state this idea in the following proposition. We set Ω := Rn \ {0}.
Proposition 2.1. Set µ := mini=1,··· ,n{ri} and γ := k

µ
∈ Q. There exists

a homeomorphism Φ : Rn → Rn with Φ(0) = 0 which is an analytic diffeo-
morphism from Ω into Ω, and such that if we set for every i = 1, · · · ,m and
for every y ∈ Ω, Ỹi(y) := DΦ(Φ−1(y)) · Yi(Φ

−1(y)), then we have

∀y ∈ Ω,∀ǫ > 0, Ỹi(ǫy) = ǫ1−γ Ỹi(y). (6)

Instead of refering to Grüne’s paper for the proof, we prefer to be complete
and give it. So, let us prove Proposition 2.1.

Proof. Following Grüne [22], corresponding to the family of dilations δr
ǫ , we

define a function N : Rn → [0,∞) which can be interpreted as a dilated
norm with respect to δr

ǫ . Denoting l = 2
∏n

i=1 ri > 0, we define for every
x ∈ Rn, N(x) by

N(x) :=

(

n
∑

i=1

|xi|
l

ri

) 1
l

. (7)

We note that N is analytic on Ω. Moreover, we have N(0) = 0, N(x) > 0 if
x ∈ Ω, and N(δr

ǫ (x)) = ǫN(x) for any x ∈ Rn, ǫ ≥ 0. Using the function N ,
we can define P : Ω → Ω by

P (x) = (N(x)−r1x1, · · · , N(x)−rnxn), for any x = (x1, · · · , xn) ∈ Ω.

The function P defines a projection from Ω intoN−1(1) satisfying P (δr
ǫ (x)) =

P (x) for any x ∈ Ω, ǫ > 0. Since for any x ∈ Ω, the function t 7→ N(tx) is
strictly increasing, it is bijective and then the function

S : N−1(1) → Sn−1

x 7→ x

|x|
is an analytic diffeomorphism. Define a coordinate transformation Φ : Rn →
Rn by

Φ(x) := N(x)µS(P (x)) if x ∈ Ω, and Φ(0) := 0;

it is continuous on Rn and analytic on Ω. We have

Φ(δr
ǫ (x)) = ǫµΦ(x), Φ−1(ǫµy) = δr

ǫ (Φ
−1(y)), (8)

and then by differentiation, we obtain that for every x ∈ Ω and v ∈ Rn,

DΦ(δr
ǫ (x)) · v = ǫµDΦ(x) · [(δr

ǫ )
−1(v)]. (9)

Thus defining for every i = 1, · · · ,m and for every y ∈ Ω,

Ỹi(y) := DΦ(Φ−1(y)).Yi(Φ
−1(y)),
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we obtain (with x = Φ−1(y))

Ỹi(ǫ
µy) = DΦ(Φ−1(ǫµy)).Yi(Φ

−1(ǫµy))

= DΦ(δr
ǫ (x)) · Yi(δ

r
ǫ (x)) (by (8))

= ǫµDΦ(x) · ((δr
ǫ )

−1(Yi(δ
r
ǫ (x)))) (by (9))

= ǫµǫ−kDΦ(x) · (Yi(x)) (by homogeneity of Yi)

= ǫµ−kỸi(y).

We deduce that for for every i = 1, · · · ,m and for any y ∈ Ω, we have

Ỹi(ǫy) = ǫ
1− k

µ Ỹi(y) = ǫ1−γ Ỹi(y).

This completes the proof of Proposition 2.1. �

The construction of the Ỹi’s leads also to the following result.

Proposition 2.2. Let i ∈ {1, · · · ,m}. If we set Ȳi(0) := 0 and

Ȳi(y) := |y|γ Ỹi(y), ∀y ∈ Ω, (10)

then the vector field Ȳi is globally Lipschitz on Rn and homogeneous of degree
zero with respect to the standard dilation.

Proof. Let i ∈ {1, · · · ,m}. Notice that by construction the vector field Ȳi is
locally Lipschitz on Ω. The fact that Ȳi is homogeneous of degree zero with
respect to the standard dilation is a consequence of (6). This implies that
for any y ∈ Ω,

|Ȳi(y)| = |y|
∣

∣

∣

∣

Ȳi

(

y

|y|

)∣

∣

∣

∣

.

Since the vector field Ȳi is locally Lipschitz on the compact sphere Sn−1, it
is bounded on Sn−1. Hence the equality above proves that the vector field
Ȳi is continuous at the origin. Furthermore we have for any y ∈ Ω and for
any ǫ > 0,

DȲi(ǫy) = DȲi(y).

Hence if we denote by LȲi
the maximum of |DȲi(y)| for y ∈ Sn−1, we can

write for every y ∈ Ω,
|DȲi(y)| ≤ LȲi

.

Let x, y ∈ Rn. There exist two sequences xn (resp. yn) which converge to x
(resp. y) such that for each n ∈ N, the segment [xn, yn] belongs to Ω. By
the Mean Value theorem, this implies that for each n ∈ N,

|Ȳi(yn) − Ȳi(xn)| ≤ LȲi
|xn − yn|.

By continuity of Ȳi on Rn, we conclude that the vector field Ȳi is globally
Lipschitz on Rn. �

Finally, if we consider the new control system defined by the vector fields
Ȳ1, · · · , Ȳm, that is the control system

Ȳ (y, v) :=
m
∑

i=1

viȲi(y), (11)

where y ∈ Rn and where the control v = (v1, · · · , vm) ∈ Rm, then the
following result holds.
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Proposition 2.3. Let T > 0 and x ∈ Ω. If u(·) is some admissible control
such that the corresponding trajectory x(·;x, u(·)) of (4) remains in Ω, then
the arc y(·) on [0, T ] defined by

y(t) := Φ(x(t)), ∀t ∈ [0, T ],

is absolutely continuous and is the solution of (11) associated to the control

v(·) := |Φ(x(t))|−γu(·),

such that y(0) = Φ(x).

Proof. The absolutely continuity of y(·) comes from the fact that x(·) is
itself absolutely continuous and that Φ is smooth on Ω. Moreover we can
write for almost every t ∈ [0, T ],

ẏ(t) = DΦ(x(t)) · ẋ(t)

= DΦ(Φ−1(y(t))) ·
m
∑

i=1

ui(t)Yi(x(t))

=
m
∑

i=1

ui(t)DΦ(Φ−1(y(t))) · Yi(Φ
−1(y(t)))

=
m
∑

i=1

ui(t)Ỹi(y(t))

=
m
∑

i=1

vi(t)|y(t)|γ Ỹi(y(t))

=
m
∑

i=1

vi(t)Ȳi(y(t));

which concludes the proof. �

2.3. Homogeneous control-Lyapunov functions for GAC0 homoge-

neous control systems. The result that we present in this subsection
asserts that if the homogeneous control system (4) is globally asymptoti-
cally controllable at the origin then it admits a control-Lyapunov function
which is semiconcave outside the origin and homogeneous of degree 1 with
respect to the same dilation. Before giving the statement of our result, we
recall some basic definitions. We first give the definition of GAC0 control
systems, then we present the definition of a semiconcave control-Lyapunov
function for some control system. We recall that the concept of nonsmooth
control-Lyapunov functions has been initially introduced by Sontag in his
seminal paper [47], where he proved the equivalence of global asymptotic
controllability and the existence of a continuous control-Lyapunov function.
Furthermore we notice that a similar result has been proved by Grüne in
[22].
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Definition 2.4. 2 We call the control system (4) globally asymptotically
controllable at the origin (abreviated GAC0 in the sequel ) provided there
are a nondecreasing function σ : [0,∞) → [0,∞) and a function β ∈ KL
satisfying the following properties:
For each x ∈ Rn, there exists u(·) ∈ U such that
(a) |x(t;x, u(·))| ≤ β(|x|, t) for all t ≥ 0.
(b) ‖u(·)‖∞ ≤ σ(|x|).

Whenever the control system (4) is homogeneous, this definition can be
simplified; we have the following result:

Proposition 2.5. Assume that the control system (4) is homogeneous of
degree k with respect to some dilation δr

ǫ and fix two constants R1, R2 > 0
satisfying R1 > R2 > 0. Then the control system (1) is GAC0 if and only
if there are two constants M,T > 0 such that for any x ∈ N−1(R1), there
exists u(·) ∈ U with ‖u(·)‖∞ ≤ M such that N(x(t;x, u(·)) ≤ M for any
t ∈ [0, T ], and such that N(x(T ;x, u(·))) ≤ R2. Here N denotes the dilated
norm with respect to δr

ǫ that we defined in the proof of Proposition 2.1.

Proof. We just have to prove that the property given in the statement of the
proposition implies the property given in Definition 2.4. Before beginning
the proof, we recall that by construction the dilated norm N is continuous
on Rn, analytic outside the origin, positive definite, and satisfies

N(δr
ǫ (x)) = ǫN(x), ∀x ∈ Rn,∀ǫ > 0. (12)

Moreover we notice that by homogeneity of (4), for any x ∈ Rn and for any
u(·) ∈ U (such that the corresponding trajectory x(·;x, u(·)) of (4) is defined
on [0,∞)), we have that for any ǫ > 0,

x(t; δr
ǫ (x), ǫ

ku(·)) = δr
ǫ (x(t;x, u(·))), ∀t ≥ 0. (13)

As before we set µ := mini=1,··· ,n{ri} and l := 2πn
i=1ri (which indeed appears

in the definition of N), and in addition we define the constant M̄ > 0 by,

M̄ := max
x∈N−1(1)

|x|.

Since for every λ ∈ [0,∞] and for any i = 1, · · · ,m, we have λ2ri ≤
max{λ, λl}, and since for any x ∈ Rn \ {0} the point δr

N(x)−1(x) belongs

to N−1(1) (due to (12)), we deduce that for any x ∈ Rn \ {0},

|x|2 =

n
∑

i=1

N(x)2riN(x)−2rix2
i

≤ max
{

N(x)l, N(x)
}

|δr
N(x)−1(x)|2

≤ M̄2 max
{

N(x), N(x)l
}

. (14)

2A routine argument involving continuity of trajectories with respect to initial states
shows that the requirements of the given definition are equivalent to the following appar-
ently weaker pair of conditions used in some references (see [36] and references therein):
1. For each x ∈ R

n there is a control u(·) ∈ U such that x(t;x, u(·)) tends to 0 as t→ ∞.
2. There exists ρ > 0 such that for each ǫ > 0, there is a δ > 0 such that for each x ∈ R

n

with |x| ≤ δ there is a control u(·) ∈ U such that ‖u(·)‖∞ ≤ ρ, such that x(t;x, u(·)) tends
to 0 as t→ ∞, and such that |x(t;x, u(·))| ≤ ǫ for all t ≥ 0.
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Furthermore since for every λ ∈ [0,∞] and for any i = 1, · · · ,m, we have

λ
l

ri ≤ max{λ, λl}, we have for any x ∈ Rn \ {0},

N(x) ≤ n
1
l max

{

|x| 1l , |x|
}

. (15)

Define the function α : [0,∞) → R of K∞ by,

α(s) := n
1
l max

{

s
1
l , s
}

, ∀s ∈ [0,∞), (16)

and pick some function β ∈ KL which satisfies

β(s, t) ≥ M̄ max







√

Mα(s)

R1

(

R2

R1

) k
2

,

(

Mα(s)

R1

) l
2
(

R2

R1

) kl
2







,

for any integer k ≥ 0 and any pair (s, t) ∈ (0,∞) × (0,∞) such that t ∈
[kT, (k + 1)T ], and set for every x ∈ Rn, σ(x) := M . We wish to prove
that the control system (4) and the functions β and σ satisfy the properties
(a)-(b) of Definition 2.4.
Fix x ∈ N−1(R1). By assumption there exists some control u0(·) ∈ U with
‖u0(·)‖∞ ≤ M such that N(x(t;x, u0(·))) ≤ M for any t ∈ [0, T ], and such
that N(x(T ;x, u0(·))) ≤ R2. In fact since the dynamics vanish for u = 0
we can assume without loss of generality that N(x(t;x, u0(·))) ≥ R2 for any
t ≥ 0, and in particular that N(x(T ;x, u0(·))) = R2. Set y := x(T ;x, u(·));
by (12) the point δr

R1R−1
2

(y) belongs to N−1(R1), hence by the assumption

and by (12)-(13), there exists a new control u1(·) ∈ U with ‖u1(·)‖∞ ≤ M
such that R−1

1 R2 ≤ N(y(t; y, u1(·))) ≤ R−1
1 R2M for any t ∈ [0, T ],and

such that N(y(T ; y, u1(·))) = R−1
1 R2

2. Continuing this procedure inductively
and pasting together the different controls (uk)k≥0, we obtain some control
u(·) ∈ U with ‖u(·)‖∞ ≤M such that for any integer k ≥ 0, we have

0 < N(x(t;x, u(·))) ≤M

(

R2

R1

)k

,

whenever t ∈ [kT, (k + 1)T ]. Using the inequality (14), we deduce that for
any integer k ≥ 0 and any t ∈ [kT, (k + 1)T ],

|x(t;x, u(·))| ≤ M̄ max
{

√

N(x(t;x, u(·))), N(x(t;x, u(·))) l
2

}

≤ M̄ max

{

√
M

(

R2

R1

) k
2

,M
l
2

(

R2

R1

) kl
2

}

.

Since by (15)-(16) we have that N(x) = R1 =⇒ α(|x|) ≥ R1, this implies
that |x(t;x, u(·))| ≤ β(|x|, t) for any t ≥ 0. This proves properties (a)-(b)
in the case x ∈ N−1(R1). Whenever x ∈ Rn \ {0} ( the case x = 0 being
obvious), by noticing that the point δr

R1N(x)−1(x) belongs to N−1(R1) and by

the same argument as above, we get the existence of some control u(·) ∈ U
with ‖u(·)‖∞ ≤M such that for any integer k ≥ 0

N(x(t; δr
R1N(x)−1(x), u(·))) ≤M

(

R2

R1

)k

,
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whenever t ∈ [kT, (k + 1)T ]. On the other hand by (12)-(13), we have that
for any t ≥ 0,

N(x(t;x, u(·)) = R−1
1 N(x)N(x(t; δr

R1N(x)−1(x), u(·)))

≤ R−1
1 N(x)M

(

R2

R1

)k

.

Hence by (14)-(15), we deduce that for any integer k ≥ 0 and any t ∈
[kT, (k + 1)T ],

|x(t;x, u(·))| ≤ M̄ max
{

√

N(x(t;x, u(·))), N(x(t;x, u(·))) l
2

}

≤ M̄ max







√

Mα(|x|)
R1

(

R2

R1

) k
2

,

(

Mα(|x|)
R1

) l
2
(

R2

R1

) kl
2







≤ β(|x|, t).
This concludes the proof of Proposition 2.5. �

Let us now give the definition of a semiconcave control-Lyapunov func-
tion. Before doing that, we need to introduce the notion of semiconcave
functions; we refer the reader to the book [11] for an extensive study of
semiconcave functions.

Let Ω be an open set in Rn. A function g : Ω → R is said to be semiconcave
on Ω provided it is continuous and for any x0 ∈ Ω there are constants
ρ,C > 0 such that

1

2
(g(x) + g(y)) − g

(

x+ y

2

)

≤ C|x− y|2, ∀x, y ∈ x0 + ρB.

Equivalently, this means that the function g can be written locally as the sum
of a concave function and a smooth function. In particular, any semiconcave
function is locally Lipschitz on its domain, which by Rademacher’s theorem
implies that any semiconcave function is differentiable almost everywhere
on its domain. We are now ready to define the concept of semiconcave
control-Lyapunov function.

Definition 2.6. 3 A semiconcave control-Lyapunov function for (4) is a
function V : Rn → R which is continuous at the origin, semiconcave outside
the origin, positive definite, proper and for which there exist a continuous,

3This definition is equivalent to the one that we used in our previous papers. In fact,
by classical properties of semiconcave functions (see [11] p. 74), whenever the function V
is semiconcave the property (17) is equivalent to the following involving proximal subdif-
ferentials:

∀ζ ∈ ∂PV (x), min
|u|m≤α(|x|)

{〈ζ, Y (x, u)〉} ≤ −W (x),

for all x ∈ R
n \ {0}. Moreover this property is also equivalent to saying that the function

V is a viscosity supersolution to the Hamilton-Jacobi equation

max
|u|m≤α(|x|)

{−〈DV (x), Y (x, u)〉} −W (x) ≥ 0,

on R
n \ {0}. We refer the reader to [16] and [5] for the definitions of proximal subdiffer-

entials and viscosity solutions.
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positive definite function W : Rn → R, and a nondecreasing function α :
[0,∞) → [0,∞), satisfying

min
|u|m≤α(|x|)

{〈∇V (x), Y (x, u)〉} ≤ −W (x), (17)

for all x ∈ Rn \ {0} where V is differentiable.

In [36], we proved that any control system that is globally asymptoti-
cally controllable at the origin admits a control-Lyapunov function which is
semiconcave outside the origin. We present here the homogeneous version
of that result.

Theorem 2. Let δr
ǫ be a dilation. If the control system (4) is homoge-

neous with respect to δr
ǫ and GAC0, then there exists a semiconcave control-

Lyapunov function for (4) which is homogeneous of degree 1 with respect to
δr
ǫ .

In fact, for sake of simplicity (and to considerably simplify the proof given
in the next section), we prefer to deduce this theorem as a corollary of the
corresponding result in the framework of differential inclusions. For that
we need to define the concepts of homogeneous differential inclusions, glob-
ally asymptotically controllable differential inclusions, and control-Lyapunov
functions for differential inclusions.

2.4. Homogeneous differential inclusions and homogeneous control-

Lyapunov functions for GAC0 homogeneous differential inclusions.

Let F : Rn → Rn be a multivalued map which satisfies the following assump-
tions:

(A1) For any x ∈ Rn, the set F (x) is a compact convex set of Rn which
contains the origin.

(A2) The mapping F is locally Lipschitz on Rn.

