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THE BLOW-UP OF CRITICAL ANISTROPIC EQUATIONS

WITH CRITICAL DIRECTIONS

JÉRÔME VÉTOIS

Abstract. We investigate blow-up theory for doubly critical anisotropic problems in bounded
domains of the Euclidean space.

1. Introduction

Anisotropic operators modelize directionally dependent phenomena. In this paper, we con-
sider problems posed on domains in the Euclidean space R

n in dimension n ≥ 2, and we provide
ourselves with an anisotropic configuration −→p = (p1, . . . , pn) with pi > 1 for all i = 1, . . . , n.
We define the anisotropic Laplace operator ∆−→p by

∆−→p u =
n∑

i=1

∂

∂xi

∇pi
xi
u , (1.1)

where ∇pi
xi
u = |∂u/∂xi|

pi−2 ∂u/∂xi for all i = 1, . . . , n. Nonlinear equations of the type
∆−→p u = f (·, u) appear in several places in the literature. They appear, for instance, in biology,
see Bendahmane–Karlsen [11] and Bendahmane–Langlais–Saad [13], as a model describing
the spread of an epidemic disease in heterogeneous environments. They also emerge, see
Antontsev–Dı́az–Shmarev [5] and Bear [10], from the mathematical description of the dynamics
of fluids with different conductivities in different directions.

We consider anisotropic problems of critical growth of the type
{

− ∆−→p u = λ |u|p
∗−2 u+ f (·, u) in Ω ,

u ∈ D1,−→p (Ω) ,
(1.2)

where ∆−→p is as in (1.1), Ω is a domain of R
n, D1,−→p (Ω) is the anisotropic Sobolev space

defined as the completion of the vector space of all smooth functions with compact support
in Ω with respect to the norm ‖u‖D1,−→p (Ω) =

∑n
i=1 ‖∂u/∂xi‖Lpi (Ω), p

∗ is the critical Sobolev

exponent (see (1.4) below), λ is a positive real number, and f is a Caratheodory function in
Ω × R satisfying the growth condition

|f (·, u)| ≤ C
(
|u|q−1 + 1

)
a.e. in Ω (1.3)

for some real number q in (1, p∗) and for some positive constant C independent of u.

We are concerned with the doubly critical situation p+ = p∗, where p+ = max (p1, . . . , pn)
is the maximum value of the anisotropic configuration and p∗ is as above the critical Sobolev
exponent for the embeddings of the anisotropic Sobolev space D1,−→p (Ω) into Lebesgue spaces.
In this setting, not only the nonlinearity has critical growth, but the operator itself has critical
growth in particular directions of the Euclidean space. As a remark, the notion of critical
direction is a pure anisotropic notion which does not exist when dealing with the Laplace
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operator or the p-Laplace operator. Given i = 1, . . . , n, the i-th direction is said to be critical
if pi = p∗, resp. subcritical if pi < p∗. Critical directions induce a failure in the rescaling
invariance rule associated with (1.2).

Given an anisotropic configuration −→p satisfying
∑n

i=1 1/pi > 1 and pj ≤ n/
(∑n

i=1
1
pi
− 1
)

for all j = 1, . . . , n, the critical Sobolev exponent is equal to

p∗ =
n∑n

i=1
1
pi
− 1

. (1.4)

Possible references on anisotropic Sobolev spaces are Besov [14], Haškovec–Schmeiser [38],
Kruzhkov–Kolod̄ı̆ı [40], Kruzhkov–Korolev [41], Lu [47], Nikol′skĭı [53], Rákosńık [54,55], and
Troisi [65].

We aim in describing the asymptotic behaviors in energy space of Palais–Smale sequences
associated with problem (1.2). Before stating our main result, let us fix some notations.
For any µ > 0 and any point a = (a1, . . . , an) in R

n, we define the affine transformation
τ
−→p
µ,a : R

n → R
n by

τ
−→p
µ,a (x1, . . . , xn) =

(
µ

p1−p∗

p1 (x1 − a1) , . . . , µ
pn−p∗

pn (xn − an)
)
. (1.5)

As is easily checked, (1.5) provides a general rescaling invariance rule associated with problem

(1.2) with f ≡ 0. In particular, u solves −∆−→p u = |u|p
∗−2 u in Ω if and only if the function

v = µ−1u ◦
(
τ
−→p
µ,a

)−1
solves −∆−→p v = |v|p

∗−2 v in τ
−→p
µ,a (Ω), where

(
τ
−→p
µ,a

)−1
(x1, . . . , xn) =

(
µ

p∗−p1
p1 x1 + a1, . . . , µ

p∗−pn
pn xn + an

)
.