Let δr
ǫ be a dilation on Rn; we say that the mapping F is homogeneous

of degree k ≤ 1 (where k is an integer) with respect to δr
ǫ if for any x ∈ Rn

and any ǫ > 0 we have,

F (δr
ǫ (x)) = ǫ−kδr

ǫ (F (x)). (18)

Notice that if we consider m vector fields Y1, · · · , Ym on Rn which are locally
Lipschitz and homogeneous of degree k ≤ 1 with respect to δr

ǫ , then for any
M > 0 the multivalued map F : Rn → Rn defined by,

F (x) :=

{

m
∑

i=1

uiYi(x) : |u|m ≤M

}

, ∀x ∈ Rn,

satisfies the assumptions (A1)-(A2) and is homogeneous of degree k with
respect to the dilation δr

ǫ .

Assume from now that the mapping F satisfies the assumptions (A1)-
(A2); we are interested in the property of global asymptotic controllability
of the differential inclusion associated to the mapping F ,

ẋ(t) ∈ F (x(t)), a.e. (19)
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(We refer the reader to [3, 21] for a detailed study of differential inclusions.)
Let us present its definition.

Definition 2.7. We call the differential inclusion (19) globally asymptot-
ically controllable at the origin (abreviated GAC0) provided that there is
a function β ∈ KL such that for each x ∈ Rn, there exists a trajectory
x(·) : [0,∞) → Rn of (19) with x(0) = x such that |x(t)| ≤ β(|x|, t) for all
t ≥ 0.

As in the control case (see Proposition 2.5), whenever the multivalued map
F is homogeneous with respect to some dilation, this definition is equivalent
to another one that is easier to verify.

Proposition 2.8. Assume that the mapping F is homogeneous of degree k
with respect to some dilation δr

ǫ and fix two constants R1, R2 > 0 satisfying
R1 > R2 > 0. Then the differential inclusion (19) is GAC0 if and only if
there are two constants M,T > 0 such that for any x ∈ N−1(R1), there exists
a trajectory x(·) : [0, T ] → Rn of (19) with x(0) = x such that N(x(t)) ≤M
for any t ∈ [0, T ], and such that N(x(T )) ≤ R2.

The proof of this result being similar to the one we gave for Proposition
2.5, it is left to the reader. Let us now give the definition of semiconcave
control-Lyapunov function for (19).

Definition 2.9. A semiconcave control-Lyapunov function for (19) is de-
fined to be any function V : Rn → R which is continuous at the origin,
semiconcave outside the origin, positive definite, proper and for which there
exist a continuous, positive definite function W : Rn → R satisfying

min
v∈F (x)

{〈∇V (x), v〉} ≤ −W (x), (20)

for all x ∈ Rn \ {0} where V is differentiable.

We are going to prove the following result.

Theorem 3. Let δr
ǫ be a dilation and F be a multivalued map satisfying

the assumptions (A1)-(A2). If the differential inclusion (19)) is homoge-
neous with respect to δr

ǫ and GAC0, then there exists a semiconcave control-
Lyapunov function for (19) that is homogeneous of degree 1 with respect to
δr
ǫ .

Theorem 2 is in fact a simple corollary of this result; let us prove it.

Proof of Theorem 2. Assume that the control system (4) is homogeneous
of degree k with respect to δr

ǫ and GAC0. By Proposition 2.5, there are two
constants M,T > 0 such that for any x ∈ N−1(1), there exists u(·) ∈ U with
‖u(·)‖∞ ≤M such that N(x(t;x, u(·)) ≤M for any t ∈ [0, T ], and such that
N(x(T ;x, u(·))) ≤ 1/2. Define the multivalued map F : Rn → Rn by

F (x) :=

{

m
∑

i=1

uiYi(x) : |u|m ≤M

}

, ∀x ∈ Rn.

The mapping F satisfies assumptions (A1)-(A2) and is homogeneous of de-
gree k with respect to δr

ǫ . By construction, for any x ∈ N−1(1), there exists
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some control u(·) ∈ U with ‖u(·)‖∞ ≤ M such that the absolutely contin-
uous curve x(·;x, u(·)) : [0, T ] → Rn satisfies the properties above. In fact,
the curve x(·) := x(·;x, u(·)) : [0, T ] → Rn is a trajectory of the differential
inclusion

ẋ(t) ∈ F (x(t)), a.e.. (21)

Thus this means that for any x ∈ N−1(1) there exists some trajectory of
(21) with x(0) = x such that N(x(t)) ≤ M for any t ∈ [0, T ], and such
that N(x(T )) ≤ 1/2. By Proposition 2.8, this proves that the differential
inclusion (21) is GAC0. Hence by Theorem 3, there exists a semiconcave
control-Lyapunov function for (21) which is homogeneous of degree 1 with
respect to δr

ǫ . This function is obviously a semiconcave control-Lyapunov
for (4).

Let us now prove Theorem 3.

Proof. We set Ω := Rn \ {0}. We are going to prove Theorem 3 in two
steps. First we will assume that the multivalued map F is homogeneous of
degree zero with respect to the standard dilation, then we will conclude by
a change of variables.

Step 1 : Let us first assume that the dilation δr
ǫ is the standard dilation

δ1ǫ and that the mapping F is homogeneous of degree zero with respect to δ1ǫ .

Notice that in this case the mapping F is indeed globally Lipschitz on
Rn. Moreover by homogeneity of F we have that if x(·) : [0,∞) → Rn is a
trajectory of (19) such that x(0) = x ∈ Rn, then for any ǫ > 0 the absolutely
continuous arc y(·) : [0,∞) → Rn defined as,

y(t) := ǫx(t), ∀t ≥ 0,

is a trajectory of (19) such that y(0) = ǫx. In addition we recall that by
the assumption of global asymptotic controllability at the origin, there are
two constants M ≥ 1, T > 0 such that for every x ∈ Sn−1, there exists a
trajectory xx(·) : [0,∞) → Rn of (19) with x(0) = x such that

|xx(T )| ≤ 1

2
and |xx(t)| ≤M, ∀t ≥ 0.

Since for any y ∈ Rn the set F (y) contains the origin, we can indeed assume
that the trajectory xx(·) satisfies

|xx(T )| =
1

2
and

1

2
≤ |xx(t)| ≤M, ∀t ≥ 0. (22)

We claim the following result.

Lemma 1. For every x ∈ Rn, there exists a trajectory x̃x(·) : [0,∞) → Rn

of (19) with x̃x(0) = x and such that

∀l ∈ N,∀t ∈ [lT, (l + 1)T ], |x̃x(t)| ≤ M

2l
|x|. (23)

Proof. Let x ∈ Sn−1. By definitions of M and T above, there exists a
trajectory xx(·) of (19) with xx(0) = x which satisfies the property (22).
The point y := 1

|x(T )|x(T ) = 2x(T ) belongs to Sn−1, hence we can repeat
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our argument. There exists a trajectory xy(·) of (19) with xy(0) = y which
satisfies the property (22). Consequently by homogeneity of F , we deduce
that the absolutely continuous arc x̃x(·) on [0, 2T ] defined by

x̃x(t) :=

{

x(t) if t ∈ [0, T ]
y(t−T )

2 if t ∈ (T, 2T ],

is solution of (19) and satisfies

|x̃x(2T )| =
|y(T )|

2
=

1

4
,

and

|x̃x(t)| ≤ M

2
, ∀t ∈ [T, 2T ].

Repeating this construction on any interval [lT, (l + 1)T ], we get the result
for x ∈ Sn−1. We conclude easily by homogenity of F . �

Returning to the proof of Theorem 3, we set for any ρ ∈ (0,∞),

D(ρ) :=
2M

ρ

[

eρT − 1

2 − eρT

]

.

Let L be an integer greater than 4M . Since limρ→0D(ρ) = 2MT < LT/2,
there exists ρ > 0 such that the following inequality holds:

D(ρ) <
1 − e−ρLT

2ρ
. (24)

Define the value function V0 : Rn → R by,

∀x ∈ Rn, V0(x) := inf

{∫ LT

0
eρt|x(t)|dt : ẋ ∈ F (x) a.e. , x(0) = x

}

.

Notice that since 0 ∈ F (x) for any x ∈ Rn, the function V0 is well-defined.
We claim the following lemma.

Lemma 2. For every x ∈ Rn, the infimum in the definition of V0(x) is
attained. Moreover the function V0 : Rn → R is positive definite, proper,
globally Lipschitz on Rn, and homogeneous of degree 1 with respect to the
standard dilation.

Proof. The mapping F is globally Lipschitz with compact convex values,
hence by Gronwall Lemma and Arzéla-Ascoli Theorem any sequence of tra-
jectories (xl(·))l∈N of the differential inclusion (19) on the interval [0, LT ]
which satisfy xl(0) = x for any l ∈ N admits a subsequence which converges
uniformly to some trajectory of (19) on [0, LT ]. This proves that for every
x ∈ Rn the infimum in the definition of V0(x) is attained and then that the
function V0 is positive definite. The global Lipschitz regularity of F implies
easily, via Gronwall Lemma that V0 is proper. The homogeneity of V0 is a
consequence of the homogeneity of the norm and of the mapping F . Finally,
the regularity of V0 is a consequence of the fact that if we denote by K the
Lipschitz constant of the mapping F on Rn, then we have (see [3, Corollary
1 p. 121]):
For every x, y ∈ Rn and for every trajectory x(·) of (19) such that x(0) = x,
there exists a trajectory y(·) of (19) with y(0) = y and such that

|x(t) − y(t)| ≤ eKLT |y − x|, ∀t ∈ [0, LT ].
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�

Let us now prove that there exists some positive definite and continuous
function W0 : Rn → R for which the property (20) is satisfied. To this end
we need the following lemma.

Lemma 3. If x ∈ Ω and if x(·) is a trajectory of (19) starting at x such

that V0(x) =
∫ LT

0 eρt|x(t)|dt, then

|x(LT )| ≤ e−ρLT

2
|x|. (25)

Proof. Notice that Lemma 1 permits us to bound the quantity V0(x); we
have that for any x ∈ Rn,

V0(x) ≤
∫ LT

0
eρt|x̃x(t)|dt

≤
L−1
∑

l=0

∫ (l+1)T

lT

eρt|x̃x(t)|dt

≤
L−1
∑

l=0

∫ (l+1)T

lT

eρtM |x|
2l

dt

=
M |x|
ρ

L−1
∑

l=0

eρ(l+1)T − eρlT

2l

=
M |x|
ρ

(eρT − 1)

L−1
∑

l=0

(

eρT

2

)l

≤ M |x|
ρ

(eρT − 1)

∞
∑

l=0

(

eρT

2

)l

=
M |x|
ρ

[

eρT − 1

1 − eρT

2

]

|x| = D(ρ)|x|. (26)

Returning to the proof of Lemma 3, consider x ∈ Ω and a trajectory x(·)
of (19) starting at x such that V0(x) =

∫ LT

0 eρt|x(t)|dt. We claim that there
exists t ∈ [0, LT ] such that

|x(t)| ≤ e−ρLT

2
|x|. (27)

As a matter of fact, if it is not the case, this means that the trajectory

x(·) remains outside the ball B
(

0, e−ρLT

2 |x|
)

on the interval [0, LT ], which

implies that

V0(x) >

∫ LT

0
eρt e

−ρLT

2
|x|dt =

1 − e−ρLT

2ρ
|x| > D(ρ)|x|,

which by (24) and (26) gives a contradiction. In order to conclude, we just
notice that since 0 ∈ F (y) for any y ∈ Rn, then necessarly the quantity |x(t)|
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is minimal on [0, LT ] for t = LT . As a matter of fact, denote by t̄ ∈ [0, LT ]
the maximum time t ∈ [0, LT ] such that

|x(t)| = min
s∈[0,LT ]

{|x(s)|}.

If t̄ < LT then it is clear that the absolutely continuous arc y(·) on [0, LT ]
defined as,

y(t) :=

{

x(t) if t ∈ [0, t̄]
x(t̄) if t ∈ (t̄, LT ],

is a trajectory of (19) on [0, LT ] starting at x which satisfies
∫ LT

0
eρt|y(t)|dt < V0(x);

which gives a contradiction. This concludes the proof of Lemma 3. �

As we said before, the property (20) is not relevant whenever the func-
tion V is not semiconcave. In our case, the function V0 is not necessarly
semiconcave on Ω, hence we are going to state this property in terms of
proximal subdifferentials4. We recall that some vector ζ ∈ Rn belongs to
the proximal subdifferential of V0 at x ∈ Rn, that we denote by ζ ∈ ∂PV0(x),
if there exists two constants η, δ > 0 such that

V0(y) − V0(x) + η|y − x|2 ≥ 〈ζ, y − x〉, ∀y ∈ x+ δB. (28)

We claim the following result.

Lemma 4. We have that for any x ∈ Ω,

∀ζ ∈ ∂PV0(x), min
v∈F (x)

{〈ζ, v〉} ≤ −ρV0(x). (29)

Proof. Let x ∈ Ω and ζ ∈ ∂PV0(x). By Lemma 2 we know that there exists
a trajectory x(·) of (19) on [0, LT ] starting at x such that

V0(x) =

∫ LT

0
eρt|x(t)|dt.

Fix t̄ ∈ (0, LT ). The absolutely continuous arc y(·) on [0, LT ] defined by

y(t) :=

{

x(t+ t̄) if t ∈ [0, LT − t̄]
x(LT ) if t ∈ (LT − t̄, LT ],

is a trajectory of (19) on [0, LT ] which starts at x(t̄). Hence by definition of
V0(x(t̄)) we have,

V0(x(t̄)) ≤
∫ LT

0
eρt|y(t)|dt

=

∫ LT−t̄

0
eρt|x(t+ t̄)|dt+

∫ LT

LT−t̄

eρt|x(LT )|dt

= e−ρt̄

∫ LT

t̄

eρt|x(t)|dt+
eρLT (1 − e−ρt̄)

ρ
|x(LT )|

= e−ρt̄V0(x) − e−ρt̄

∫ t̄

0
eρt|x(t)|dt+

eρLT (1 − e−ρt̄)

ρ
|x(LT )|,

4We recall that we refer the reader to the book [16] for an extensive exposition of
proximal calculus.
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which implies that

V0(x(t̄)) − V0(x)

t̄
≤

e−ρt̄ − 1

t̄
V0(x) −

e−ρt̄

t̄

∫ t̄

0
eρt|x(t)|dt+

eρLT (1 − e−ρt̄)

ρt̄
|x(LT )|. (30)

Furthermore, there exists a sequence (t̄n)n∈N ↓ 0 and v ∈ F (x) such that

lim
n→∞

x(t̄n) − x

t̄n
= v.

Since ζ ∈ ∂PV0(x), there exist two constants η, δ > 0 such that (28) holds.
In consequence, using (30) and passing to the limit we obtain,

〈ζ, v〉 ≤ −ρV0(x) − |x| + eρLT |x(LT )|
≤ −ρV0(x) by (25).

This concludes the proof of the lemma. �

Return to the proof of Theorem 3 (for the standard dilation). The func-
tion V0 satisfies all the properties given in the statement of the theorem
but is not semiconcave on Ω. We are going to regularize it by the classical
technique of inf-convolution. Before we continue we notice that by classical
properties of the proximal subdifferential (see [16]), Lemma 4 implies that

∀x ∈ Ω,∀ζ ∈ ∂PV
2
0 (x), min

v∈F (x)
〈ζ, v〉 ≤ −2ρV0(x)

2. (31)

Denote by K the Lipschitz constant of the mapping F on Rn and by K0 the
Lipschitz constant of the function V0 on Rn, and consider some α > 2K2

0

wich satisfies
8ρK2

0

α
+

4K2
0K

α
+

8K4
0K

α2
≤ ρ.

Define the function V1 : Rn → R by,

∀x ∈ Rn, V1(x) := inf
y∈Rn

{

V0(y)
2 + α|y − x|2

}

. (32)

We have the following lemma.

Lemma 5. The function V1 is semiconcave on Rn, positive definite, proper,
and homogeneous of degree 2 with respect to the standard dilation. Further-
more, for every x ∈ Rn the infimum in (32) is attained, and moreover if
ȳ ∈ Rn is such that V1(x) = V0(ȳ)

2 + α|ȳ − x|2 then we have,

|ȳ − x| ≤ 2K0

α
V0(x). (33)

Proof. Let us first prove the second part of the statement. Notice that by
definition we have,

V1(x) ≤ V0(x)
2, ∀x ∈ Rn. (34)

Moreover since V0 is positive definite we have that for every y ∈ Rn,

V0(y)
2 + α|y − x|2 ≤ V0(x)

2 =⇒ V0(y) ≤ V0(x). (35)

This proves that for every x ∈ Rn, the infimum in (32) can be taken only
over the set of points y ∈ Rn such that V0(y) ≤ V0(x). By properness of V0

this set is compact hence for every x ∈ Rn the infimum in (32) is attained.
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Consider ȳ ∈ Rn such that V1(x) = V0(ȳ)
2 +α|ȳ−x|2 and let us prove (33).

We argue by contradiction and so we assume that

|ȳ − x| > 2K0

α
V0(x). (36)

By (35), we can write

|V0(ȳ)
2 − V0(x)

2| = (V0(ȳ) + V0(x))|V0(ȳ) − V0(x)|
≤ 2V0(x)|V0(ȳ) − V0(x)|
≤ 2K0V0(x)|ȳ − x|, (37)

by definition of K0. Hence we have

V1(x) = V0(ȳ)
2 + α|ȳ − x|2

≥ V0(x)
2 − 2K0V0(x)|ȳ − x| + α|ȳ − x|2

= V0(x)
2 + α|ȳ − x|

(

|ȳ − x| − 2K0

α
V0(x)

)

> V0(x)
2( by (36);

which by (34) gives a contradiction. The semiconcavity of V1 comes from
a classical property of inf-convolution; we refer the reader to [11]. The fact
that V1 is positive definite, proper, and homogeneous of degree 2 with respect
to δ1ǫ being straightforward to show, it is left to the reader. �

We are going to prove the property of type (29)-(31) for the new function
V1. For that we need the following result. (We refer the reader to [16,
Theorem 5.1, p. 44] for its proof.)

Lemma 6. Suppose that x ∈ Rn is such that ∂PV1(x) is nonempty. Then
there exists a point ȳ ∈ Rn satisfying the following properties:
(a) The infimum in (32) is attained uniquely at ȳ.
(b) The proximal subgradient ∂PV1(x) is the singleton {2α(x− ȳ)}.
(c) 2α(x− ȳ) ∈ ∂PV

2
0 (ȳ).

We are going to prove the following.