Given (µα)α a sequence of positive real numbers converging to 0, (xα)α a converging sequence
in R

n, λ a positive real number, U a nonempty, open subset of R
n, and u a nontrivial solution

in D1,−→p (U) of the problem
{

− ∆−→p u = λ |u|p
∗−2 u in U ,

u ∈ D1,−→p (U) ,
(1.6)

where ∆−→p is as in (1.1), we call −→p -bubble of centers (xα)α, weights (µα)α, multiplier λ, domain
U , and profile u, the sequence (Bα)α defined by

Bα =
1

µα

u ◦ τ
−→p
µα,xα

for all α, where τ
−→p
µα,xα

is as in (1.5). One can find existence and regularity results for problem
(1.6) in Vétois [68]. In the following, we implicitly extend profiles of bubbles by 0 outside of
their domains so as to regard them as functions in D1,−→p (Rn). With the above notations, we
define the energy E (Bα) of a −→p -bubble (Bα)α by

E (Bα) =
n∑

i=1

1

pi

∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx−
λ

p∗

∫

Rn

|u|p
∗

dx =
n∑

i=1

p∗ − pi

p∗pi

∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx , (1.7)

the second equality in (1.7) being obtained by testing (1.6) with u and integrating by parts.

We approximate problem (1.2) with the problems
{

− ∆−→p u = λα |u|
rα−2 u+ f (·, u) in Ω ,

u ∈ D1,−→p (Ω) ,
(1.8)
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where ∆−→p is as in (1.1), (λα)α is a sequence of positive real numbers converging to λ, and
(rα)α is a sequence of real numbers in (1, p∗] converging to p∗. Associated with problems (1.2)

and (1.8), we define the functionals Iα and I∞ in D1,−→p (Ω) by

Iα (u) =
n∑

i=1

1

pi

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx−

∫

Ω

F (x, u) dx−
λα

rα

∫

Ω

|u|rα dx (1.9)

and

I∞ (u) =
n∑

i=1

1

pi

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx−

∫

Ω

F (x, u) dx−
λ

p∗

∫

Ω

|u|p
∗

dx , (1.10)

where F (x, u) =
∫ u

0
f (x, s) ds. We say that a sequence (uα)α in D1,−→p (Ω) is Palais–Smale for

the functionals (Iα)α if there hold |Iα (uα)| ≤ C for some positive constant C independent of

α and DIα (uα) → 0 in D1,−→p (Ω)′ as α→ +∞. We say that (uα)α is a bounded Palais–Smale

sequence for the functionals (Iα)α if (uα)α is moreover bounded in D1,−→p (Ω).

Theorem 1.1 below is referred to as a bubble tree decomposition. With this result, we provide
a complete description of the asymptotic behaviors in D1,−→p (Ω) of bounded Palais–Smale
sequences for the functionals (Iα)α defined in (1.9). Bubble tree decompositions were obtained
by Struwe [62] for the equation −∆u = u2∗−1, where ∆ is the classical Laplace operator and
2∗ = 2n/ (n− 2) is the critical Sobolev exponent. Related references to Struwe [62] are Brézis–
Coron [17], Lions [45,46], Sacks–Uhlenbeck [58], Schoen [60], and Wente [70]. We also refer to
El Hamidi–Vétois [29] for an extension of Struwe’s result to the anisotropic Laplace operator
in case p+ < p∗. Here, we treat the more involved case of critical directions p+ = p∗. The
definition of asymptotically −→p -stable domains is postponed to Section 3. Roughly speaking,
asymptotically stable domains are domains which, in the limit of the rescalings, still satisfy
the segment property. This notion, see El Hamidi–Vétois [29] and Vétois [67], turns out
to be fundamentally associated with the question of proving bubble tree decompositions for
anisotropic critical equations. We state our result as follows.

Theorem 1.1. Let n ≥ 3 and −→p = (p1, . . . , pn), and assume that
∑n

i=1 1/pi > 1 and p+ = p∗.
Let Ω be an asymptotically −→p -stable, bounded domain of R

n, and f be a Caratheodory function
in Ω×R satisfying the growth condition (1.3). Let (λα)α be a sequence of positive real numbers
converging to λ, and (rα)α be a sequence of real numbers in (1, p+] converging to p+. For any
bounded Palais–Smale sequence (uα)α for the functionals (Iα)α defined in (1.9), there exist a
solution u∞ of problem (1.2), a natural number k, and for any j = 1, . . . , k, a −→p -bubble (Bj

α)α

of weights (µj
α)α and multiplier λ̃j satisfying (µj

α)p+−rα → λ̃j/λ as α → +∞, such that, up to
a subsequence, there holds

uα = u∞ +
k∑

j=1

Bj
α +Rα (1.11)

for all α, where Rα → 0 in D1,−→p (Rn) as α→ +∞. Moreover, there holds

Iα (uα) = I∞ (u∞) +
k∑

j=1

E
(
Bj

α

)
+ o (1) (1.12)

as α → +∞, where E, Iα, and I∞ are as in (1.7), (1.9), and (1.10). If in addition the
functions uα are nonnegative, then u∞ and (B1

α)α , . . . ,
(
Bk

α

)
α

are also nonnegative.

We give examples in Section 2, see Corollary 2.5, of Palais–Smale sequences which blow up,
namely which develop at least one −→p -bubble in their decompositions.