Lemma 7. We have that for any x ∈ Ω,

∀ζ ∈ ∂PV1(x), min
v∈F (x)

{〈ζ, v〉} ≤ −ρV1(x). (38)

Proof. Let x ∈ Ω and ζ ∈ ∂PV1(x). By the lemmae above, we know that
there exists ȳ ∈ Rn such that V1(x) = V0(ȳ)

2 + α|ȳ − x|2 and such that

|ȳ − x| ≤ 2K0
α
V0(x). Notice that ȳ cannot be zero. As a matter of fact, if

ȳ = 0 then we deduce that

|x| ≤ 2K0

α
V0(x) ≤

2K2
0

α
|x|,

which implies that α ≤ 2K2
0 and then gives a contradiction. In consequence

ȳ ∈ Ω and thus from Lemma 6 (b)-(c) and (31), we deduce that ζ ∈ ∂PV
2
0 (ȳ)

and that there exists v ∈ F (ȳ) such that

〈ζ, v〉 ≤ −2ρV0(ȳ)
2.
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Furthermore, there exists w ∈ F (x) such that |w − v| ≤ K|x − ȳ|. Hence
using the fact that ∂PV

2
0 (ȳ) = 2V0(ȳ)∂PV0(ȳ) and that |ζ| ≤ 2K0V0(ȳ), and

the inequalities (33) and (37) we obtain,

〈ζ, w〉 ≤ 〈ζ, v〉 + |ζ||w − v|
≤ −2ρV0(ȳ)

2 + 2K0V0(ȳ)K|x− ȳ|
≤ −2ρ

(

V0(x)
2 − 2K0V0(x)|ȳ − x|

)

+2K0K|ȳ − x| (V0(x) +K0|ȳ − x|)
= −2ρV0(x)

2 + (4ρK0 + 2K0K)V0(x)|ȳ − x| + 2K2
0K|ȳ − x|2

≤ −2ρV0(x)
2 +

(

8ρK2
0

α
+

4K2
0K

α
+

8K4
0K

α2

)

V0(x)
2

≤ −ρV0(x)
2 ≤ −ρV1(x),

by construction of the constant α. This concludes the proof of Lemma 7. �

Finally we define V : Rn → R by V (x) :=
√

V1(x), for any x ∈ Rn. This
function is continuous at the origin, semiconcave on Ω, positive definite,
proper, homogeneous of degree 1 with respect to δ1ǫ , and satisfies,

∀x ∈ Ω,∀ζ ∈ ∂PV (x), min
v∈F (x)

〈ζ, v〉 ≤ −ρ
2
V (x).

Recall that by semiconcavity, this property implies

min
v∈F (x)

{〈∇V (x), v〉} ≤ −ρ
2
V (x),

for all x ∈ Ω where V is differentiable. This proves that the function V is
a control-Lyapunov function for the differential inclusion (19); which con-
cludes the Step 1.

Step 2 : We prove Theorem 3 in the general case.

The Proposition 2.1 can be adapted in the case of differential inclusions;
the proof is left to the reader.

Proposition 2.10. Set µ := mini=1,··· ,n{ri} and γ := k
µ
∈ Q. There ex-

ists a homeomorphism Φ : Rn → Rn with Φ(0) = 0 which is an analytic
diffeomorphism from Ω into Ω, and such that if we set for every y ∈ Ω,

F̃ (y) :=
{

DΦ(Φ−1(y)) · v for v ∈ F (Φ−1(y))
}

,

then the mapping F̃ satisfies,

∀y ∈ Ω,∀ǫ > 0, F̃ (ǫy) = ǫ1−γF̃ (y).

We notice that the homeomorphism Φ is indeed exactly the same as the
one we constructed in the proof of Proposition 2.1. We recall that it satisfies
for any x ∈ Rn,

|Φ(x)| = N(x)µ and Φ(δr
ǫ (x)) = ǫµΦ(x). (39)

Define the multivalued map F̄ : Rn → Rn by F̄ (0) = 0 and,

F̄ (y) := |y|γF̃ (y), ∀y ∈ Ω.
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The mapping F̄ satisfies the assumptions (A1)-(A2) and is homogeneous of
degree zero with respect to δ1ǫ . Let us prove that the differential inclusion

ẏ(t) ∈ F̄ (y(t)), a.e. (40)

is GAC0. In fact since the differential inclusion (19) is GAC0, there are two
constants M,T > 0 such that for any x ∈ N−1(1), there exists a trajectory
xx(·) : [0, T ] → Rn of (19) with xx(0) = x such that 1/2 ≤ N(xx(t)) ≤M for
any t ∈ [0, T ], and such that N(xx(T )) = 1/2. Fix y ∈ Sn−1; by definition of
the function Φ (see (39)), the point x := Φ−1(y) belongs to N−1(1). Define
the function θy : [0, T ] → R by

θy(t) :=

∫ t

0
|Φ(xx(s))|−γds, ∀t ∈ [0, T ].

Since we know that N(x(s)) ≥ 1/2 for any s ∈ [0, T ], the function θ is
increasing and hence it is a bijection from [0, T ] into [0, T̄y], where T̄y is
defined by

T̄y :=

∫ T

0
|Φ(xx(t))|−γdt. (41)

Define the absolutely continuous arc yy(·) : [0, T̄x] → Rn by,

yy(t̄) := Φ
(

xx

(

θ−1
y (t̄)

))

, ∀t̄ ∈ [0, T̄y].

We have for almost every t̄ ∈ [0, T̄y],

ẏ(t̄) = DΦ
(

xx

(

θ−1
y (t̄)

))

·
[

d

dt̄

(

xx

(

θ−1
y (t̄)

))

]

= DΦ
(

xx

(

θ−1
y (t̄)

))

·
[

1

θ′(θ−1
y (t̄)

ẋx

(

θ−1
y (t̄)

)

]

= |yy(t̄)|γDΦ
(

Φ−1(yy(t̄))
)

· ẋx

(

θ−1
y (t̄)

)

∈ F̄ (yy(t̄)).

Thus we deduce that the arc yy(·) is a trajectory of (40) which satisfies

|yy(t̄)| = N(xx(θ−1
y (t̄)))µ, ∀t̄ ∈ [0, T̄y].

This gives

|yy(T̄y)| =
1

2µ
, and

1

2µ
≤ |yy(t̄)| ≤Mµ, ∀t̄ ∈ [0, T̄y].

If we denote by M̄ the maximum of the function x 7→ |Φ(x)|−γ over the
compact set N−1([1/2,M ]) then we have that T̄y ≤ TM̄ for any y ∈ Sn−1.
Since for any z ∈ Rn the set F (z) contains the origin, this proves that for
any y ∈ Sn−1 there exists some trajectory yy(·) : [0, T M̄ ] → Rn of (40) with
yy(0) = y such that 2−µ ≤ |yy(t̄)| ≤ Mµ for any t̄ ∈ [0, T M̄ ], and such
that |yy(TM̄)| = 2−µ. By Proposition 2.8, this proves that the differential
inclusion (40) is GAC0.

As a consequence we can apply the result of Step 1 to the differential
inclusion (40). Hence we obtain the existence of some constant ρ > 0 and
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some function V̄ : Rn → R which is positive definite, proper, globally Lip-
schitz, semiconcave on Ω, homogeneous of degree 1 with respect to δ1ǫ , and
which satisfies,

min
w∈F̄ (y)

{

〈∇V̄ (y), w〉
}

≤ −ρ
2
V̄ (y), (42)

at all points of differentiation. Define the function V : Rn → R by

V (x) := V̄ (Φ(x))
1
µ , ∀x ∈ Rn.

The function V is obviously continuous on Rn, positive definite and proper,
and in addition by (39) it is homogeneous of degree 1 with respect to δr

ǫ .
Moreover since Φ is smooth from Ω onto Ω, the function V is, like V̄ , semi-
concave outside the origin. Besides V̄ is differentiable at x ∈ Ω if and only
if V̄ is differentiable at Φ(x), and we have

∇V (x) =
1

µ
V̄ (Φ(x))

1
µ
−1
DΦ(x)∗ · ∇V̄ (Φ(x)).

Let x ∈ Ω such that V is differentiable at x. By properties of the function
V̄ , there exists w ∈ F̄ (Φ(x)) which satisfies

〈∇V̄ (Φ(x)), w〉 ≤ −ρ
2
V̄ (Φ(x)).

By construction of the mapping F̄ , we have that |Φ(x)|−γw ∈ F̃ (Φ(x)),
which implies that the vector v ∈ Rn defined by

v := DΦ−1(Φ(x)) · (|Φ(x)|−γw)

belongs to F (x). On the other hand, we have

〈∇V (x), v〉 =
1

µ
V̄ (Φ(x))

1
µ
−1〈∇V̄ (Φ(x)), DΦ(x) · v〉

=
1

µ
V̄ (Φ(x))

1
µ
−1〈∇V̄ (Φ(x)), |Φ(x)|−γw〉

≤ − ρ

2µ
V̄ (Φ(x))

1
µ
−1|Φ(x)|−γ V̄ (Φ(x))

≤ − ρ

2µ
|Φ(x)|−γ V̄ (Φ(x))

1
µ .

Define the function W : Rn \ {0} → R by

W (x) :=
ρ

2µ
|Φ(x)|−γ V̄ (Φ(x))

1
µ , ∀x ∈ Rn.

This function is positive and continuous on Rn \ {0}. Moreover if we denote
by K̄ the Lipschitz constant of the function V̄ , then we can write for any
x ∈ Rn,

0 ≤W (x) ≤ ρ

2µ
K

1
µ |Φ(x)|

1
µ
−γ

=
ρ

2µ
K

1
µ |Φ(x)|

1−k
µ .

If k < 1, then the function W can be extended continuously at the origin
by setting W (0) = 0. If k = 1 then this means that the function W is
bounded by a constant on Rn\{0}. But there exists clearly another function
W ′ : Rn → R continuous and positive definite such that W ′ ≤ W . In any
case this concludes the proof of Theorem 3. �
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3. Proof of Theorem 1 in the standard homogeneous case

The purpose of this section is to provide a proof of Theorem 1 in the case
of control systems which are homogeneous of degree zero with respect to the
standard dilation, and analytic outside the origin. Therefore, until the end
of this section we consider a control system of the form

ẋ = Y (x, u) :=

m
∑

i=1

uiYi(x), (43)

where Y1, · · · , Ym are vector fields on R3 which are globally Lipschitz on R3,
analytic on R3 \ {0}, homogeneous of degree 0 with respect to the standard
dilation, and which satisfy

Lie{Y1, · · · , Ym}(x) = R3, (44)

for any x ∈ R3 \ {0}5. We will in fact prove something much more precise
than Theorem 1; we postpone the statement of our result to the end of this
section. We first need to develop preliminaries on semianalytic sets.

3.1. Preliminaries on semianalytic sets. Here we recall some basic facts
about semianalytic sets; we refer the reader to [29, 46] for more details.

A set A ⊂ Rn is called semianalytic if and only if for every x ∈ Rn, we
can find a neighbourhood U of x in Rn and 2pq real analytic functions gi,j

and hi,j (1 ≤ i ≤ p and 1 ≤ j ≤ q) such that

A ∩ U =

p
⋃

i=1

{y ∈ U : gi,j(y) = 0 and hi,j(y) > 0 for j = 1, · · · , q} .

The property ”semianalytic” is preserved by the following operations: finite
union, finite intersection, and difference of any two. Moreover we have the
following theorem of stratification of semianalytic sets.

Theorem 4. If A ⊂ Rn is semianalytic then it admits a stratification, that
is a locally finite decomposition

A =
⋃

α∈I

Γα,

into a disjoint union of connected real analytic submanifolds such that if
Γα ∩ Γβ 6= ∅, then Γβ ⊂ Γα, and dimΓβ ≤ dimΓα − 1 whenever α 6= β.

In the sequel, we will express Theorem 4 by saying that a semianalytic set
in Rn can be stratified into a disjoint union of strata of dimension d with d ∈
{0, · · · , n}, where each stratum of dimension d is a connnected real analytic
submanifold of dimension d. Furthermore we will say that a semianalytic
set has dimension D if each stratum of its stratification has dimension less
or equal than D. Notice that by the stratification theorem, any semianalytic

5Notice that we do not assume that the control system (43) satisfies the Hörmander’s
condition at the origin. This is due to the fact that the change of variables given in
Proposition 2.1 transforms the initial control system into a control system which is no
longer smooth at the origin. However whenever the initial control system satisfies the
Hörmander condition at the origin then by homogeneity this condition is satisfied every-
where in R

3. That is why we are allowed to assume that (43) satisfies the Hörmander’s
condition outside the origin.
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set which is compact or even relatively compact (that is such that its closure
is compact) has a finite number of connected components. Here is a lemma
that will be very useful in the sequel.

Lemma 8. Let A ⊂ Rn be a semianalytic set which is open, connected
and relatively compact. There exist two constants µA, lA, > 0 such for any
0 ≤ µ ≤ µA, the set Aµ defined as,

Aµ := {x ∈ A s.t. d(x,Rn \ A) ≥ µ} ,
is nonempty, connected and such that for any pair x, y ∈ Aµ there exists
some absolutely continuous path

γx,y : [0, lA] −→ Aµ

such that γx,y(0) = x, γx,y(lA) = y and which satisfies

|γ̇x,y(t)| ≤ 1, a.e. t ∈ [0, lA].

The proof of Lemma 8 relies on the concept of subanalytic sets. Since we
do not want to enlarge too much on that subject here, we refer the reader
to [26, 27, 46] for basic facts about subanalyticity and we just sketch the
proof of the lemma.

Proof. Set Ac := Rn \ A and denote by dAc : Rn → R the distance function
to the set Rn \ A. It is well known (see for instance [5]) that the function
dAc is globally Lipschitz on Rn and semiconcave on A. In fact it is not
difficult to show that this function is also subanalytic on Rn, which means
that its graph in Rn × R is a subanalytic set. Denote for any x ∈ Rn, by
∂dAc(x), the Clarke generalized gradient of the function dAc at the point x,
and define the singular set of dAc by,

Σ (dAc) := {x ∈ A s.t. ∂dAc(x) is not a singleton} .
By semiconcavity, this set coincides with the set of points of A where dAc

is not differentiable and so has measure zero, and it is subanalytic. Define
also the critical set of dAc by,

C (dAc) := {x ∈ A s.t. 0 ∈ ∂dAc(x)} ⊂ Rn.

This set is included in the singular set and is subanalytic. In consequence,
by the stratification theorem for subanalytic sets, it admits a stratification
into a disjoint union of connected real analytic submanifolds of dimension
zero and one. Since by semiconcavity, the function dAc is constant on every
stratum of the set C (dAc), we deduce that there exists some constant µ̄ such
that the set Rn \ Aµ̄ does not intersect C (dAc). Fix µ such that 0 ≤ µ ≤ µ̄
and denote by M1 the maximum of the function dAc on the set A. By
semiconcavity, there exists for any x ∈ Aµ a unique solution x(·) of the
differential inclusion

ẋ ∈ ∂d(x(t)),

such that x(0) = x. As long as x(t) /∈ Σ(dAc), we have

dAc(x(t)) = dAc(x) + t,

and there exists t ≤ M1 such that x(t) belongs to the singular set Σ (dAc).
Moreover, if x(t̄) ∈ Σ(dAc) for some t̄ ∈ [0,M1] then x(t) ∈ Σ(dAc) for any
t ≥ t̄, and dAc(x(t)) ≥ dAc(x(t̄)) for any t ≥ t̄. In fact, by semiconcavity of
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the distance function, by connectedness of A, and by subanalyticity of the
singular set, it can be proven that there exists a constant M2 such that for
any pair x, y ∈ Σ (dAc) ∩ Aµ there exists some absolutely continuous path

γx,y : [0,M2] −→ Σ (dAc)

such that γx,y(0) = x, γx,y(M2) = y and which satisfies

|γ̇x,y(t)| ≤ 1, a.e. t ∈ [0,M2].

We conclude easily. �

3.2. A useful lemma. Here we prove a lemma which will be very useful for
the proof of Theorem 1 in the case of control systems which are homogeneous
of degree zero with respect to the standard dilation. Let F : R3 → R3 be
a multivalued map which satisfies the assumptions (A1)-(A2) and which
is homogeneous of degree zero with respect to the standard dilation. Set
Ω := R3 \ {0}, and define the mapping F̃ : S2 → R3 by,

∀x ∈ S2, F̃ (x) := ProjTxS2(F (x)) =
{

ProjTxS2(v) : v ∈ F (x)
}

,

where ProjTxS2 denotes the projection onto the vector space TxS2. We notice

that the multivalued map F̃ satisfies the assumptions (A1)-(A2) on the

sphere S2 and that for any x ∈ S2, the set F̃ (x) is included in the tangent
space TxS2. This means that for any x ∈ S2, any trajectory of the differential
inclusion

ẋ(t) ∈ F̃ (x(t)), a.e. (45)

starting at x, remains on the sphere S2 and can be extended on [0,∞).
These trajectories can be associated to those of the differential inclusion

ẋ(t) ∈ F (x(t)), a.e. (46)

as follows.

Lemma 9. If x(·) : [a, b] → Ω is a trajectory of (46) then the absolutely
continuous arc y(·) : [a, b] → S2 defined by,

y(t) :=
x(t)

|x(t)| , ∀t ∈ [a, b],

is a trajectory of (45). In addition, if y(·) : [a, b] → R3 is a trajectory of
(45), then there exists some trajectory x(·) : [a, b] → Ω with x(a) ∈ S2 such
that

y(t) =
x(t)

|x(t)| , ∀t ∈ [a, b].

Proof. Let us prove the first part of the lemma. If x(·) : [a, b] → Ω is a
trajectory of (46), then we notice that for almost all t ∈ [a, b], we have

d

dt

(

x(t)

|x(t)|

)

=
ẋ(t)

|x(t)| −
〈x(t), ẋ(t)〉
|x(t)|3 x(t).

By homogeneity of F , we have obviously that for almost all t ∈ [a, b],

ẋ(t)

|x(t)| ∈ F

(

x(t)

|x(t)|

)

;
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moreover the projection of the vector ẋ(t)
|x(t)| on the tangent space T x(t)

|x(t)|

S2

reads
ẋ(t)

|x(t)| −
〈

ẋ(t)

|x(t)| ,
x(t)

|x(t)|

〉

x(t)

|x(t)| .

This proves the first part of the lemma. Let us now consider some trajectory
y(·) : [a, b] → R3 of (45). Since y(·) is absolutely continuous on [a, b], the
multivalued map G : [a, b] → R3 defined by,

∀t ∈ [a, b], G(t) :=
{

v ∈ F (y(t)) s.t. ProjTyS2(v) = ẏ(t)
}

,

is measurable with nonempty compact convex values and is bounded on
[a, b]. Thus by the Measurable Selection Theorem (see for instance [21]),
there are two L1 functions v(·) : [a, b] → R3 and α(·) : [a, b] → R such that
v(t) ∈ F (y(t)) for any t ∈ [a, b], and such that

ẏ(t) = v(t) − α(t)y(t), a.e t ∈ [a, b]. (47)

Set for any t ∈ [a, b],

K(t) := exp

(∫ t

0
α(s)ds

)

,

and define the absolutely continuous arc x(·) : [a, b] → Ω by,

∀t ∈ [a, b], x(t) := K(t)y(t).

Obviously x(t)/|x(t)| = y(t) for any t ∈ [a, b]. Moreover by (47) we have
that for almost every t ∈ [a, b],

ẋ(t) = K̇(t)y(t) + K(t)ẏ(t)

= α(t)K(t)y(t) + K(t)(v(t) − α(t)y(t))

= K(t)(v(t) ∈ K(t)F (y(t)) = F (x(t)),

by homogeneity of F . This concludes the proof of Lemma 9. �

Let us now start the proof of Theorem 1.

3.3. A relevant GAC0 differential inclusion. As before we set Ω :=
R3 \ {0}. We define for any x ∈ R3, the set of velocities of the control
system (43) at x by

F0(x) :=

{

m
∑

i=1

uiYi(x) : u ∈ Rm

}

.

The mapping F0(x) is lower semicontinuous on R3, and for every x ∈ R3 the
set F0(x) is a vector subspace of R3 of dimension 1, 2 or 3. We set for every
l = 1, 2, 3,

Dl :=
{

x ∈ S2 s.t. dimF0(x) = l
}

,

and we define R ⊂ S2 as,

R :=
{

x ∈ S2 s.t. x ∈ F0(x)
}

.

We claim the following result.

Lemma 10. The sets D1,D2,D3 and R are semianalytic and satisfy the
following properties:
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(i) The set D1 is compact, of dimension ≤ 1, and satisfies

D1 ∩R = ∅.
(ii) The set D3 is either open and dense in S2, or empty; moreover it

satisfies D3 ⊂ R.
(iii) The set D2 ∩R has dimension ≤ 1 and satisfies

D2 ∩R ⊂ (D2 ∩R) ∪ D1.

Proof. The semianalyticity of D1,D2,D3 and R is an easy consequence of
the analyticity of the vector fields Y1, · · · , Ym. Let us prove the three prop-
erties (i)-(iii).
(i) The compactness of D1 comes from the lower semicontinuity of the map-
ping F0; on the other hand the fact that it is nowhere dense in the sphere
and that D1 ∩R = ∅ are consequences of (44).
(ii) If we denote by Σ the set of injective maps σ : {1, 2, 3} → {1, · · · ,m}
and if we define the map φ : S2 → R by

ϕ(x) :=
∑

σ∈Σ

det(Yσ(1)(x), Yσ(2)(x), Yσ(3)(x))
2, ∀x ∈ R3,

then the set D3 satisfies

D3 =
{

x ∈ S2 s.t.ϕ(x) 6= 0
}

.

Since the map ϕ is analytic and homogeneous of degree 2 with respect to
the standard dilation, the set D3 is obviously either open and dense in S2,
or empty. The fact that D3 ⊂ R is a direct consequence of the definition of
R.
(iii) Let us prove that D2∩R has empty interior; we argue by contradiction.
Assume that the exists x̄ ∈ S2 and µ > 0 such that

x̄+ µB ⊂ D2 ∩R.
Since x̄ belongs to D2 there exists i ∈ {1, · · · ,m} such that the vectors Yi(x̄)
and x̄ are independent; without loss of generality we can assume that i = 1.
Moreover there exists also j ∈ {1, · · · ,m} such that the vectors Y1(x̄) and
Yj(x̄) are independent; as before we can assume that j = 2. Now since x̄
belongs to R there exists α1, α2 ∈ R such that

x̄ = α1Y1(x̄) + α2Y2(x̄);

notice that by construction we have α2 6= 0. In fact since the open ball
B(x̄, µ) is contained in D2 ∩ R, reducing µ if necessary there exist two
smooth6 functions α1 : B(x̄, µ) → R∗ and α2 : B(x̄, µ) → R which satisfy

x = α1(x)Y1(x) + α2(x)Y2(x),

for any x ∈ x̄ + µB. Define the vector field Z on B(x̄, µ) by Z(x) := x for
any x ∈ x̄ + µB. Setting β1(x) := 1/α2(x) and β2(x) := −α1(x)/α2(x) on
B(x̄, µ), we obtain

Y2(x) = β1(x)Z(x) + β2(x)Y1(x), ∀x ∈ x̄+ µB.

6In fact up to reduce the constant µ, we can assume that the vector fields Y1 and Y2 are
independent on B(x̄, µ). Thus the functions α1 and α2 are solutions of a Cramer system,
hence they are smooth.
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Hence we deduce that for any x ∈ x̄+ µB,

[Y1, Y2](x) = β1(x)[Y1, Z](x) + 〈∇β1(x), Y1(x)〉Z(x)

+ 〈∇β2(x), Y1(x)〉Y1(x). (48)

But since the vector field Y1 is homogeneous of degree zero with respect to
the standard dilation, we have that Y1(ǫx) = ǫY1(x), for any ǫ > 0 and any
x ∈ R3. This implies that

DY1(x) · x = Y1(x), ∀x ∈ Ω.

Hence from (48) we deduce that the bracket [Y1, Y2](x) belongs to the vector
space span{Y1(x), Y2(x)} for any x ∈ x̄ + µB. Furthermore since all the
vector fields Y3, · · · , Ym can be written as a combination of Y1 and Y2 on
B(x̄, µ), we obtain that all the brackets of the form [Yi, Yj ](x) with i, j ∈
{1, · · · ,m} and x ∈ x̄+ µB belong to the vector space spanned by the Yi’s
(on B(x̄, µ)); this contradicts (44).
Let us now prove the second property. Consider x ∈ D2 ∩R. Since D2 ⊂
D2∪D1, we have that x ∈ D2∪D1. Consequently, we just have to prove that
if x belongs to D2 then it belongs to R as well; we argue by contradiction.
Let us assume that x belongs to D2 and not to R. This means that there
are two independent vectors v and v′ in F0(x) which do not belong to the
vector line span{x}. Hence by lower semicontinuity of the mapping F0, for
all y close enough to x, there exist two independent vectors vy and v′y in

F0(y) which do not belong to the vector line span{y}. But as x ∈ D2 ∩R,
there exist such y in D2 ∩ R that is such that y belongs to F0(y). This
implies that F0(y) has dimension three and then contradicts the fact that
y ∈ D2. �

Three cases appear.

Case A: R = S2.

In that case for every x ∈ S2, there exists ux ∈ Rm such that

m
∑

i=1

ux
i Yi(x) = −x.

In addition, there exists µx > 0 such that

〈
m
∑

i=1

ux
i Yi(y), y〉 ≤ −|y|2

2

for any y ∈ x + µxB. By compactness of the sphere S2, there exists p ∈ N

and p points x1, · · · , xp on the sphere such that

S2 ⊂
⋃

j=1,··· ,p

B(xj , µxj
).

Let {Ψj}j=1,··· ,p be a smooth partition of unity subordinate to the covering
{B(xj , µxj

)}j=1,··· ,p, that is, a family of smooth maps {Ψj}j=1,··· ,p : S2 → R
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such that Supp(Ψj) ⊂ B(xj , µxj
) for every j = 1, · · · , p, and such that

p
∑

j=1

Ψj(x) = 1, ∀x ∈ S2.

We define the feedback kA : S2 → Rm by

kA(x) :=

p
∑

j=1

Ψj(x)uxj
.

We verify easily that for every x ∈ S2,

〈
m
∑

i=1

kA
i (x)Yi(x), x〉 ≤ −|x|2

2
.

Finally we extend k to R3 by setting for every x ∈ R3,

kA(x) := |x|
p
∑

j=1

Ψj(x)uxj
.

By construction, the feedback kA is globally Lipschitz on R3, smooth on Ω,
homogeneous of degree zero with respect to the standard dilation, and the
homogeneous function V : R3 → R defined by V (x) = |x|2/2 satisfies

∀x ∈ R3, 〈∇V (x),
m
∑

i=1

kA
i (x)Yi(x)〉 ≤ −V (x).

Hence we obtain the following result.

Proposition 3.1. If R = S2, then there exists some feedback kA : R3 → Rm

which is globally Lipschitz on R3, smooth outside the origin, homogeneous of
degree zero with respect to the standard dilation and such that the closed-loop
system

ẋ =

m
∑

i=1

kA
i (x)Yi(x), (49)

is globally asymptotically stable at the origin (abreviated GAS0 in the sequel).

Case B: R = S2.

Since R is a semianalytic, its interior is dense in S2. Hence from Lemma 10
(i)-(iii), the set D3 is dense in S2 and the set D2 has empty interior. Moreover
since D3 is semianalytic, it has a finite number of connected components; we
denote them by D1

3, · · · ,DC
3 . By Lemma 8 there exist two constants µ̄, l > 0

such that for any 0 < µ ≤ µ̄ and for any c ∈ {1, · · · , C} the set

Dc,µ
3 := {x ∈ Dc

3 s.t. d(x,D1 ∪ D2) ≥ µ}
is nonempty, connected and such that for any pair x, y ∈ Dc,µ

3 there exists
some absolutely continuous path

γx,y : [0, l] −→ Dc,µ
3
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such that γx,y(0) = x, γx,y(l) = y and |γ̇x,y(t)| ≤ 1 for almost every t ∈ [0, l].
Furthermore there exists some constant ρ̄ > 0 and C points x̄1, · · · , x̄C ∈ S2

which satisfy
∀c = 1, · · · , C, B(x̄c, ρ̄) ∩ S2 ⊂ Dc,µ̄

3 .

We are going to prove the following.

Proposition 3.2. If R = S2 then there exists a multivalued map FB :
R3 → R3 which satisfies the assumptions (A1)-(A2), which is homogeneous
of degree zero with respect to the standard dilation, such that FB(x) ⊂ F0(x)
for any x ∈ R3, such that the differential inclusion

ẋ(t) ∈ FB(x(t)), a.e. (50)

is GAC0, and such that the two following properties are satisfied:

(i) For any c = 1, · · · , C and for any x ∈ x̄c + (ρ̄/2)B,

FB(x) =

{

(|x|x̄c − x) +
2

ρ̄
(|x− |x|x̄c| − (ρ̄/2)|x|) x̄c

}

.

(ii) For any x ∈ Rn \ {x̄1, · · · , x̄C},
−λx /∈ FB(x), ∀λ > 0.

Proof. We are first going to define the mapping FB on a neighbourhood of
the set D1 ∪D2, then on the set S2, and finally extend it by homogeneity to
the whole space R3; we will do it in five steps. Before beginning, we need
to define the three sets Da

2 ,Db
2,Dc

2; we set

Da
2 := {x ∈ D2 s.t. x ∈ F0(x)} ,

Db
2 := {x ∈ D2 s.t. x ⊥ F0(x)} ,
and Dc

2 := D2 \
(

Da
2 ∪ Db

2

)

.

We notice that these three sets are semianalytic sets of dimension at most
one, hence from the Stratification Theorem 4 we will be able to stratify
them by disjoint unions of strata of dimension zero and one. Furthermore
we define a family of functions (φr

i )i=1,2,r>0 : S2 → R as,

φr
i (x, v) := max

{

0,min

{

d(x,Di)

r
, 1

}

− |v|2
}

, ∀x ∈ S2.

We notice that for i = 1, 2 and for any r > 0, the function φr
i is globally

Lipschitz on the sphere S2 and that it satisfies

x ∈ Di, v ∈ B =⇒ φr
i (x, v) = 0, (51)

d(x,Di) ≥ r, v ∈ B =⇒ φr
i (x, v) = 1 − |v|2, (52)

d(x,Di) ≥ r/2, v ∈ B =⇒ φr
i (x, v) ≥ max

{

0, 1/2 − |v|2
}

. (53)

Let us construct the mapping FB on a neighbourhood of the set D1 ∪ D2.

Step 1: Let us first show how we could define the mapping FB on a
neighbourhood of the set D1. We define F1 : D1 → R3 by,

F1(x) := F0(x) ∩B, ∀x ∈ D1.

This mapping is globally Lipschitz, and we assert that there exists some
neighbourhood U of D1 such that it can be extended into a globally Lipschitz
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mapping F1 : U → R3 in such a way that the following properties are satisfied
7:

(i) For any x ∈ U , the set span(F1(x)) is a vector line which does not
contain the vector x, F1(x) ⊂ F0(x), and F1(x) = span(F1(x)) ∩B.

(ii) For any x ∈ D1, F1(x) = F0(x) ∩B.

Define the mapping F̃1 : U → R3 by ,

∀x ∈ S2, F̃1(x) := ProjTxS2 (F1(x)) ;

the following result holds.

Lemma 11. There is a positive constant µ1 such that (D1 +µ1B)∩S2 ⊂ U ,
and such that for any 0 < µ ≤ µ1 and for any x ∈ (D1 + µB) ∩ S2, there is
a trajectory y(·) : [0, 1] → U of the differential inclusion

ẏ(t) ∈ F̃1(y(t))) a.e. t ∈ [0, 1], (54)

which starts at y and which satisfies

d(y(t),D1) ≤ µ, ∀t ∈ [0, 1], (55)

and d(y(1),D1) = µ. (56)

Proof. First extend by homogeneity the mapping F1 on the set Ω. For that
we set

Û :=

{

x ∈ Ω s.t.
x

|x| ∈ U
}

and we define F̂1 : Û → R3 as ,

F̂1(x) := |x|F1(x), ∀x ∈ Û .
The mapping F̂1 satisfies the assumption (A1)-(A2) on the set Û and is
homogeneous of degree zero with respect to the standard dilation on this
set. Recall that the set D1 is semianalytic and nowhere dense, hence by
Theorem 4, it admits a stratification with strata of dimension zero and one.
By homogeneity this implies that the set D̂1 defined as ,

D̂1 :=

{

x ∈ Ω s.t.
x

|x| ∈ D1

}

,

7As a matter of fact, we first notice that for any x̄ ∈ D1 there exists ix̄ ∈ {1, · · · ,m}
such that F0(x̄) = span{Yix̄(x̄)}. Hence there is a small ball Bx̄ centered at x̄ such
that for any x ∈ Bx̄ the vector space span{Yix̄(x)} has dimension one; we set for any

x ∈ B, Gx̄(x) := span{Yix̄(x)} ∩ B. Now by compactness, the set D1 can be covered
by a finite union of balls {Bx̄i

}i∈I . Moreover, since the set D1 is semianalytic, it can
be stratified (by Theorem 4), so this covering can be constructed in such a way that for
any triple i, i′, i” ∈ I the intersection Bx̄i

∩ Bx̄i′
∩ Bx̄i”

is empty. In addition, we can
also assume that if x belongs to the intersection of two balls Bx̄i

∩ Bx̄i′
then the vector

lines Gx̄i
(x), Gx̄i′

(x) are not orthogonal. Consider a smooth partition of unity {ψi}i∈I

subordinate to this covering, and set for any x ∈ ∪i∈IBx̄i
=: U

F1(x) := span

„

˜X

i∈I
ψi(x)Gx̄i

(x)

«

∩B.

(Here whenever ∆1 and ∆2 are two vector lines which are not orthogonal, and whenever

ψ1 and ψ2 are two nonnegative constants such that ψ1 +ψ2 = 1, the notation ˜P
i=1,2ψi∆i

denotes the set span{ψ1u1 + ψ2u2} where u1 ∈ ∆1, and u2 ∈ ∆2 are taken such that
|u1| = 1, |u2| = 1, and 〈u1, u2〉 > 0.) We leave the reader to prove that up to reducing the
set U , the mapping F satisfies the desired properties.
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admits a stratification with homogeneous strata of dimension one and two.
Fix x ∈ D1; two cases appear.
Case 1: x belongs to some stratum S of D̂1 of dimension two.
If all the trajectories of the differential inclusion

ẋ(t) ∈ F̂1(x(t)) a.e. (57)

starting from x stay in the stratum S for small time, then this means that
F̂1(y) ⊂ TyS whenever y belongs to a small neighbourhood of x. Since S is

a real analytic submanifold and since span(F̂1) coincides with F0 on S, this
implies also that

Lie {Y1, · · · , Ym} (y) ⊂ TyS ( R3,

for any y in a small neighbourhood of x.This fact contradicts the Hörmander’s
condition (44), which means that there are two constants ǫx, µx ∈ (0, 1) and

a trajectory x(·) : [0, ǫx] → Û of (57) starting at x such that

d(x(ǫx), D̂1) ≥ µx. (58)

Case 2: x belongs to some stratum of dimension one.
Since span(F̂1(x)) has dimension one and does not equal span{x}, there is
necessarly a trajectory of (57) which leaves the vector line span{x}. By the
previous case, we deduce easily the existence of a pair ǫx, µx ∈ (0, 1) and of
a trajectory x(·) : [0, ǫx] → R3 of (57) starting at x which satisfies (58).
We notice now that if for some point x ∈ D1 there are two constants ǫx, µx >
0 and some trajectory x(·) : [0, ǫx] → R3 of (57) starting at x which satisfies
(58), then by Gronwall Lemma there exists ρx > 0 such that for any y ∈
B(x, ρx) there exists a trajectory xy(·) : [0, ǫx] → R3 of (57) starting at y
such that

d(xy(ǫx), D̂1) ≥
µx

2
.