CRITICAL ANISOTROPIC EQUATIONS WITH CRITICAL DIRECTIONS 4

The analogue of Theorem 1.1 for the case p+ < p∗ was established in El Hamidi–Vétois [29].
The essential difference in our doubly critical setting p+ = p∗ lies in the effect of the trans-
formation (1.5). Indeed, contrary to the case p+ < p∗ where all directions are subcritical, the
domain is only rescaled with respect to some directions, the noncritical ones, in case p+ = p∗.
Therefore, we observe a concentration phenomenon on affine subspaces of R

n spanned by crit-
ical directions. For instance, Figure 1 below illustrates the rescaling of a three-dimensional
ball, the first two directions being noncritical and the third direction being critical. Together
with the rescaling of the domain, the equation in (1.2) is rescaled. At the limit, we find the
purely invariant problem (1.6). This problem is studied in Vétois [68]. We established in [68]
an existence result on cylindric domains and a general regularity result. We refer to Section 2,
see Corollary 2.2, for examples of solutions of the limit problem (1.6).

Figure 1. Rescaling of a ball (n = 3, p1 = p2 = 1.5, p3 = 6). The first line
describes the scale in the rescaling. The second line describes the deformation
of the domain.

As a last remark concerning the case p+ = p∗, it is a borderline case for the boundedness of
Palais–Smale sequences. Indeed, while any Palais–Smale sequence is bounded in case p+ < p∗

for nonlinearities of the type |u|rα−2 u+ f (x, u), rα → p∗ (see El Hamidi–Vétois [29]), we get
examples of unbounded Palais–Smale sequences in case p+ > p∗ for the nonlinearity |u|p+−2 u
(see Fragalà–Gazzola–Kawohl [31]).

Theorem 1.1 should be seen as a general key step in the analysis of blow-up for critical
anisotropic equations. We have in view the numerous applications of bubble tree decomposi-
tions which have been developed for the equation −∆u = u2∗−1. Among other applications,
bubble tree decompositions turn out to be key points in the use of topological arguments such
as Lusternik–Schnirelmann equivariant categories. They also turn out to be key points in the
analysis of ruling out bubbling and proving compactness of solutions. Possible references in
book form on these subjects are Druet–Hebey–Robert [26], Ghoussoub [36], and Struwe [63].

In the isotropic configuration where pi = p for all i = 1, . . . , n, there holds p < p∗ and
all directions are subcritical. In this particular situation, the operator (1.2) is comparable,
though slightly different, to the p-Laplace operator ∆p = div

(
|∇u|p−2 ∇u

)
. Possible references
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on critical p-Laplace equations are Alves [2], Alves–Ding [3], Arioli–Gazzola [8], Demengel–
Hebey [22, 23], Filippucci–Pucci–Robert [30], Gazzola [35], Guedda–Veron [37], Saintier [59],
and Yan [71]. Needless to say, the above list does not pretend to exhaustivity.

In case p+ < p∗, namely when all directions are subcritical, anisotropic equations with criti-
cal nonlinearities have been investigated by Alves–El Hamidi [4], El Hamidi–Rakotoson [27,28],
El Hamidi–Vétois [29], Fragalà–Gazzola–Kawohl [31], Fragalà–Gazzola–Lieberman [32], and
Vétois [67]. Other possible references on anisotropic problems like (1.1) are Antontsev–
Shmarev [6, 7], Bendahmane–Karlsen [11, 12], Bendahmane–Langlais–Saad [13], Boccardo–
Gallouët–Marcellini [15], Boccardo–Marcellini–Sbordone [16], Cianchi [20], D’Ambrosio [21],
Di Castro [24], Di Castro–Montefusco [25], Garćıa-Melián–Rossi–Sabina de Lis [34], Kolod̄ı̆ı
[39], Li [42], Lieberman [43,44], Marcellini [48], Mihăilescu–Pucci–Rădulescu [50], Mihăilescu–
Rădulescu–Tersian [51],Namlyeyeva–Shishkov–Skrypnik [52], Skrypnik [61],Tersenov–Tersenov
[64], and Vétois [66, 68,69].

We give examples of solutions and Palais–Smale sequences for problem (1.2) in Section 2,
we discuss our geometric hypothesis on the domain Ω in Section 3, we prove a concentration
result in Section 4, and we prove Theorem 1.1 in Section 5.

2. Examples of solutions and Palais–Smale sequences

This section is devoted to the construction of solutions and Palais–Smale sequences for
problem (1.2). We begin with providing a class of examples in the situation where −→p consists
in two distinct exponents p− and p+. In other words, we assume in the following that there
exist n− ≥ 1 and n+ ≥ 1 such that n = n− + n+, p1 = · · · = pn−

= p−, and pn−+1 = · · · =
pn = p+. Proposition 2.1 below is the basic tool in our constructions. We state our examples
in Corollaries 2.2, 2.3, 2.4, and 2.5. Proposition 2.1 relies on a direct computation.