We conclude easily by compactness of the set D1, by the fact that 0 belongs
to F̂1(x) for any x ∈ Û , and by Lemma 9. �

Fix r ∈ (0, µ1) and pick some function ψr
1 : U → [0, 1] which is globally

Lipschitz and which satisfies the following properties:

∀x ∈ U , d(x,D1) ≤
r

2
=⇒ ψr

1(x) = 1, (59)

∀x ∈ U , d(x,D1) ≥ r =⇒ ψr
1(x) = 0. (60)

Define the mapping Gr
1 : U → R3 as,

Gr
1(x) := span

(

ψr
1(x)F1(x) + (1 − ψr

1(x))F̃1(x)
)

∩B,

for any x ∈ U . This mapping is globally Lipschitz on U and satisfies from
(59)-(60) the following properties:

(iii) For any x ∈ U , the set span(Gr
1(x)) is a vector line which does not

contain the vector x and Gr
1(x) = span(Gr

1(x)) ∩B.
(iv) For any x ∈ D1 + (r/2)B,Gr

1(x) = F1(x) ⊂ F0(x).
(v) For any x ∈ U \ (D1 + rB), Gr

1 ⊂ TxS2.
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For any x ∈ U , we denote by wr
1(x) the unique vector w ∈ S2 that is

orthogonal to span(Gr
1(x)) and which maximizes the quantity 〈w, x〉; more-

over we denote by Lr
1(x) the vector line which is orthogonal to the vector

plane span(Gr
1(x), w

r
1(x)). It is not difficult to prove8 that the vector field

wr
1 : U → R3 and the multivalued map x ∈ U 7→ Lr

1(x) ∩ B are globally
Lipschitz on U . Define the mapping F r

1 : U → R3 as,

∀x ∈ U , F r
1 (x) := {v + w + αwr

1(x) : (v, w, α) ∈ Hr
1(x)} ,

where the set Hr
1(x) is defined by the set of triple (v, w, α) such that v ∈

Gr
1(x), α ≥ 0, w ∈ Lr

1(x) such that 0 ≤ |w|2+α2 ≤ φr
1(x, v). The mapping F r

1

is globally Lipschitz on U ; moreover from (iii)-(v) and (51)-(52), it satisfies
the following properties:

(A) For any x ∈ U , the set F r
1 (x) is a compact convex set which contains

the origin, which is included in F0(x), and which intersects the cone
{λx : λ ≤ 0} only at the origin.

(B) For any x ∈ D1 + (r/2)B,F r
1 (x) = F1(x).

(C) For any x ∈ U such that d(x,D1) ≥ r,

F r
1 (x) = B ∩ {v ∈ R3 s.t. 〈x, v〉 ≥ 0}.

(D) There exists ρ1 > 0 such that for any x ∈ U with d(x,D1) ≥ r/2,

ρ1B ∩ TxS2 ⊂ ProjTxS2 (F r
1 (x)) .

Step 2: Let Ka be a compact subset of Da
2 ∪ Dc

2; let us show how to
construct some mapping F2 on a neighbourhood of the set Ka. Since Ka is
a compact set, since Ka ∩ D1 = ∅ and since the set Db

2 is closed in S2 \ D1,
there exist some neighbourhood V of Ka in S2 which does not intersect the
set D1 ∪ Db

2. Define the mapping L2 : D2 ∩ V → R3 by

L2(x) :=
(

F0(x) ∩ TxS2
)

∩B, ∀x ∈ D2 ∩ V.

This mapping is globally Lipschitz, besides it can be extended into a map-
ping L2 : V → R3 in such a way that for any x ∈ V the following property
is satisfied9:

(vi) The set span{L2(x)} is a vector line, L2(x) = span(L(x)) ∩ B, and
L2(x) ⊂ TxS2.

For any x ∈ D2 ∩ V, we denote by w2(x) the unique vector w ∈ F0(x) ∩ B
which maximizes the quantity 〈x,w〉. We notice that since the vector field

8By symmetry, for any x ∈ U the vector wr
1(x) belongs to the vector space

span(Gr
1(x), x). Hence if the vector line Gr

1(x) reads locally Gr
1(x) = span{g(x)} where

|g(x)| = 1, then the vector wr
1(x) writes wr

1(x) = λ1(x)g(x) + λ2x where λ1(x), λ2(x) ∈ R

satisfy λ1(x) + λ2(x)〈x, g(x)〉 = 0, λ1(x)
2 + λ2(x)

2 + 2λ1(x)λ2(x)〈x, g(x)〉 = 1 and

λ2(x)
2 > 0. We deduce that λ2(x) = (1−〈x, g(x)〉)

1

2 which is well defined since g(x) 6= x;
we conclude easily.

9We apply the same construction as the one we did in Step 1 to extend F on a neigh-
bourhood of D1.
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w2 : D2∩V → S2 is Lipschitz on D2∩V10, it can be extended into a Lipschitz
vector field w2 : V → R3. In fact up to reduce the neighbourhood V and to
set w2 := w2/|w2|, we can assume that the Lipschitz vector field w2 : V → R3

satisfies the following property:

(vii) For any x ∈ V, |w2(x)| = 1 and 〈x,w2(x)〉 ∈ [1/2, 1].

Fix r > 0 such that Ka + rB ⊂ V, and pick some function ψr
2 : V → [0, 1]

which is globally Lipschitz and which satisfies the following properties:

∀x ∈ D2 ∩ V, ψr
2(x) = 1, (61)

∀x ∈ V, d(x,D2) ≥ r =⇒ ψr
2(x) = 0. (62)

Set for any x ∈ V,

wr
2(x) := ψr

2(x)w2(x) + (1 − ψr
2(x))x,

and define the mapping Gr
2,a : V → R3 by,

Gr
2,a(x) := {v ∈ span{L2(x), w

r
2(x)} s.t. |v| ≤ 1 and 〈x, v〉 ≥ 0} ,

for any x ∈ V. As in Step 1, we define G̃r
2,a : V → R3 as,

G̃r
2,a(x) := ProjTxS2

(

Gr
2,a(x)

)

, ∀x ∈ V;

the following result holds (the proof of this result being similar to the proof
of Lemma 11, it is left to the reader).

Lemma 12. There exists some constant µ2 > 0 such that (Ka+µ2B)∩S2 ⊂
V, and such that for any 0 < µ ≤ µ2 and for any y ∈ (Ka + µB)∩ S2, there
is a trajectory y(·) : [0, 1] → V of the differential inclusion

ẏ(t) ∈ G̃r
2,a(y(t))) a.e. t ∈ [0, 1], (63)

which starts at y and which satisfies

d(y(t),D2) ≤ µ, ∀t ∈ [0, 1], (64)

and d(y(1),D2) = µ. (65)

For any x ∈ V, we denote by L′
2(x) the vector line which is orthogonal to

the vector plane span(Gr
2,a(x)), and we define the mapping F r

2,a : V → R3

as,

F r
2,a(x) :=

{

v + w′ : v ∈ Gr
2,a(x), w

′ ∈ L′
2(x) s.t. 0 ≤ |w′|2 ≤ φr

2(x, v)
}

, (66)

for any x ∈ V. From (vi)-(vii) and (51)-(53), it is not difficult to show that
the mapping F r

2,a is globally Lipschitz on V and that it satisfies the following
properties:

10As a matter of fact, for any x̄ ∈ D2 ∩ V there exist i, j ∈ {1, · · · ,m} such that
F0(x) = span{Yi(x̄), Yj(x̄)}. Hence there is a small ball B centered at x̄ such that for
any x ∈ B the vector space span{Yi(x), Yj(x)} has dimension two. In addition, up to
orthonormalize the basis Yi, Yj on B (that is up to set Z1(x) := Yi(x)/|Yi(x)| and Z2(x) :=
α(x)Yi(x) + β(x)Yj(x) where α(x), β(x) satisfy |Z2(x)| = 1 and 〈Z1(x), Z2(x)〉 for any
x ∈ B), we can assume that for any x ∈ B, both vectors Z1(x) ≡ YI(x), Z2(x) := Yj(x)
define an orthonomal basis of F0(x). This means that for any x ∈ B, the vector w2(x)
writes w2(x) = α1(x)Z1(x) + α2Z2(x), where

α1(x)
2 + α2(x)

2 = 1 and − α2(x)〈Z1(x), x〉 + α1(x)〈Z2(x), x〉 = 0.

Since we have necessarly 〈Z1(x), x〉 6= 0 or 〈Z2(x), x〉 6= 0 (because x /∈ Db
2), we leave the

reader to deduce that the vector field w2 is Lipschitz on the ball B.
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(E) For any x ∈ V, the set F r
2,a(x) is a compact convex set which contains

the origin and the set Gr
2,a(x), which is included in F0(x), and which

intersects the cone {λx : λ ≤ 0} only at the origin.
(F) For any x ∈ D2 ∩ V, F r

2,a(x) = F0(x) ∩ {v ∈ B s.t. 〈x, v〉 ≥ 0}.
(G) For any x ∈ V such that d(x,D2) ≥ r,

F r
2,a(x) = B ∩ {v ∈ R3 s.t. 〈x, v〉 ≥ 0}.

Step 3: Let Kb be a compact subset of Db
2∪Dc

2 and r > 0; let us show how
to construct some mapping F2 on a neighbourhood of the set Kb. Since Kb

is a compact set, since Kb ∩D1 = ∅ and since the set Da
2 is closed in S2 \D1,

there exist some neighbourhood W of Kb in S2 which does not intersect the
set D1 ∪ Db

2. Since for any x ∈ D2 ∩ W the vector plane F0(x) does not
contain the vector line span{x}, it is clear that there exists some mapping
Gr

2,b : W → R3 which is globally Lipschitz and which satisfies the following
properties:

(viii) For any x ∈ W, the set span(Gr
2,b(x)) is a vector plane which

intersects the vector line span{x} only at the origin, Gr
2,b(x) =

span(Gr
2,b(x)) ∩B, and Gr

2,b(x) ⊂ F0(x).

(ix) For any x ∈ D2 ∩W, Gr
2,b(x) = F0(x) ∩B.

(x) For any x ∈ W such that d(x,D2) ≥ r,Gr
2,b = TxS2 ∩B.

For any x ∈ W, we denote by w′(x) the unique vector of S2 which is orthog-
onal to span(Gr

2,b(x)) and such that 〈x,w′(x)〉 > 0, and we define for any

r > 0 the mapping F r
2,b : W → R3 by,

F r
2,b(x) :=

{

v + αw′(x) : v ∈ Gr
2,b(x), 0 ≤ α ≤ φr

2(x, v)
}

, ∀x ∈ W. (67)

From (v)-(vii) and (51)-(52) it is not difficult to show that the mapping F r
2,b

is globally Lipschitz on W and that it satisfies the following properties:

(H) For any x ∈ W, the set F r
2,b(x) is a compact convex set which con-

tains the origin and the set Gr
2,b(x), which is included in F0(x), and

which intersects the cone {λx : λ ≤ 0} only at the origin.
(I) For any x ∈ D2 ∩W, F r

2,b(x) = F0(x) ∩B.

(J) For any x ∈ W such that d(x,D2) ≥ r,

F r
2,b(x) = B ∩ {v ∈ R3 s.t. 〈x, v〉 ≥ 0}.

(K) There exists ρ3 > 0 such that for any x ∈ W,

ρ3B ∩ TxS2 ⊂ ProjTxS2

(

F r
2,b(x)

)

.

Step 4: We glue together the constructions given in Steps 1-3. For that we
first notice that since the set D1 is semianalytic, we can write the following
result.

Lemma 13. There exist two semianalytic open sets V1,V2 such that V1 ⊂ U
and V1 ⊂ V2 ⊂ (D1 + µ̄B)∩S2, a positive integer N , and N sets S1, · · · , SN
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such that

D2 ∩ V2 =

N
⋃

k=1

Sk,

and such that for each k ∈ {1, · · · , N}, the following properties are satisfied:

(i) The stratum Sk is an open connected real analytic submanifold of V2

of dimension one.
(ii) The stratum Sk is either totally included in Da

2 , either totally in-
cluded in Db

2, either totally included in Db
2.

(iii) The set Sk ∩ V1 is an open connected real analytic manifold of di-
mension one and the set Sk ∩ ∂V1 is a singleton.

(iv) The set Sk is analytically diffeomorphic to the interval [0, 1] and
intersects the set D1 (respectively the set ∂V2) at a unique point.

(v) If there exists k′ 6= k such that Sk ∩ Sk′ 6= ∅ then there is x ∈ D1

such that Sk ∩ Sk′ = {x}.

Let r > 0 be such that r < µ̄, µ1 and D1 + rB ⊂ V1. From Step 1 we
know that there exists some Lipschitz mapping F r

1 : U → R3 which satisfies
properties (A)-(D).
Set U ′ := S2\V1 and write the stratification of the set Dc

2∩U ′. There are two
positive integers p, p′, p distinct points x1, · · · , xp in S2 and p′ disjoint open
connected real analytic submanifolds of S2 of dimension one M1, · · · ,Mp′

such that

Dc
2 ∩ U ′ = {x1, · · · , xp} ∪





p′
⋃

j=1

Mj



 .

Since both sets Da
2 ∩ (S2 \ V2) and Db

2 ∩ (S2 \ V2) are closed, there exists a
compact subset Ka of Da

2 ∪ Dc
2 which is included in S2 \ V1, which contains

the set Da
2∩(S2\V2), and which contains the points x1, · · · , xp. From Step 2,

we deduce that there exists some neighbourhood V of Ka which is included
in S2 \ V1, which does not intersect the set Db

2, and such that for any r > 0
which satisfies Ka +rB ⊂ V, there is some Lipschitz mapping F r

2,a : V → R3

which satisfies properties (E)-(G).
Fix now r > 0 such that r < µ1, µ2, D1 + rB ⊂ V1 and Ka + rB ⊂ V;
and set Kb := Db

2 ∩ (S2 \ V2). From Step 3, we deduce that there exist
some neighbourhood W of Kb which is included in S2 \ V1 and which does
not intersect V, and some Lipschitz mapping F r

2,b : W → R3 which satisfies

properties (H)-(K).
Let us now explain how to glue together the three mappings F r

1 , F
r
2,a, F

r
2,b

constructed above on a neighbourhood of the set D1∪D2. In fact, we notice
that without loss of generality on the construction of the neighbourhoods V
and W, we can assume that there is an integer ī ∈ {1, · · · , p′} and ī distinct
integers j1, · · · , j̄i in {1, · · · , p′} such that the strata Mj1 , · · · ,Mī intersects
both sets V and W as follows:
For any i = 1, · · · , j̄, the manifold Mji

(which is diffeomorphic to the open
interval (0, 1)) can be partitionned into the union of two connected and open
submanifolds MV

ji
and MW

ji
which correspond to both ends of Sji

, and of
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one closed and connected submanifold M ′
ji

such that

Mji
∩ V = MV

ji
, Mji

∩W = MW
ji
,

and Mji
∩
(

U ′ \ (V ∪W)
)

= M ′
ji
.

From this observation and from Lemma 13 above, it becomes easy to glue
together the three mappings F r

1 , F
r
2,a and F r

2,b along the strata S1, · · · , SN

and Mj1 , · · · ,Mjī
in such a way to obtain an open set X of S2 which contains

the three neighbourhoods U ,V and W and the set D1 ∪ D2 + rB, and a
Lipschitz mapping FB : X → R3 which satisfy the following properties11:

(L) For any x ∈ X , the set FB(x) is a compact convex set which contains
the origin, which is included in F0(x), and which intersects the cone
{λx : λ ≤ 0} only at the origin.

(M) For any x ∈ D1 + (r/2)B,FB(x) = F r
1 (x).

(N) For any x ∈ D2 ∩ V, FB(x) = F r
2,a(x).

(O) For any x ∈ D2 ∩W, FB(x) = F r
2,b(x).

(P) For any x ∈ X such that d(x,D1 ∪ D2) ≥ r,

FB(x) = B ∩ {v ∈ R3 s.t. 〈x, v〉 ≥ 0}.
(Q) 12 If we set for every x ∈ X , F̃B(x) := ProjTxS2(FB(x)), then there

exists T > 0 such that for every y ∈ X , there is a trajectory y(·) :
[0, T ] → X of the differential inclusion

ẏ(t) ∈ F̃B(y(t)) a.e. t ∈ [0, T ],

which starts at y, which stays in X , and which satisfies

d(y(T ),D1 ∪ D2) = r.

11Fix i ∈ {1, · · · , ī}; we notice that from the construction that we made in Steps 2 and
3 we have that

F r
2,a(x) = F0(x) ∩

˘

v ∈ B s.t. 〈x, v〉 ≥ 0
¯

,

for any x ∈MV
ji

, and that

F r
2,b(x) = F0(x) ∩B,

for any x ∈MW
ji

. For any x ∈M ′
ji

, denote by w2(x) the unique vector w ∈ F0(x)∩B which

maximizes the quantity 〈x,w〉 and set L2(x) := (F0(x)∩TxS
2)∩B; both mappings w2, L2

are globally Lipschitz. Pick some function ψ : Mji
→ [0, 1] which is globally Lipschitz and

such that ψ(x) = 0 for every x ∈MV
ji

and ψ(x) = 1 for every x ∈MW
ji

. Then set

FB(x) :=
˘

v + αw2(x) : v ∈ L2(x), |v|
2 + α2 ≤ 1 and α ≥ −ψ(x)

¯

,

for every x ∈ Mji
. In this way, we glue together both mappings F r

2,a and F r
2,b along the

stratumMji
. In fact, by using the definitions of these mappings on V and W, we are able to

glue them together on a neighbourhood of each stratum Mji
in such a way that properties

(L)-(P) are satisfied. Moreover, from (i)-(v) in Lemma 13 and the constructions of the
mappings F r

1 , F
r
2,a, F

r
2,b, we can also glue these mappings together along each stratum Sk

for k = 1, · · · , N in such a way that properties (L)-(P) are satisfied.
12The property (Q) is a consequence of Lemma 11 together with property (D), of

Lemma 12, and of property (K). For instance, if y belongs to D1, then we know by
Lemma 11 together with (B) that there exists a trajectory y(·) of the differential inclusion

ẏ(t) ∈ ProjTyS2
F r

1 (y(t)) a.e.

which starts at y, which remains in U , and such that d(y(1),D1) = r/2. Besides from (D),
we can lead y(1) in time at most r/(2ρ1) to some point z ∈ U such that d(z,D1).
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In order to complete the construction of the mapping FB on the sphere,
it just remains to define it outside the set X ; we proceed as follows:
Let x ∈ S2 \ X , we set

FB(x) := B ∩
{

v ∈ R3 s.t. 〈x, v〉 ≥ 0
}

if x /∈ ⋃C
c=1B(x̄c, ρ̄), by

FB(x) :=

{

(x̄c − x) +
2

ρ̄
(|x− x̄c| − ρ̄/2) x̄c

}

.

if x ∈ B(x̄c, ρ̄/2) ∩ S2 and c ∈ {1, · · · , C}, by

FB(x) :=

{

x̄c − x− 6

ρ̄
(|x− x̄c| − ρ̄/2) 〈x̄c − x, x〉x

}

⊂ TxS2,

if x ∈ (B(x̄c, 2ρ̄/3) \B(x̄c, ρ̄/2)) ∩ S2 and c ∈ {1, · · · , C}, and if x ∈
(B(x̄c, ρ̄) \B(x̄c, 2ρ̄/3)) ∩ S2 for some c ∈ {1, · · · , C} by,

FB(x) :=

{

v1(x) + v2 : |v2| ≤
3

ρ̄
(|x− x̄c| − 2ρ̄/3) and 〈v2, x〉 ≥ 0

}

.

where the vector v1(x) is defined by,

v1(x) :=
3

ρ̄
(ρ̄− |x− x̄c|) (x− x̄c − 〈x̄c − x, x〉x) ∈ TxS2.