Proposition 2.1. Let n− ≥ 1, n+ ≥ 1, n = n− + n+, and −→p = (p1, . . . , pn), and assume
that p1 = · · · = pn−

= p− and pn−+1 = · · · = pn = p+. Let ε and λ be two real numbers. Let
Ω = Ω1×Ω2, where Ω1 is a nonempty, open subset of R

n− and Ω2 is a nonempty, open subset
of R

n+. Let v be a solution of the problem




−

n−∑

i=1

∂

∂xi

(∣∣∣∣
∂v

∂xi

∣∣∣∣
p−−2

∂v

∂xi

)
= |v|p+−2 v + ε |v|p−−2 v in Ω1 ,

v ∈ D1,p− (Ω1) ∩ L
p+ (Ω1) (∩Lp− (Ω1) if ε 6= 0 and Ω1 is unbounded) ,

(2.1)

and let w be a solution in D1,−→p (Ω2) of the problem




−

n+∑

i=1

∂

∂xi

(∣∣∣∣
∂w

∂xi

∣∣∣∣
p+−2

∂w

∂xi

)
= λ |w|p+−2w − |w|p−−2w in Ω2 ,

w ∈ D1,p+ (Ω2) ∩ L
p− (Ω2) .

(2.2)

Then the function u defined on Ω by

u (x1, . . . , xn) = v
(
x1, . . . , xn−

)
w
(
xn−+1, . . . , xn

)
(2.3)

is a solution in D1,−→p (Ω) of the problem
{

− ∆−→p u = λ |u|p+−2 u+ ε |u|p−−2 u in Ω ,

u ∈ D1,−→p (Ω) ∩ Lp+ (Ω) (∩Lp− (Ω) if ε 6= 0 and Ω is unbounded) .
(2.4)

Proof. A direct computation provides the result. �
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In case ε = 0, Ω1 = R
n− , and Ω2 = R

n+ , see Vétois [68], we have the following corollary.

Corollary 2.2. Let n− ≥ 2, n+ ≥ 1, n = n− + n+, and −→p = (p1, . . . , pn), and assume that
p1 = · · · = pn−

= p−, pn−+1 = · · · = pn = p+, and p+ = p∗. For any point a = (a1, . . . , an)
in R

n and for any positive real numbers µ and λ, there exists a nonnegative solution Ua,µ,λ in

D1,−→p (Rn) ∩ C1 (Rn) of problem (2.4) with ε = 0 and Ω = R
n of the form

Ua,µ,λ (x1, . . . , xn) = µ−1λ
−1

p+−p
−U
(
µ

p
−

−p+
p
− (x1 − a1) , . . . , µ

p
−

−p+
p
−

(
xn−

− an−

)
,

λ
1

p+

(
xn−+1 − an−+1

)
, . . . , λ

1
p+ (xn − an)

)
,

where

U (x1, . . . , xn) =

(
n− (n− − p−)p−−1

(p− − 1)p−−1

)n
−

−p
−

p2
−

(
1

1 +
∑n−

i=1 |xi|
p
−

p
−

−1

)n
−

−p
−

p
−

×W



(

n∑

i=n−+1

|xi|
p+

p+−1

) p+−1

p+


 ,

where W is such that W > 0 and W ′ < 0 in (0, R), and W = 0 in [R,+∞) for some R > 0.

Since the function W has compact support, Corollary 2.2 provides a class of solutions of
the purely invariant problem (1.6) on cylindric domains Ω = R

n− × V for all nonempty, open
subsets V of R

n+ .

Now, we consider the case of a bounded domain Ω = Ω1 × Ω2. Using a result by Franchi–
Lanconelli–Serrin [33], we get the existence of a solution of problem (2.2) which has compact
support in Ω2 for λ > 0 large (see Vétois [68]). In order to apply Proposition 2.1, it remains
to find solutions of problem (2.1).

In case n− ≥ 3, p− = 2, and p+ = 2∗, see Bahri–Coron [9], we get the existence of a
nonnegative, nontrivial solution of problem (2.1) with ε = 0 for noncontractible, smooth,
bounded domains Ω1. Therefore, we state a second corollary of Proposition 2.1 as follows.

Corollary 2.3. Let n− ≥ 3, n+ ≥ 1, n = n− + n+, and −→p = (p1, . . . , pn), and assume that
p1 = · · · = pn−

= 2, pn−+1 = · · · = pn = 2∗. Let Ω = Ω1 × Ω2, where Ω1 is a nonempty,
noncontractible, smooth, bounded, open subset of R

n− and Ω2 is a nonempty, open subset
of R

n+. Given a point a = (a1, . . . , an) in Ω2, for λ > 0 large, there exists a nonnegative,
nontrivial solution of the form (2.3), in D1,−→p (Ω) ∩ C1 (Ω), of problem (2.4) with ε = 0.

In case n− ≥ 4, p− = 2, and p+ = 2∗, see Brézis–Nirenberg [19], we get the existence of a
nonnegative, nontrivial solution of problem (2.1) for ε > 0 small, on smooth, bounded domains
Ω1. We then state a third corollary of Proposition 2.1 as follows.

Corollary 2.4. Let n− ≥ 4, n+ ≥ 1, n = n− + n+, and −→p = (p1, . . . , pn), and assume that
p1 = · · · = pn−

= 2, pn−+1 = · · · = pn = 2∗. Let Ω = Ω1 × Ω2, where Ω1 is a nonempty,
smooth, bounded, open subset of R

n− and Ω2 is a nonempty, open subset of R
n+. Given a point

a = (a1, . . . , an) in Ω2, for λ > 0 large and ε > 0 small, there exists a nonnegative, nontrivial
solution of the form (2.3), in D1,−→p (Ω) ∩ C1 (Ω), of the problem (2.4).