In conclusion, we obtain a mapping FB : S2 → R3 which is globally Lip-
schitz, with values which are compact convex subsets of Rn which contain
the origin, and which satisfies properties (i)-(ii) of Proposition 3.2.

Step 5: Finally we define FB : R3 → R3 by FB(0) = 0 and,

FB(x) := |x|FB

(

x

|x|

)

, ∀x ∈ R3 \ {0}.

By conctruction the mapping FB satisfies the assumptions (A1)-(A2), is
homogeneous of degree zero with respect to the standard dilation, is con-
tained in F0, and satisfies properties (i)-(ii). Let us show that the differential
inclusion (50) is GAC0.

If we set for any x ∈ S2, F̃B(x) := ProjTxS2(FB(x)), then from (Q) and the

fact that 0 ∈ FB(x) for any x ∈ S2, we know that for every y ∈ S2 there is
a trajectory y(·) : [0, T ] → S2 of the differential inclusion

ẏ(t) ∈ F̃B(y(t)) a.e. t ∈ [0, T ], (68)

which starts at y and such that

y(T ) ∈
⋃

c=1,··· ,C

Dc,r
3 .

Therefore since r < µ̄, and since we have that

∀x ∈
⋃

c=1,··· ,C

(Dc,r
3 \B(x̄c, ρ̄)) , F̃B(x) = TxS2B,
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we deduce that the trajectory y(·) can be extended into a trajectory y(·) :
[0, T + l] → S2 of (68) which satisfies

y(T + l) ∈
⋃

c=1,··· ,C

B (x̄c, ρ̄) .

We conclude easily by the construction of the mapping FB inside the balls
B(x̄c, ρ̄), Lemma 9 and Proposition 2.8. �

Case C: R ( S2.

From Lemma 10, the set D3 is empty, the set D2 is dense in S2, and the
set D2 ∩R has dimension ≤ 1. We claim the following result.

Proposition 3.3. If R ( S2 then there exists a multivalued map FC : R3 →
R3 which satisfies assumptions (A1)-(A2), which is homogeneous of degree
zero with respect to the standard dilation, such that FC(x) ⊂ F0(x) for any
x ∈ R3, such that the differential inclusion

ẋ(t) ∈ FC(x(t)), a.e. (69)

is GAC0, and such that the following property is satisfied:

∀x ∈ Ω,∀λ > 0, −λx /∈ FC(x). (70)

Proof. As in the previous case, we define the set Da
2 as,

Da
2 := {x ∈ D2 s.t. x ∈ F0(x)} .

From Lemma 10 (iii), this set is a closed semianalytic set of dimension at
most one. We are first going to define the mapping FC on a neighbourhood
of the set D1 ∪Da

2 , then on the set S2, and finally extend it by homogeneity
to the whole space R3; we will do it in four steps.

Step 1: We set for any x ∈ D1,

F1(x) := {v ∈ F0(x) s.t. |v| ≤ 1} .
As in Step 1 of the previous case, it can be easily shown that there exists
some neighbourhood U of D1 such that the mapping F1 can be extended into
a globally Lipschitz mapping F1 : U → R3 in such a way that the following
properties are satisfied:

(i) For any x ∈ U , the set span(F1(x)) is a vector line which does not
contain the vector x, F1(x) ⊂ F0(x), and F1(x) = span(F1(x)) ∩B.

(ii) For any x ∈ D1, F1(x) = F0(x) ∩B.

Moreover as before, if we define the mapping F̃1 : U → R3 by ,

∀x ∈ S2, F̃1(x) := ProjTxS2 (F1(x)) ,

then Lemma 11 holds.
Fix r ∈ (0, µ1); for any x ∈ U \(D1 +(r/2)B) we denote by wr

1(x) the unique
vector w ∈ S2 which is orthogonal to span(F1(x)) and wich belongs to F0(x);
it is not difficult to prove that the vector field wr

1 : U \ (D1 + (r/2)B) → R3
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is globally Lipschitz. We pick some function ψr
1 : →[0, 1] which is globally

Lipschitz, nondecreasing, and which satisfies the following properties:

∀x ∈ U , d(x,D1) ≤
r

2
=⇒ ψr

1(x) = 0, (71)

∀x ∈ U , d(x,D1) ≥ r =⇒ ψr
1(x) = 1. (72)

Then we define the mapping F r
1 : U → R3 as,

F r
1 (x) :=

{

v + αswr
1(x) : v ∈ F1(x), |v|2 + s2 ≤ 1, 0 ≤ α ≤ ψr

1(x)
}

,

for any x ∈ U . The mapping F r
1 is globally Lipschitz on U ; moreover from

(i)-(ii) and (71)-(72), it satisfies the following properties:

(A) For any x ∈ U , the set F r
1 (x) is a compact convex set which contains

the origin and which intersects the cone {λx : λ ≤ 0} only at the
origin.

(B) For any x ∈ D1 + (r/2)B,F r
1 (x) = F1(x) ⊂ F0(x).

(C) For any x ∈ U such that d(x,D1) ≥ r, F r
1 (x) = F0(x) ∩B.

Step 2: Define two sets Ur,Dr ⊂ S2 as,

Ur := S2 \ (D1 + rB) and Dr := Ur ∩ Da
2 .

We are going to show how to construct the mapping FC on a neighbourhood
of the set Dr. Since the closure of Dr does not intesect D1, there exists some
neighbourhood Vr ⊂ Ur of Dr such that x is not orthogonal to F0(x) for
any x ∈ Vr. Define the mapping L2 : Vr → R3 by

L2(x) :=
(

F0(x) ∩ TxS2
)

∩B, ∀x ∈ Vr,

and denote for any x ∈ Vr, by w2(x) the unique vector w ∈ F0(x)∩B which
maximizes the quantity 〈x,w〉. It is easy to prove that the mapping L2 and
the vector field w2 : Vr → R3 are globally Lipschitz on Vr. We define the
mapping Gr

2 : V → R3 as,

Gr
2(x) :=

{

v + αw : v ∈ L2(x), α ≥ 0, |v|2 + α2 ≤ 1
}

,

for any x ∈ Vr. The mapping Gr
2 is globally Lipschitz on Vr and satisfies

the following properties:

(iii) For any x ∈ Vr, the set Gr
2(x) is a compact convex set which contains

the origin, which is included in F0(x), and which intersects the cone
{λx : λ ≤ 0} only at the origin.

(iv) For any x ∈ Dr ∩ Vr, Gr
2(x) = F0(x) ∩ {x ∈ B s.t. 〈x, v〉 ≥ 0}.

Moreover if we define G̃r
2 : Vr → R3 as,

G̃r
2 := ProjTxS2 (Gr

2(x)) , ∀x ∈ Vr,

then the following result holds (the proof of this result being similar to the
proof of Lemma 11, it is left to the reader).

Lemma 14. There exists some constant µ2 > 0 such that (Dr+µ2B)∩Ur ⊂
Vr, and such that for any 0 < µ ≤ µ2 and for any y ∈ (Dr +µB)∩S2, there
is a trajectory y(·) : [0, 1] → Vr of the differential inclusion

ẏ(t) ∈ G̃r
2(y(t))) a.e. t ∈ [0, 1], (73)
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which starts at y and which satisfies

d(y(t),Da
2) ≤ µ, ∀t ∈ [0, 1], (74)

and d(y(1),Da
2) = µ. (75)

For any r′ > 0, we define the function βr′ : Vr → R by

βr′(x) := min

{

d(x,Da
2)

r′
, 1

}

,∀x ∈ S2.

We notice that for any r′ > 0, the function βr′ is globally Lipschitz on S2

and satisfies

x ∈ Da
2 , =⇒ βr′(x) = 0, (76)

d(x,Da
2) ≥ r, =⇒ βr′ = 1. (77)

Fix now r′ ∈ (0, µ2) and define the mapping F r,r′

2 : Vr → R3 as,

F r,r′

2 :=
{

v + αw : v ∈ L2(x), α ≥ −βr′(x), |v|2 + α2 ≤ 1
}

,

for any x ∈ Vr. The mapping F r,r′

2 is globally Lipschitz on Vr, moreover
from (iii)-(iv) and (76)-(77) it satisfies the following properties:

(D) For any x ∈ Vr, the set F r,r′

2 (x) is a compact convex set which
contains the origin, which is included in F0(x), and which intersects
the cone {λx : λ ≤ 0} only at the origin.

(E) For any x ∈ Dr
2 ∩ Vr, F r,r′

2 (x) ⊂ Gr
2(x).

(F) For any x ∈ Vr such that d(x,Da
2) ≥ r′, F r,r′

2 (x) = F0(x) ∩B.

Step 3: As in Step 4 of the previous case, it is easy from Lemma 13 to
glue together both mappings that we constructed in Steps 1 and 2 above.
Setting FC(x) := F0 ∩ B, for any x outside U ∪ Vr, we obtain FC on the
sphere.

Step 4: Finally we define FC : R3 → R3 by FB(0) = 0 and,

FC(x) := |x|FC

(

x

|x|

)

, ∀x ∈ R3 \ {0}.

By conctruction the mapping FC satisfies the assumptions (A1)-(A2), is
homogeneous of degree zero with respect to the standard dilation, is con-
tained in the mapping F0, and satisfies property (70). Furthermore (E)
together with Lemma 11, Lemma 14 and Lemma 9 prove that the differen-
tial inclusion (69) is GAC0. �

3.4. A stabilizing feedback with bifurcation singularities. As before,
we set Ω := R3 \{0}. Assume that F : R3 → R3 is a multivalued map which
satisfies assumptions (A1)-(A2) and which is homogeneous of degree zero
with respect tot the standard dilation. By Theorem 3, we know that if the
associated differential inclusion

ẋ(t) ∈ F (x(t)) a.e. (78)
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is globally asymptotically controllable at the origin, then there exists a semi-
concave control-Lyapunov function

V : R3 −→ R

for (78) which is homogeneous of degree 1 with respect to the standard
dilation. Let us denote by Σ(V ) the set of x ∈ Ω where the function V
is not differentiable; this set is called the singular set of the function V
in the set Ω. We recall that if we denote for every x ∈ Ω by ∂V (x) the
Clarke’s generalized gradient of V at x (we refer the reader to [13, 16] for
an extensive study of the Clarke’s generalized gradient of locally Lipschitz
functions), then since V is semiconcave on Ω the singular set can also be
defined by,

Σ(V ) = {x ∈ Ω s.t. ∂V (x) is not a singleton} .
Furthermore we notice that by homogeneity of V ,the singular set Σ(V ) is
homogeneous with respect to the standard dilation, that is

∀x ∈ Ω,∀λ > 0, x ∈ Σ(V ) =⇒ λx ∈ Σ(V );

in addition we have also that

∇V (λx) = ∇V (x), ∀x ∈ Ω \ Σ(V ),∀λ > 0,

and more generally that

∂V (λx) = ∂V (x) ∀x ∈ Ω,∀λ > 0.

Actually, since the function V is homogeneous, there exists some constant
δ̄ > 0 such that

min
v∈F (x)

{〈∇V (x), v〉} ≤ −δ̄|x|, ∀x ∈ Ω \ Σ(V ). (79)

According to the method that we applied in [39, 42] in order to construct
stabilizing feedbacks, we define the function ΨV : Ω → R by

∀x ∈ Ω, ΨV (x) := max
ζ∈∂V (x)

min
v∈F (x)

{〈ζ, v〉} = min
v∈F (x)

max
ζ∈∂V (x)

{〈ζ, v〉} .

The function ΨV is upper semicontinuous on Ω, besides by homogeneity of
F and V it is homogeneous of degree 1 with respect to the standard dilation.
Fix δ ∈ (0, δ̄) and define Σδ ⊂ Σ(V ) as,

Σδ(V ) := {x ∈ Ω s.t. ΨV (x) > −δ|x|} .
Up to modifying13 slighty the function V and the parameter δ, we can indeed
assume that the sets Σ(V ) and Σδ(V ) are homogeneous Whitney stratifi-
cations. Moreover, since we work with homogeneous objects in dimension
3, we can fit the two-dimensional results to our context. In this way, as
described in [39, 42], we are able to construct a selection v∗ : R3 → R3 of

13We proved in [42] that generically any control-Lyapunov function of a given control
system is stratified semiconcave on Ω. As we explained in [42] (see also [39]), this property
implies that the singular set of V is a Whitney stratification, that is roughly speaking the
singular set is stratified by a locally finite union of strata of dimension zero, one and two.
Moreover, since we work with homogeneous dynamics and since the control-Lyapunov
function V is homogeneous, we can indeed modify V homogeneously. Therefore we can
assume without loss of generality that each stratum of the Σ(V ) is homogeneous with
respect to the standard dilation.
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the mapping F (that is such that v∗(x) ∈ F (x) for any x ∈ R3) which is
smooth outside Σδ, which stabilizes in the sense of Carathéodory and such
that the discontinuities of the vector field ṽ∗ : S2 → TS2 defined as,

∀x ∈ S2, ṽ∗ := ProjTxS2(v∗(x)),

correspond to the classification that we gave in [39]. Let us state this result
precisely.

Theorem 5. If the differential inclusion (78) is GAC0, then there exists
a selection v∗ : R3 → R3 of F and a set S ⊂ R3 such that the following
properties are satisfied:

(i) The set S is closed, homogeneous with respect to the standard dila-
tion and admits a Whitney stratification with homogeneous strata of
dimension one and two.

(ii) The vector field v∗ is homogeneous with respect to the standard dila-
tion of degree zero and smooth on R3 \ S.

(iii) The different types of discontinuities of the vector field ṽ∗ on the
sphere S2 are those described in Figure 1.

(iv) The system ẋ = v∗(x) is GAS0 in the sense of Carathéodory.
(v) For every bifurcation point x̄, the Cauchy problem ẋ = −v∗(x), x(0) =

x̄ admits locally a unique solution.

repulsive point

outgoing cut edge

cut point multiple point

bifurcation point

Figure 1. Different types of singularities.

Let us apply Theorem 5 to the cases B and C of the previous section.

Case B:
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Since the multivalued map FB satisfies the assumptions (A1)-(A2), is
homogeneous of degree zero with respect to the standard dilation, and since
the differential inclusion (50) is GAC0, Theorem 5 gives.

Proposition 3.4. If R = S2 then there exists a selection v∗B : R3 → B of
FB ⊂ F0 and a set SB ⊂ R3 such that the properties (i)-(v) of Theorem 5
are satisfied. In particular, the two following properties are satisfied:

∀x ∈ S2 \ {x̄1, · · · , x̄C} , ṽ∗B(x) 6= 0, (80)

and for every c = 1, · · · , C and every x ∈ B
(

x̄c,
ρ̄
2

)

,

ṽ∗B(x) = (x̄c − x) +
2

ρ̄
(|x− x̄c| − (ρ̄/2)) x̄c. (81)

Case C:

Since the multivalued map FC satisfies the assumptions (A1)-(A2), is
homogeneous of degree zero with respect to the standard dilation, and since
the differential inclusion (69) is GAC0, Theorem 5 gives.

Proposition 3.5. If R ( S2 then there exists a selection v∗C : R3 → B of
FC ⊂ F0 and a set SC ⊂ R3 such that the properties (i)-(v) of Theorem
5 are satisfied. In particular, for every x ∈ S2, the vector v∗C(x) does not
vanish.

3.5. Cancellation of bifurcation singularities. In this section, our aim
is to “eliminate” the singularities of bifurcation. Let us first explain how to
do that in the case B.

Case B:

By Proposition 3.4, we have v∗B and SB for which properties (i)-(v) of
Theorem 5 are satisfied. In particular, we know that the vector field ṽ∗B is
smooth on S2 \ SB and that its singularities are those described in Figure
1. By compactness, there is only a finite number of bifurcation points in S2.
Let us denote them by x1, · · · , xp and show how by modifying v∗B we can
eliminate these singularities. Fix i ∈ {1, · · · , p}.

From assertion (v) of Theorem 5, there are ǫ > 0 and a C1 curve xi(·) :
[0, ǫ] → S2 which satisfies

ẋi(t) = −ṽ∗B(xi(t)), ∀t ∈ [0, ǫ], xi(0) = xi, (82)

and such that for every t ∈ (0, ǫ], xi(t) /∈ SB. In fact, since the vector field
ṽ∗B is smooth outside the trace of the singular set on the sphere SB ∩ S2,
there exists t̄ > 0 such that the curve xi(·) can be extended into a maximal
solution to the Cauchy problem (82) in the open set S2 \ SB on the interval
[0, t̄). Moreover we notice that from (81), the trajectory xi(·) cannot enter
the balls B(x̄c, ρ̄/2) for c = 1, · · · , C. In consequence two different cases
appear.

First case: t̄ <∞.
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From the description of singularities of v∗B and then of ṽ∗B given in Theo-
rem 5 (iii), we deduce that the curve xi(·) can be necessarly extended into a
C1 curve on the closed interval [0, t̄] and that xi(t̄) ∈ S2 ∩ SB. Whence the
point xi(t̄) is either a repulsive point, either a cut point, either a multiple
point, either an outgoing cut edge or a bifurcation point. We describe below
how to modify the vector field v∗B and the control-Lyapunov function V in
each of these situations.

First subcase: The point xi(t̄) is a repulsive point.
We first need the following result which will be illustrated in Figure 2.