In case n− ≥ 5, see Rey [56,57], we get the existence of families of solutions of problem (2.1)
with 0 < ε ≪ 1 on smooth, bounded domains Ω1, which are bounded in D1,2 (Ω1) and which
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blow up as ε → 0 at nondegenerate, critical points of the regular part of Green’s function.
Using this result, we state a fourth corollary of Proposition 2.1 as follows.

Corollary 2.5. Let n− ≥ 5, n+ ≥ 1, n = n− + n+, and −→p = (p1, . . . , pn), and assume that
p1 = · · · = pn−

= 2, pn−+1 = · · · = pn = 2∗. Let Ω = Ω1 × Ω2, where Ω1 is a nonempty,
smooth, bounded, open subset of R

n− and Ω2 is a nonempty, open subset of R
n+. Let (εα)α be

a sequence of positive real numbers converging to 0. Given a point a = (a1, . . . , an) in Ω2, for
λ > 0 large, there exists a bounded, blowing up, Palais–Smale sequence for the functional I∞
defined in (1.10) with f ≡ 0.

We end this section with a more classical example of Palais–Smale sequences which holds in
the general situation. We let n ≥ 3 and −→p = (p1, . . . , pn), and we assume that

∑n
i=1 1/pi > 1

and p+ = p∗. We let λ be a positive real number, Ω be a bounded, open subset of R
n, and f

be a Caratheodory function in Ω×R satisfying the growth condition (1.3). We let (rα)α be a
sequence of real numbers converging to p+, and we assume that q < rα < p+ for all α, where
q is the real number in (1.3). By standard variational arguments, for any α, we then get the
existence of a function uα in D1,−→p (Ω) such that there hold

∫
Ω
|uα|

rα dx = λ and

n∑

i=1

1

pi

∫

Ω

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi

dx−

∫

Ω

F (x, uα) dx = min
u∈D1,−→p (Ω)∫
Ω
|u|rαdx=λ

(
n∑

i=1

1

pi

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx−

∫

Ω

F (x, u) dx

)
,

where F (x, u) =
∫ u

0
f (x, s) ds. In particular, for any α, there exists a positive real number

λα such that the function uα is a solution of problem (1.8). The sequence (uα)α is a bounded
Palais–Smale sequence for the functionals (Iα)α defined in (1.9).

3. The asymptotic stability of domains

This section is devoted to the geometric condition of asymptotic stability of domains which is
in the statement of Theorem 1.1. The notion of asymptotically stable domains was introduced
in El Hamidi–Vétois [29]. We state the definition below, and we comment this notion in our
critical setting p+ = p∗. We first recall that a nonempty subset U of R

n is said to satisfy the
segment property if for any point a on ∂U , there exist a neighborhood Xa of a and a nonzero
vector σa such that Xa ∩ U + tσa ⊂ U for all real numbers t in (0, 1). Adapting classical
arguments, as developed, for instance, in Adams–Fournier [1], we get that any nonempty,
open subset U of R

n satisfying the segment property is such that the anisotropic Sobolev
space D1,−→p (U) consists of the restrictions to U of functions in D1,−→p (Rn) with support in U .
The definition of asymptotically stable domains states as follows.

Definition 3.1. A nonempty, open subset Ω of R
n is said to be asymptotically −→p -stable if

for any sequence (µα)α of positive real numbers converging to 0 and for any sequence (xα)α

in R
n, the sets Ωα = τ

−→p
µα,xα

(Ω), where τ
−→p
µα,xα

is as in (1.5), converge, up to a subsequence, as
α → +∞, to an open subset U of R

n which is either empty or satisfies the segment property.
The convergence is in the sense that the two following properties hold true:

(i) any compact subset of U is included in Ωα for α large,
(ii) for any compact K ⊂ R

n, there holds |K ∩Ωα\U | → 0 as α→ +∞.

We use the notation Ωα → U when (i)–(ii) are satisfied.

Limits in the sense of (i)–(ii) are unique up to sets of measure zero. Uniqueness, without
subtracting sets of measure zero, is recovered when requiring in addition that the limit set is
open and satisfies the segment property. The asymptotic stability of domains is a subtle notion.
Figure 2 below illustrates what can go wrong with a domain which is not asymptotically
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stable. The annular cylinder in Figure 2 bends on itself and converges to a domain of the
type (R2\H)× [a, b], where a < b and H is a halfline. In particular, the limit domain does not
satisfy the segment property, and thus the annular cylinder is not asymptotically stable.

Figure 2. Rescaling of an annular cylinder (n = 3, p1 = 1.1, p2 = 2,
p3 = 44/9). The first line describes the scale in the rescaling. The second
line describes the deformation of the domain.

On the other hand, the ball, illustrated in Figure 1, provides an example of a domain which
is asymptotically −→p -stable for any anisotropic configuration −→p . More generally we get the
following result.

Theorem 3.2. Let n ≥ 3 and −→p = (p1, . . . , pn), and assume that
∑n

i=1 1/pi > 1 and p+ = p∗.
Then any nonempty, convex, bounded, open subset of R

n is asymptotically −→p -stable. Moreover,
the limit domains U in Definition 3.1 can be chosen to be either empty or convex.