Lemma 15. There are two curves y1
i (·), y2

i (·) : [0, t̄] → S2 such that for all
t ∈ [0, t̄],

〈xi(t), ẏ1
i (t)〉 > 0, 〈xi(t), ẏ1

i (t)〉 > 0, (83)

and such that the curve xi(·) : [0, t̄] → S2 is contained in the small open
region Ri which is delimited by y1

i (·) and y2
i (·) in S2 (that is the region

which we coloured grey in Figure 2).

Proof. Since we are dimension two, we can define define ξ1 and ξ2 two con-
tinuous sections of the unit normal bundle of the curve xi(·) : [0, t̄] → S2 in
S2. Set for j = 1, 2 and for every t ∈ [0, t̄],

yj
i (t) := xi(t) + µ

∫ t

0
ξj(s)ds.

By construction, we have for almost every t ∈ [0, t̄],

〈ẋi(t), ẏ
j
i (t)〉 = µ‖ẋi(t)‖2 + µ

∫ t

0
〈ẋi(s), ξj(s)〉ds

= ‖ẋi(t)‖2 > 0.

Moreover we have for any t ∈ [0, t̄],

‖yj
i (t) − xi(t)‖ ≤ ‖µ

∫ t

0
ξj(s)ds‖ ≤ µt̄.

This concludes the proof of the lemma. �

Since the point xi(t̄) is repulsive, we have necessarly,

ProjTxS2 (F0(x)) = TxS2.

Define the set S ′
B ⊂ R3 as,

S ′
B := SB ∪

{

λyj
i (t) : λ ≥ 0t ∈ [0, t̄], j = 1, 2

}

,

and the new vector field (v∗B)′ : R3 → R3 by (v∗B)′ (0) = 0 and

∀x ∈ Ω, (v∗B)′ (x) :=

{

v∗B(x) if x /∈ R
−v∗B(x) if x ∈ R.
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Before alteration After

Figure 2.

We notice that the set S ′
B is homogeneous with respect to the standard

dilation and that (v∗B)′ is homogeneous of degree zero with respect to δ1.

Moreover we observe that by (83), for every x ∈ S ′
B the vectors (v∗B)′ (y)

are always pointing outward the set S ′
B for y in a small neighbrouhood of

x. Which means that there exists a neighbourhood V of the set S ′
B in the

sphere and a constant ∆ > 0 such that the following property is satisfied14:

∀x ∈ V \ S ′
B,∀ξ ∈ ∂dS′

B
(x),

〈

(v∗B)′ (x), ξ
〉

≥ ∆.

Unfortunately, we notice that the vector field (v∗B) is not smooth outside S ′
B;

hence we have to refine the construction of (v∗B)′. In fact we claim that we
can glue together both vector fields v∗B and −v∗B in such a way that the new

vector field (v∗B)′ is smooth outside the set S ′. For that, it suffices to recall
that the set F0(xi) is convex and symmetric with respect to the origin. As
a matter of fact, since for every x ∈ Ri, the vectors v∗B(x) and (v∗B)′ belong
to F0(x), the latter set contains necessarly a convex disc passing through
these two vectors, thus it becomes easy to glue the vector fields (v∗B)′ and
−v∗B together as shown in Figure 3.

14Here, ∂dS′

B
(x) denotes the Clarke’s generalized gradient of the distance function dS′

B

at the point x. We recall to the reader that we refer to [13, 16] for an extensive study of
nonsmooth calculus.
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(

v
∗

B

)

′ (x)

v
∗

B
(x)

Figure 3.

Second subcase: The point xi(t̄) is a cut point.
In this case, a slightly different version of Lemma 15 provides two curves
y1

i (·), y2
i (·) : [0, t̄] → S2 which satisfy (83) and such that y1

i (t̄) and y2
i (t̄)

belong to the set SB. As before we add these curves to the singular set SB

and we modify the vector field v∗B as shown in Figure 4.

AfterBefore alteration

Figure 4.

Other subcases: The point xi(t̄) is a multiple point or an outgoing cut
edge or a bifurcation point.
All these subcases are very similar to the previous ones, so we leave the
reader to treat them. For instance we show in Figure 5 what happens in the
case of an outgoing cut edge.
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AfterBefore alteration

Figure 5.

Second case : t̄ = ∞.

Since S2 is compact, the ω-limit set of the curve xi(·) defined as,

K :=
{

lim
n→∞

xi(tn) : (tn)n ↑ ∞
}

,

is compact. Moreover by repulsivity of the set SB with respect to the vector
field v∗B and by the fact that t̄ = ∞, we have necessarly that

K ∩ SB = ∅.
Furthermore, we notice that since the trajectory xi(·) can not enter the balls
B(x̄c, ρ̄/2) for c = 1, · · · , C, the set K contains no equilibrium point of ṽ∗B
(we recall that ṽ∗B does not vanish outside the points x̄1, · · · , x̄C). Thus from
Poincaré-Bendixon Theorem (see for instance the book [28]) we deduce that
the set K is a closed orbit of the vector field ṽ∗B in S2 \ SB. This means that
there exist τ > 0 and some trajectory x(·) : [0, τ ] → S2 of the dynamical
system,

ẋ(t) = v∗B(x(t)),∀t ∈ [0, τ ],

which verifies x(0) = x(τ) and such that,

K := {x(t) : t ∈ [0, τ ]} .
We need the following result:

Lemma 16. There exists x ∈ K and ṽ ∈ ProjTxS2(F0(x)) such that

ṽ /∈ TxK.
Proof. We argue by contradiction. If we have that,

∀x ∈ K, ProjTxS2(F0(x)) ⊂ TxK,
then this implies easily that setting

K̂ :=

{

x ∈ R3 \ {0} s.t.
x

|x| ∈ K
}

,

gives
∀x ∈ K̂, F0(x) ⊂ TxK̂.

The latter property contradicts assumption (44). �
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This result allows us to assume without loss of generality that the closed
orbit K is isolated in the set of closed orbits of the dynamical ẋ = v∗B(x)
and that the set K is repulsive with respect to the trajectories of ẋ = v∗B(x).
As a matter of fact, since the set K is the ω-limit set of a trajectory of
the dynamical system ẋ = −v∗B(x), it cannot be attractive with respect to
the trajectories of ẋ = v∗B(x) on both sides of it in S2. In addition, if K
is repulsive on one side and attractive on the other, then up to modify the
vector field v∗B in a neighbourhood of some x given by Lemma 16 as shown
in Figure 6, then we can eliminate the closed orbit K.

Before alteration    After

Figure 6.

Now as before, we construct two curves which encompass the closed orbit
K and we we modify the vector fields v∗B as shown in Figure 5.

Before alteration After

Figure 7.
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This concludes the elimination of singularities in case B. If we are in
case C, then we notice that from Proposition 3.5 since the vector field v∗C
does not vanish on the sphere, all the work we did in case B works as well.
The cancellation of bifurcation singularities that we managed in this section
applies to the vector fields v∗B and v∗C . However, since the vector field v∗B
(resp. v∗C) is a selection of the multivalued map FB (resp. FC) which satisfies
FB(x) ⊂ F0(x) for every x ∈ R3 and since the control system (43) is affine
in the control, using Michael’s selection theorem (see [30] and [38]) we can
construct a feedback k∗B : R3 → Rm (resp. k∗C : R3 → Rm) such that the
corresponding vector field

x 7−→
m
∑

i=1

(k∗B(x))i Yi(x)

(

resp. x 7−→
m
∑

i=1

(k∗C(x))i Yi(x)

)

,

satisfies the same properties as v∗B (resp. v∗C). Furthermore, we specify that
in each transformation that described above, we are indeed able to change
the initial control-Lyapunov function and to construct some selection of Rm

in such a way that we obtain the following result:

Theorem 6. If the control system (43) satisfies (44) then there exist a
semiconcave control-Lyapunov function V : R3 → R which is homogeneous
of degree 1 with respect to the standard dilation, two sets S,VS ⊂ R3, a
feedback kS : R3 → Rm, and a constant ∆ > 0 such that the following
properties are satisfied:

(i) The set S is closed, homogeneous with respect to the standard dilation
and stratified with strata of dimension one and two.

(ii) The feedback kS is locally bounded on R3, smooth on R3 \ S and for
every i = 1, · · · ,m the i-th component (kS)i of the feedback kS is
homogeneous of degree 1 with respect to the standard dilation.

(iii) For every x ∈ S, there exists some sequence (xn)n ∈ R3 \ S which
converges to x and such that kS(xn) tends to kS(x).

(iv) For every x ∈ R3 \ S and for any ζ ∈ ∂V (x),
〈

m
∑

i=1

(kS(x))i Yi(x), ζ

〉

≤ −∆|x|2.

(v) The set VS is homogeneous with respect to the standard dilation and
open in R3 \ {0}.

(vi) For every x ∈ VS \ S and every ξ ∈ ∂dS(x),
〈

m
∑

i=1

(kS(x))i Yi(x), ξ

〉

≥ ∆|x|2.

4. Proof of Theorem 1

We are now ready to prove Theorem 1. So we assume from now that the
control system (1) satisfies the Hörmander’s condition (2). Before giving
the proof of our main result, we need to recall a classical technique of ho-
mogeneization of control systems and to prove a preliminary lemma related
to the perturbation of smooth repulsive stable control systems.
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4.1. Local approximation by homogeneous control systems. We pre-
sent below some classical results about the approximation of a given family
of smooth vector fields by vector fields with nilpotent Lie algebra. Actually
various kinds of nilpotent approximations have been used in the study of
hypoelliptic operators and in nonlinear control theory; see for instance the
works of Rothschild ans Stein [45], Bressan [8], Hermes [23], or Bellaiche [6].
Here we follow the presentation given in Bellaiche’s monograph.

If X1, · · · , Xm is a given family of smooth vector fields in R3, then for
each positive integer s and each s-tuple of numbers π := (i1, · · · , is) ∈
{1, · · · ,m}s, the commutator Xπ of X1, · · · , Xm of length s is defined by

Xπ :=
[

Xi1

[

· · ·
[

Xis−1 , Xis

]]

· · ·
]

.

Denote by L the Lie algebra generated by the vector fields X1, · · · , Xm and
construct an increasing filtration of L at zero.
We set F0 := ∅, F1 := span{X1, · · · , Xm}, and we define by induction the
family {Fj}j∈N by,

Fj+1 := {[Xi, X] : X ∈ Fj , i = 1, · · · ,m} .
The sequence of vector spaces {Fj(0)}j∈N is nondecreasing; moreover since
the family X1, · · · , Xm satisfies the Hörmander’s condition at the origin,
there exists an integer N such that FN (0) = R3. Set for any j ∈ N, nj :=
dimFj(0) and let us show how to contruct the dilation adapted to the fil-
tration F := {Fj}j∈N. Four different cases appear.

First case: n1 = 3.
There exist i1, i2, i3 ∈ {1, · · · ,m} such that

R3 = F1(0) = span {Xi1(0), Xi2(0), Xi3(0)} .
We set π1 := (i1), π2 := (i2), π3 := (i3) and r := (1, 1, 1).

Second case: n1 = 2.
There exist i1, i2 ∈ {1, · · · ,m} such that

F1(0) = span {Xi1(0), Xi2(0)} .
Denote by j2 the smallest j ∈ N such that nj = 3. Thus there exists some
j2-tuple I ∈ {1, · · · ,m}j2 such that

R3 = Fn2(0) = span {Xi1(0), Xi2(0), XI(0)} .
We set π1 := (i1), π2 := (i2), π3 := I and r := (1, 1, j2).

Third case: n1 = 1.
There exists i ∈ {1, · · · ,m} such that

F1(0) = span {Xi(0)} .
Denote by j2 the smallest j ∈ N such that nj > 1. Two subcases appear.

Subcase 1: nj2 = 3.
In this subcase, there exist two j2-tuples in I1, I2 ∈ {1, · · · ,m}j2 such that

R3 = Fnj2
(0) = span {Xi(0), XI1(0), XI2(0)} .
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We set π1 := (i), π2 := I1, π3 := I2 and r := (1, j2, j2).

Subcase 2: nj2 = 2,.
There exists a j2-tuple I ∈ {1, · · · ,m}j2 such that

Fnj2
= span {Xi(0), XI(0)} .

Morever if we denote by j3 the smallest j such that nj = 3, there exists a
j3-tuple J ∈ {1, · · · ,m}j3 such that

R3 = Fnj3
(0) = span {Xi(0), XI(0), XJ(0)} .

We set π1 := (i), π2 := I, π3 := J and r := (1, j2, j3).

In each case, we have constructed tuples π1, π2, π3 and a triple r such that

R3 = span {Xπ1(0), Xπ2(0), Xπ3(0)} . (84)

We call δr
ǫ the dilation adapted to the filtration F . We have the following

result; we refer the reader to Proposition 5.17 and Theorem 5.19 in [6]15.

Theorem 7. There exists a smooth change of coordinates in the space R3

in which each vector field Xi (i = 1, · · · ,m) takes the form

Xi = X̂i +Ri,

where X̂i is homogeneous of order 1 with respect to the dilation δr
ǫ , and Ri is

”of order ≤ 0” with respect to δr
ǫ at the origin. In fact, for each j = 1, 2, 3,

the j-th coordinate of the vector field X̂i is an homogeneous polynomial of
degree 1 and the j-th coordinate of Ri satisfies:

(Ri(x))j = O
((

|x1|
1
r1 + |x2|

1
r2 + |x3|

1
r3

)rj
)

. (85)

In addition, the vector fields X̂1, · · · , X̂m satisfy the Hörmander’s condition
at the origin.

4.2. Perturbations of smooth repulsive stable control system. A
standard result in the asymptotic stability of approximations of homoge-
neous vector fields is given by the following result; we refer the reader to
[44, Theorem 3], also to the papers [23, 24].

Theorem 8. Let F be a continuous vector field on Rn with F (0) = 0, which
is homogeneous of degree k ≤ 1 with respect to some dilation δr

ǫ (x). Let G be
a continuous vector field such that for each i = 1, · · · , n, its i-th coordinate
satisfies the following property:

(G(x))i = O

(

(

|x1l
1
r1 + |x2|

1
r2 + |x3|

1
r3

)rj−(k−1)
)

.

Then if the dynamical system ẋ = F (x) is locally asymptotically stable at
the origin, then the system ẋ = F (x) +G(x) is locally asymptotically stable
at the origin too.

Our main result is indeed based on the nonsmooth version on the theorem
above which follows from the following lemma:

15We warn the reader that in [6], Bellaiche does not use the same definition of the
degree of a homogeneous vector field.
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Lemma 17. Let Z : Rn → Rn be a vector field, associated with a semicon-
cave control-Lyapunov function V : Rn → R and a set S ⊂ Rn such that the
following properties are satisfied:

(i) The set S is closed and stratified with strata of dimension less or
equal than n− 1.

(ii) The vector field Z is locally bounded on Rn, smooth on Rn \ S and
satisfies Z(0) = 0.

(iii) For every x ∈ S, there exists some sequence (xn)n ∈ R3 \ S which
converges to x and such that Z(xn) tends to Z(x).

(iv) There exists a continuous, positive definite function W : Rn → R

such that,

∀x ∈ Rn \ S,∀ζ ∈ ∂V (x), 〈Z(x), ζ〉 ≤ −W (x).

(v) There exists a neighbourhood VS of the set S \ {0} in Rn \ {0} and
a continuous, positive definite function W : Rn → R such that,

∀x ∈ VS \ S,∀ξ ∈ ∂dS(x), 〈Z(x), ξ〉 ≥ w(x).

Then the dynamical system

ẋ = Z(x) (86)

is globally asymptotically asymptotically stable at the origin in the sense of
Carathéodory and any trajectory of it satisfies x(t) /∈ S for any t ≥ 0.

Proof. Assumption (iii) together with (ii) implies that for every x ∈ S,
the vector Z(y) does not belong to the Bouligand tangent cone TB

S (x)16

whenever y is closed enough to x. Hence if x(·) : [0, ǫ] → Rn is some
Carathéodory solution of (86) on the interval [0, ǫ] such that x(0) ∈ S, then
there exists µ ∈ (0, ǫ) such that x(t) /∈ S for any t ∈ (0, µ). Furthermore
we notice that if x(·) : [a, b] → Rn is some Carathéodory solution of (86)
which remains inside the set V \ S, then from Lebourg’s Theorem (see [13,
Theorem 2.3.7 p. 41]), for almost every t ∈ [a, b] there exists ξ ∈ ∂dS(x(t))
such that

d

dt
dS(x(t)) = 〈ξ, Z(x(t))〉.

Thus we deduce that the function t ∈ [a, b] 7→ dS(x(t))−
∫ t

0 w(s)ds is nonde-
creasing, which implies that the function t ∈ [a, b] 7→ dS(x(t)) is increasing.
Since assumptions (i), (iii) and (v) imply that for every x ∈ S, there exists
δ > 0 such that for any t1 ≤ δ, the point x1 defined as x1 := x + t1Z(x)
does not belong to S and since the vector field Z is smooth on Rn \ S, it is
clear that for every x0 ∈ Rn the Cauchy problem

ẋ = Z(x(t)), a.e. and x(0) = x0,

admits a Carathéodory solution. Now since we know that Carathéodory
solutions of (86) always exist (that is for every initial state) and satisfy x(t) /∈
S for every positive time, it remains to prove that the system (86) is globally

16The Bouligand tangent cone to the set S at x is defined by

TB
S (x) :=



v ∈ R
3 s.t. lim inf

t↓0

dS(x+ tv)

t
= 0

ff

.
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asymptotically stable at the origin in the sense of Carathéodory. This result
is a simple consequence of assumption (iv) together with Lebourg’s Theorem
which give that any Carathéodory solution of (86) verifies,

d

dt
V (x(t)) ≤W (x(t)), ∀t > 0.

We conclude easily; we refer the reader to [37] for the details of the proof. �

4.3. Proof of Theorem 1. As before we set Ω := R3 \{0}. From Theorem
7, up to make a change of variables, we can assume that for every i =
1, · · · ,m, the vector field Xi writes

Xi = X̂i +Ri,

where X̂i is homogeneous of degree 1 with respect to some dilation δr
ǫ and

Ri satisfies (85). Applying Proposition 2.1 with µ = γ = 1, we obtain
a homeomorphism Φ : R3 → R3 such that Φ(0) = 0, Φ is an analytic

diffeomorphism from Ω into Ω, and each vector field
˜̂
Xi (for i = 1, · · · ,m)

defined as,

˜̂
Xi(y) := DΦ

(

Φ−1(y)
)

· X̂i

(

Φ−1(y)
)

, ∀y ∈ Ω,

satisfies

∀y ∈ Ω,∀ǫ > 0,
˜̂
Xi(ǫy) =

˜̂
Xi(y).