Proof. We refer to Vétois [67, Theorem 2.1] for the proof of Theorem 3.2 which works the
same as in case p+ < p∗. �

The convexity provides an easy geometric condition for asymptotic stability of domains.
Contrary to the case p+ < p∗, there is no regularity type condition. Indeed, there exist domains
which are not asymptotically stable for all anisotropic configurations satisfying p+ = p∗. For
instance, we can easily show that annular domains of the type A = {x ∈ R

n ; a < |x| < b},
where 0 < a < b, are not asymptotically stable in case p+ = p∗. In order to prove this claim,
we let I+ =

{
i ∈ {1, . . . , n} ; pi = p+

}
, i0 be such that pi0 6= p+, x0 = (x0

1, . . . , x
0
n) be the

point in R
n such that xi0

n = a and xi
n = 0 for all i 6= i0, and (µα)α be a sequence of positive real

numbers converging to 0. We then get that τ
−→p
µα,x0

(A) →
{
x ∈ R

n ; 0 <
∑

i∈I+
x2

i < b2 − a2
}

as α→ +∞, and that the limit domain does not satisfy the segment property. It follows that
the domain A, even though being smooth, is not asymptotically stable in case p+ = p∗.

In Theorem 3.3 below, we give a general class of asymptotically stable domains as products
of two domains, one of which being asymptotically stable with respect to noncritical directions,
and the other satisfying the segment property in critical directions. One can find a detailed
discussion in El Hamidi–Vétois [29] and Vétois [67] about asymptotically stable domains with
respect to noncritical directions. Our result states as follows.
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Theorem 3.3. Let n ≥ 3, −→p = (p1, . . . , pn), and assume that
∑n

i=1 1/pi > 1, p+ = p∗,
pn−n++1 = · · · = pn = p+, and pi < p+ for all i ≤ n−n+. Let Ω1 be a nonempty, bounded, open
subset of R

n−n+ and Ω2 be a nonempty, bounded, open subset of R
n+. Then Ω1×Ω2 is asymp-

totically −→p -stable if and only if Ω1 is asymptotically −→q -stable, where −→q = (p1, . . . , pn−n+),
and Ω2 satisfies the segment property.

Proof of Theorem 3.3. We let (µα)α be a sequence of positive real numbers converging to 0,
(x1

α)α be a sequence of points in R
n−n+ , and (x2

α)α be a sequence of points in R
n+ . For any α,

we let xα = (x1
α, x

2
α). We remark that

τ
−→p
µα,xα

(Ω1 ×Ω2) = τ
−→q
µα,x1

α
(Ω1) ×

(
Ω2 − x2

α

)
, (3.1)

where −→p = (p1, . . . , pn) and −→q = (p1, . . . , pn−n+). We first assume that Ω1 is asymptotically
−→q -stable, and that Ω2 satisfies the segment property. Passing if necessary to a subsequence,
we get that there exists an open subset U1 of R

n−n+ , either empty or satisfying the segment

property, such that τ
−→q
µα,x1

α
(Ω1) → U1 as α → +∞ in the sense of Definition 3.1. In case

|x2
α| → +∞ as α → +∞, we easily get that τ

−→p
µα,xα

(Ω1 ×Ω2) → ∅ as α → +∞. Therefore,

passing if necessary to another subsequence, we may assume that the sequence (x2
α)α converges

to a point a2 in R
n+ . We then claim that Ω2 − x2

α → Ω2 − a2 as α → +∞, or equivalently
that Ω2 − zα → Ω2 as α→ +∞, where zα = x2

α −a2. For any compact subset K of Ω2, we get
d (K,Rn\ (Ω2 − zα)) ≥ d (K,Rn\Ω2)−|zα| for all α. Since zα → 0 as α→ +∞, it follows that
lim infα→+∞ d (K,Rn\ (Ω2 − zα)) > 0, and thus that K ⊂ Ω2 − zα for α large. Now, we prove
that for any compact subset K of R

n+ , there holds |K ∩ (Ω2 − zα) \Ω2| → 0 as α→ +∞. As is
easily seen, it suffices to show that for any point a in R

n+ , there exists an open neighborhoodXa

of a such that |Xa ∩ (Ω2 − zα) \Ω2| → 0 as α→ +∞. In case a belongs to Ω2, for r > 0 small,
there holds Ba (r) ⊂ Ω2, and thus |Ba (r) ∩ (Ω2 − zα) \Ω2| = 0 for all α. In case a belongs to

R
n+\Ω2, for r > 0 small, there holds Ba (r) ⊂ R

n+\Ω2, Ba (r) ⊂ R
n+\ (Ω2 − zα) for α large,

and thus |Ba (r) ∩ (Ω2 − zα) \Ω2| = 0 for α large. Now, we assume that the point a belongs
to the boundary of Ω2. Since Ω2 satisfies the segment property, by Maz′ya–Poborchi [49,
Section 1.3.1], we get that there exists a Cartesian coordinate system

(
ξ1, . . . , ξn+

)
of R

n+ ,
a continuous function ϕa : R

n+−1 → R, and an open neighborhood Xa of a such that the
set Xa ∩ Ω2 consists of the points

(
ξ1, . . . , ξn+

)
in Xa satisfying ξn+ < ϕa

(
ξ1, . . . , ξn+−1

)
.

We then let Ya be a bounded, open neighborhood of a such that Ya ⊂ Xa. Since zα → 0
as α → +∞, it follows that, for α large, the set Ya ∩ (Ω2 − zα) \Ω2 consists of the points(
ξ1, . . . , ξn+

)
in Ya satisfying ϕa

(
ξ1, . . . , ξn+−1

)
≤ ξn+ < ϕa

(
ξ1 + zα

1 , . . . , ξn+−1 + zα
n+−1

)
− zα

n+
,

where zα =
(
zα
1 , . . . , z

α
n+

)
in the coordinate system

(
ξ1, . . . , ξn+

)
. By the continuity of the

function ϕa, we then get |Ya ∩ (Ω2 − zα) \Ω2| → 0 as α → +∞. This ends the proof of
our claim, namely that Ω2 − x2

α → Ω2 − a2 as α → +∞. Taking into account (3.1), we
then get τ

−→p
µα,xα

(Ω1 ×Ω2) → U1 × (Ω2 − a2) as α → +∞. Moreover, in case U1 is nonempty,
since both U1 and Ω2 satisfy the segment property, we get that U1 × (Ω2 − a2) satisfies the
segment property. Since this holds true for all sequences (µα)α and (xα)α, it follows that Ω1 is
asymptotically −→p -stable. Conversely, we assume that Ω1×Ω2 is asymptotically −→p -stable. For
any α, we let xα = (x1

α, x
2
α), where x2

α = 0 is fixed. Passing if necessary to a subsequence, we get
that there exists an open subset U of R

n, either empty or satisfying the segment property, such
that τ

−→p
µα,xα

(Ω1 ×Ω2) → U as α → +∞. We let U1 = {x ∈ R
n−n+ ; ∃y ∈ Ω2 (x, y) ∈ U}.

We claim that U = U1 ×Ω2. Clearly, we get U ⊂ U1 ×Ω2. On the other hand, we proceed by
contradiction and assume that there exists a point (x1, x2) in U1×Ω2 which does not belong to
U . By definition of U1, there exists a point y2 in Ω2 such that (x1, y2) belongs to U . It follows

that Bx1 (ε) ×By2 (ε) ⊂ U for small positive real numbers ε. Moreover, since τ
−→p
µα,xα

(Ω) → U ,
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we then get Bx1 (ε) ⊂ τ
−→q
µα,x1

α
(Ω1) for α large, and we also get |(Bx1 (ε) ×Bx2 (ε)) \U | = 0. This

is in contradiction with the segment property satisfied by U . This ends the proof of our claim,

namely that U = U1 ×Ω2. By (3.1) and since τ
−→p
µα,xα

(Ω) → U , it follows that τ
−→q
µα,x1

α
(Ω1) → U1

as α → +∞. Moreover, since U satisfies the segment property, we also get that both U1 and
Ω2 satisfy the segment property. Since this holds true for all sequences (µα)α and (x1

α)α, it
follows that Ω1 is asymptotically −→q -stable. This ends the proof of Theorem 3.3. �

Figure 3. Rescaling of a cylinder (n = 3, p1 = p2 = 1.5, p3 = 6). The first line
describes the scale in the rescaling. The second line describes the deformation
of the domain.

Figure 4. Rescaling of (0, 1)2 × B
2 (n = 4, p1 = p2 = 1.5, p3 = p4 = 6,

projection onto {0} × R
3). The first line describes the scale in the rescaling.

The second line describes the deformation of the domain.
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Figures 3 and 4 above illustrate Theorem 3.3 in the cases of two different cylindric domains.
In Figure 3, we rescale the cylinder B

2× (0, 1), where B
2 is the unit two-dimensional ball. The

limit domain is of the form H × (0, 1), where H is a halfplane. In Figure 4, we rescale the
cylinder (0, 1)2 × B

2 (in projection onto {0} × R
3). The limit domain is R

2 × B
2.

4. The concentration on critical directions

In this section, we prove a concentration result which is the main tool in the proof of
Theorem 1.1. We let (Ωα)α be a sequence of nonempty, bounded, open subsets of R

n, (λα)α

be a sequence of positive real numbers, and (rα)α be a sequence of real numbers in (1, p+]
converging to p+. For any α, we define the functional (Jα)α by

Jα (u) =
n∑

i=1

1

pi

∫

Ωα

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx−
λα

rα

∫

Ωα

|u|rα dx (4.1)

for all functions u in D1,−→p (Ωα). We say that a sequence (uα)α is Palais–Smale for the function-

als (Jα)α if there hold uα ∈ D1,−→p (Ωα), |Jα (uα)| ≤ C for some positive constant C independent
of α, and ‖DJα (uα)‖D1,−→p (Ωα)′ → 0 as α → +∞. Moreover, (uα)α is said to be bounded if
there hold

λα

∫

Ωα

|uα|
rα dx ≤ C and λ

p+
p+−1

α

∫

Ωα

|uα|
p+(rα−1)

p+−1 dx ≤ C (4.2)

for some positive constant C independent of α. In particular, bounded Palais–Smale sequences
for the functionals (Jα)α are bounded in D1,−→p (Rn). Our concentration result states as follows.