Set for every i = 1, · · · ,m and for every y ∈ Ω,
¯̂
Xi(y) := |y| ˜̂

Xi(y) and

R̄i(y) := |y|DΦ
(

Φ−1(y)
)

·
(

Ri

(

Φ−1(y)
))

.

Fix i = 1, · · · ,m; by construction of Φ (see the proof of Proposition 2.1),
we have that for every y ∈ Ω and every ǫ > 0,

R̄i(ǫy) = |ǫy|DΦ
(

Φ−1(ǫy)
)

·
(

Ri

(

Φ−1(ǫy)
))

= ǫ|y|DΦ
(

δr
ǫ

(

Φ−1(y)
))

·Ri

(

δr
ǫ

(

Φ−1(y)
))

(by (8))

= ǫ2|y|DΦ
(

Φ−1(y)
)

·
[

(δr
ǫ )

−1 (Ri

(

δr
ǫ

(

Φ−1(y)
)))

]

(by (9))

= |y|DΦ
(

Φ−1(y)
)

·
[

ǫ2 (δr
ǫ )

−1 (Ri

(

δr
ǫ

(

Φ−1(y)
)))

]

.

But we know by (85) that for every x ∈ Ω and for every ǫ > 0,

lim
x→0

ǫ (δr
ǫ )

−1 (Ri (δ
r
ǫ (x))) = 0.

Hence we deduce that for every y ∈ Ω,

lim
ǫ→0

R̄i(ǫy)

ǫ
= 0. (87)

By construction, the vector fields
¯̂
X1, · · · , ¯̂

Xm are analytic on Ω17, homoge-
neous of degree zero with respect to the standard dilation and satisfy (44)
for any y ∈ Ω. Hence we can apply Theorem 6; therefore there exist a
semiconcave control-Lyapunov function V̄ : R3 → R which is homogeneous
of degree 1 with respect to the standard dilation, two sets S̄,VS̄ ⊂ R3, a

17As a matter of fact, the vector fields
˜̂
Xi’s have polynomial coordinates and the

function y 7→ |y| is analytic on Ω.
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feedback kS̄ : R3 → Rm, and a constant ∆̄ > 0 such that the following
properties are satisfied:

(i) The set S̄ is closed, homogeneous with respect to the standard dila-
tion and stratified with strata of dimension one and two.

(ii) The feedback kS̄ is locally bounded on R3, smooth on R3 \ S̄ and for
every i = 1, · · · ,m the i-th component (kS̄)i of the feedback kS̄ is
homogeneous of degree 1 with respect to the standard dilation.

(iii) For every y ∈ S̄, there exists some sequence (yn)n ∈ R3 \ S̄ which
converges to y and such that kS̄(yn) tends to kS̄(y).

(iv) For any y ∈ Ω \ S̄ and for any ζ ∈ ∂V̄ (y),

〈

m
∑

i=1

(kS̄(y))i
¯̂
Xi(y), ζ

〉

≤ −∆̄|y|2.

(v) The set VS̄ is homogeneous with respect to the standard dilation and
open in Ω.

(vi) For every y ∈ VS̄ \ S̄ and every ξ ∈ ∂dS̄(y),

〈

m
∑

i=1

(kS̄(y))i
¯̂
Xi(y), ξ

〉

≥ ∆̄|y|2.

Define the two ”discontinuous” vector fields F,G on R3 by

∀y ∈ Ω F (y) :=

m
∑

i=1

(kS̄)i
¯̂
Xi(y), F (0) = 0,

∀y ∈ Ω G(y) :=

m
∑

i=1

(kS̄)i R̄i(y), G(0) = 0.

By construction, F and G are homogeneous of degree −1 with respect to
the standard dilation; moreover by (iv), (vi) together with (87) , there are
ρ, ∆̄′ > 0 such that

∀y ∈ Ω \ S̄, |y| ≤ ρ =⇒ ∀ζ ∈ ∂V (y), 〈(F +G)(y), ζ〉 ≤ −∆̄′|y|2,

∀y ∈ VS̄ \ S̄, |y| ≤ ρ =⇒ ∀ξ ∈ ∂dS̄(y), 〈(F +G)(y), ξ〉 ≥ ∆̄′|y|2.

Using the local version of Lemma 17, we deduce that the closed-loop system

ẏ = (F +G)(y)
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is LAS0 (that is, locally asymptotically stable at the origin). We notice that
for every y ∈ Ω, the vector (F +G)(y) writes,

(F +G)(y)

=
m
∑

i=1

(kS̄(y))i

(

¯̂
Xi(y) + R̄i(y)

)

=

m
∑

i=1

(kS̄(y))i |y|DΦ
(

Φ−1(y)
)

·
((

X̂i +Ri

)

(

Φ−1(y)
)

)

= DΦ
(

Φ−1(y)
)

·
((

m
∑

i=1

(k)i

(

X̂i +Ri

)

)

(

Φ−1(y)
)

)

= DΦ
(

Φ−1(y)
)

·
((

m
∑

i=1

(k)iXi

)

(

Φ−1(y)
)

)

,

where the function k := (k1, · · · , km) : R3 → Rm is defined by,

(k)i(x) := |Φ(x)| (kS̄(Φ(x)))i , ∀i = 1, · · · ,m.
In conclusion, if we set k(0) := 0, then from homogeneity of kS̄ of degree
1 with respect to the standard dilation and (8), we deduce that for every
i = 1, · · · ,m, the i-th component of k is homogeneous of degree 2 with
respect to δr

ǫ . We conclude easily that the feedback k make the closed-loop
system

ẋ =
m
∑

i=1

(k(x))iXi(x)

LAS0 with respect to the set

S :=
{

x ∈ R3 s.t. Φ(x) ∈ S̄
}

.

We notice that if in the proof above, we define V : R3 → R by V (x) :=
V̄ (Φ(x)) and if we set

VS :=
{

x ∈ R3 s.t. Φ(x) ∈ VS̄

}

,

then we obtain the following result.

Theorem 9. Let Y1, · · · , Ym be smooth vector fields on R3 which are homo-
geneous of degree k ≤ 1 with respect to some dilation δr

ǫ and which satisfy

Lie{Y1, · · · , Ym}(0) = R3.

Then there exist a semiconcave control-Lyapunov function V : R3 → R

which is homogeneous of degree 1 with respect to δr
ǫ , a set S ⊂ R3 and a

feedback kS : R3 → Rm such that the following properties are satisfied:

(i) The set S is closed, homogeneous with respect to δr
ǫ and stratified

with strata of dimension one and two.
(ii) The feedback kS is locally bounded on R3, smooth on R3 \ S and for

every i = 1, · · · ,m the i-th component (kS)i of the feedback kS is
homogeneous of degree 2 with respect to the standard dilation.
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(iii) For every x ∈ S, there exists some sequence (xn)n ∈ R3 \ S which
converges to x and such that kS(xn) tends to kS(x).

(iv) There exists a continuous, positive definite function W : R3 → R

such that,

∀x R3 ∈ S,∀ζ ∈ ∂V (x),

〈

m
∑

i=1

(kS(x))i Yi(x), ζ

〉

≤ −W (x).

(v) There exists a open neighbourhood VS of the set S in R3 \ {0} which
is homogeneous with respect to δr

ǫ and a continuous, positive definite
function w : R3 → R such that,

∀x ∈ VS \ S,∀ξ ∈ ∂dS(x),

〈

m
∑

i=1

(kS(x))i Yi(x), ξ

〉

≥ w(x).

5. Consequences for time-varying stabilizing feedbacks

In [18] (see also [19]), Coron proved that all controllable driftless control
systems may be stabilized by continuous (and even smooth) time-varying
feedback. In particular, his result implies that if a control system of the
form (1) satisfies the Hörmander’s condition (2) , then for all T > 0, there
exists a time-varying feedback u ∈ C∞(R × Rn; Rm) such that

u(t, 0) = 0, ∀t ∈ R,

u(t+ T, x) = u(t, x), ∀t ∈ R,∀x ∈ Rn,

and the origin is locally asymptotically stable for

ẋ =
m
∑

i=1

ui(t, x)Xi(x).

Later in [31], Morin, Pomet and Samson proved the homogeneous version
of Coron’s Theorem. In fact, given a smooth homogeneous control system
verifying (2), they presented a method to construct smooth homogeneous
time-varying feedback laws which achieve the stabilization of the control
system to the origin. Here we base on the design method of Morin, Pomet
and Samson to announce two specific results about the existence of some
type of repulsive time-varying feedbacks. We notice that we just give an
idea of the proof of the first result.

Theorem 10. Let Y1, · · · , Ym be smooth vector fields on R3 which are ho-
mogeneous of degree 1 with respect to some dilation δr

ǫ and which satisfy

Lie{Y1, · · · , Ym}(0) = R3.

Then there exists a closed set S ⊂ R3 which is homogeneous with respect
to δr

ǫ such that for any T > 0 and for any neighbourhood V ⊂ R3 \ {0} of
S \ {0} which is homogeneous with respect to δr

ǫ , there exists a time-varying
feedback u : R×R3 → Rm which is smooth, homogeneous with respect to δr

ǫ ,
and which satisfies the following properties:

(i) For any t ∈ R, x ∈ R3, u(t+ T, x) = u(t, x).
(ii) For any t ∈ R, u(t, 0) = 0.
(iii) For any x ∈ V, the function t ∈ R 7→ u(t, x) is constant.
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(iv) The closed-loop system

ẋ =
m
∑

i=1

ui(t, x)Yi(x) (88)

is globally asymptotically stable at the origin.
(v) For every trajectory x(·) : [0,∞) → R3 of (88) such that x(0) /∈ V

the following property is satisfied:

x(t) /∈ V, ∀t ≥ 0.

Proof. Let us give an idea of the proof of Theorem 10. We set Ω := R3 \{0}.
By Theorem 9, we know that under our assumptions, there are a semiconcave
control-Lyapunov function V : R3 → R which is homogeneous of degree 1
with respect to the standard dilation δr

ǫ , a set S ⊂ R3 and a feedback
kS : R3 → Rm such that the properties (i)-(vi) of Theorem 9 are satisfied.
We set for every x ∈ R3,

F (x) :=

m
∑

i=1

(kS(x))i Yi(x);

we notice that by construction, the vector field F : R3 → R3 is homogeneous
of degree k − 2 with respect to δr

ǫ . Set for every ρ > 0,

Bρ :=
(

S + ρB
)

∩N−1(1),

and B̂ρ := {x ∈ Ω s.t. P (x) ∈ Bρ} .
We notice that for any ρ > 0, the set B̂ρ is a closed neighbourhood of the
set S, besides if ρ > 0 is taken sufficiently small then there exists µ > 0 such
that,

∀x ∈ ∂B̂ρ,∀ξ ∈ NC

B̂ρ
(x), 〈F (x), ξ〉 ≥ µN(x)k−2|ξ|18. (89)

Fix ρ > 0 which satisfies the property above and such that

Bρ ⊂ (V ∩ VS) ∩N−1(1).

We use from now the notations for N and P that we defined in the proof of
Proposition 2.1. Let Ψ : N−1(1) → R a nonnegative smooth function which
verifies Ψ(x) = 1 for x ∈ B ρ

2
and Ψ(x) = 0 for x ∈ N−1(1) \ Bρ; we set

∀x ∈ Ω, a(x) := Ψ(P (x))N(x)k−2(−x) + (1 − Ψ(P (x)))F (x).

We leave the reader to verify that the vector field a is continuous on R3,
smooth outside the origin and homogeneous of degree k − 2 with respect
to δǫ. By homogeneity of the Yi’s and compactness of the sphere, there
exist an integer M > 0 and M commutators Yπ1 , · · · , YπM

of length > 1
(we refer to Section 4.1 for the notations concerning the commutators) and
there are m smooth functions u1, · · · , um : Ω → R and M smooth functions
v1, · · · , vM : Ω → R such that

a(x) =

m
∑

i=1

ui(x)Yi(x) +

M
∑

j=1

vj(x)Yπj
(x).
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In addition, by construction of the function a we can assume that for every
x ∈ Ω \ B̂ρ,

ui(x) = (kS(x))i , ∀i = 1, · · · ,m,
and vj(x) = 0 for all j = 1, · · · ,M.

Now, by adapting the proof of Morin, Pomet and Samson to the case of a
homogeneous of degree k − 2 with respect to δr

ǫ , we can construct highly
oscillatory functions of time uǫ : R × R3 → Rm which are homogeneous of
degree 2 with respect to δr

ǫ , smooth outside the origin and such that for any
τ > 0 and any x0 ∈ Ω, the solutions xǫ : [0, τ ] → R3 of

ẋ =

m
∑

i=1

uǫ
i(t, x)Xi(x), t ∈ [0, τ ], and x(0) = x0,

converge uniformly to the solution x∞ : [0, τ ] → R3 of

ẋ = a(x), t ∈ [0, τ ], and x(0) = x0.

Moreover, we claim that we can do the construction of the (uǫ)ǫ>0 can be
made in such a way that

∀ǫ > 0,∀t ∈ R,∀x ∈ Ω \ B̂ρ, uǫ(t, x) = kS(x).

Now, using the fact that a smooth regularization of the function V gives a
smooth Lyapunov function for the system ẋ = a(x), the homogeneity of the
datas and (89), we conclude that for ǫ > 0 sufficiently small the closed-loop
system

ẋ =

m
∑

i=1

uǫ
i(t, x)Xi(x),

is globally asymptotically stable at the origin and that all its trajectories
satisfy property (v). �

Using the classical technique of homogeneization of control systems that
we recall in Section 4.1 and a Lyapunov converse theorem for homogeneous
time-varying vector fields, Theorem 10 leads naturally to the following result:

Corollary 5.1. If n = 3 and if the system (1) satisfies the Hörmander’s
condition (2), then there exist a neighbourhood of the origin W, a dilation δr

ǫ

and a closed set S ⊂ Rn which is homogeneous with respect to δr
ǫ such that

for any T > 0 and for any neighbourhood V of S which is homogeneous with
respect to δr

ǫ , there exists a time-varying feedback u : R × Rn → Rm which
is smooth, homogeneous with respect to δr

ǫ , and which satisfies the following
properties:

(i) For any t ∈ R, x ∈ Rn, u(t+ T, x) = u(t, x).
(ii) For any t ∈ R, u(t, 0) = 0.
(iii) For any x ∈ V, the function t ∈ R 7→ u(t, x) is constant.
(iv) The closed-loop system

ẋ =
m
∑

i=1

ui(t, x)Xi(x) (90)

is globally asymptotically stable at the origin.
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(v) For every trajectory x(·) : [0,∞) →: R3 of (90) such that x(0) /∈ V
the following property is satisfied:

x(t) /∈ V, ∀t ≥ 0.

Appendix

Here we present the example of a control system in dimension three,
which is globally asymptotically controllable at the origin and which does
not admit a local smooth repulsive stabilizing feedback. The example that
we present is indeed analytic and homogeneous with respect to the standard
dilation of degree −1.

In the sequel, we denote by (x1, x2, x3)
∗ a vector x ∈ R3. Define two

vector fields X1, X2 on R3 by

X1(x) :=





x2
1 − x2

2

2x1x2

0



 and X2(x) :=





0
0
x2

3



 ,

for any x ∈ R3. We leave the reader to verify that both these two vector
fields are analytic and homogeneous with respect to the standard dilation
of degree −1. Furthermore, we notice that in the control system

ẋ = u1X1(x) + u2X2(x), (91)

the two controls u1 and u2 act independently on the coordinates (x1, x2)
and x3. Besides it is not difficult to see that the control system on the real
line given by

ż = uz2, u ∈ R,

and that the control system in the plane defined by

ẋ = u′(x2 − y2)
ẏ = u′(2xy), u′ ∈ R,

are globally asymptotically controllable at the origin. As a matter of fact,
we notice easily (as shown in Figure 8) that for every (x, y) 6= (0, 0) in the
plane, the set

{

u′(x2 − y2, 2xy) : u′ ∈ R
}

is the tangent space to the circle passing through (x, y) and (0, 0) with center
on the y-axis. We conclude easily that the control system (91) is globally
asymptotically controllable at the origin.
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Figure 8.

Let us now prove that control system (91) does not admit a local smooth
repulsive stabilizing feedback at the origin. For that we argue by contradic-
tion.
So let us assume that such a feedback exists; this means that there is some
neighbourhood of the origin W, some set S ⊂ W which contains the origin,
and some feedback kS : W → R2 such that the properties (i)-(iv) of Defini-
tion 1.1 are satisfied. We first notice that the vector line span{(0, 0, 1)∗} is
invariant under the control system (91); this implies that this vector line can-
not intersect the singular set S. Hence if we fix some point (0, 0, x̄3)

∗ ∈ W
such that x̄3 > 0, since the set S is closed, there exists some ball B centered
at the point (0, 0, x̄3)

∗ which is included in R3 \ S. Moreover there exists
necessarly some nontrivial circle C in the plane {x3 = 0} which is centered
on the x2-axis, which passes through the origin (see Figure 8) and such that
the set defined by

Cx3 :=
{

(x1, x2, x3)
∗ ∈ R3 s.t. (x1, x2) ∈ C and x3 = x̄3

}

,

is contained in the ball B. Let us parametrize this circle by some smooth
function

γ : [0, 2π] −→ γ(θ) ∈ Cx3 .

If we denote for every θ ∈ [0, 2π] by γ(θ, ·) the unique solution of the closed-
loop system

ẋ = (kS(x))1X1(x) + (kS(x))2X2(x), (92)

such that x(0) = γ(θ), then we deduce by property (iv) of Definition 1.1
that for any t ≥ 0, the point γ(θ, t) does not belong to S. In addition ,
property (iii) implies that the set {γ(θ, t) : θ ∈ [0, 2π]} tends uniformly to
the singleton {0} as t tends to infinity. Since the circle C is invariant under
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the closed-loop system (92), this proves that the smooth mapping

γ̃ : [0, 2π] × [0,∞) −→ C
(θ, t) 7−→ (γ1(θ, t), γ2(θ, t)),

satisfies

γ̃(·, 0) = γ and lim
t→∞

γ̃(·, t) = 0.

Since the circle C is not contractible (see for instance [7]), we obtain a
contradiction.
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