Proposition 4.1. Let n ≥ 3 and −→p = (p1, . . . , pn), and assume that
∑n

i=1 1/pi > 1, p+ = p∗,
pn−n++1 = · · · = pn = p+, and pi < p+ for all i ≤ n − n+. Let U be an open subset of
R

n either empty or satisfying the segment property, and (Ωα)α be a sequence of nonempty,
bounded, open subsets of R

n converging to U in the sense of Definition 3.1. Assume that there
exists a bounded, open subset V of R

n+ such that the sets U and Ωα are included in R
n−n+ ×V

for all α. Let (λα)α be a sequence of positive real numbers converging to λ ≥ 0, and (rα)α

be a sequence of real numbers in (1, p+] converging to p+. Let (uα)α be a bounded Palais–
Smale sequence for the functionals (Jα)α defined in (4.1). Then there exists a function u∞ in

D1,−→p (U) (u∞ = 0 in case U = ∅) and a finite number k of distinct points yj =
(
yj

1, . . . , y
j
n−n+

)

in R
n−n+, j = 1, . . . , k, and nonnegative, nontrivial, finite measures ξj with support in V yj

,
j = 1, . . . , k, where

V yj
=
{(
yj

1, . . . , y
j
n−n+

)}
× V (4.3)

such that, up to a subsequence, there holds

|uα|
p+ −⇀ |u∞|p+ +

k∑

j=1

ξj (4.4)

as α → +∞ in the sense of measures on compact subsets of R
n. Moreover, there exists a

positive constant Λ0 = Λ0 (−→p ) such that for any j = 1, . . . , k, there holds

λ
n+p+

p+ ξj
(
V yj

)
≥ Λ0 , (4.5)

where V yj
is as in (4.3). In particular, if λ = 0, then k = 0.

Proof of Proposition 4.1. Passing if necessary to a subsequence, we may assume that the se-
quence (uα)α converges weakly to a function u∞ in D1,−→p (Rn) and that (uα)α converges to u∞
almost everywhere in R

n. Since Ωα → U as α → +∞ in the sense of Definition 3.1, we get
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that the support of the function u∞ is included in U . In case U 6= ∅, since U satisfies the
segment property, it follows that the function u∞ belongs to the anisotropic Sobolev space
D1,−→p (U). We fix a positive real number R, and we let B0 (R) be the (n− n+)-dimensional
ball of center 0 and radius R. For any α, we let vα = uα − u∞. By Banach–Alaoglu theorem,
since the sequence (vα)α is bounded in D1,−→p (U) and since the sets U and Ωα are included
in R

n−n+ × V , where V is bounded, passing if necessary to a subsequence, we may assume
that there exist nonnegative, finite measures µ and ν1, . . . , νn on B0 (2R) × R

n+ such that

|vα|
p+ ⇀ µ and |∂vα/∂xi|

pi ⇀ νi as α → +∞ in the sense of measures on B0 (2R) × R
n+ ,

for all i = 1, . . . , n. Moreover, the supports of the measures µ and ν1, . . . , νn are included in
B0 (2R) × V . Since the sequence (uα)α is bounded in Lp+ (Rn) and converges to u∞ almost
everywhere in R

n, by Brezis–Lieb [18], we get
∫

U

up+
α ϕdx −→

∫

U

up+
∞ ϕdx+

∫

B0(2R)×V

ϕdµ (4.6)

as α → +∞ for all bounded, measurable functions ϕ on B0 (2R) × R
n+ . Since there holds

|∂uα/∂xi|
pi ≥ |∂vα/∂xi|

pi − |∂u∞/∂xi|
pi , where vα = uα − u∞ for all α and i = 1, . . . , n, we

also get

lim inf
α→+∞

∫

U

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi

ϕdx ≥

∫

B0(2R)×V

ϕdνi −

∫

U

∣∣∣∣
∂u∞
∂xi

∣∣∣∣
pi

ϕdx (4.7)

as α→ +∞ for all bounded, measurable functions ϕ on B0 (2R)×R
n+ . Borrowing some ideas

in Lions [45,46] with the tricky difference here that the concentration holds on n+-dimensional
affine subspaces of R

n, see the analysis in Vétois [68], we can prove that there exists an at

most countable index set J of distinct points yj in B0 (R), j ∈ J , such that

Suppµ ∩B0 (R) × V ⊂
⋃

j∈J

V yj
, (4.8)

where V yj
is as in (4.3). Moreover, since p+ = p∗, by the anisotropic Sobolev inequality in

Troisi [65], we get that for any Borelian set A in B0 (R), there holds

µ
(
A× V

)
≤ Λ

n∏

i=1

νi

(
A× V

) p+
npi (4.9)

for some positive constant Λ = Λ (−→p ). We then prove (4.5) by using Palais–Smale properties
of the sequence (uα)α. For any nonnegative, smooth function ϕ with support in B0 (2R)×R

n+ ,
we get

n∑

i=1

(∫

Ωα

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi

ϕdx+

∫

Ωα

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi−2

∂uα

∂xi

uα
∂ϕ

∂xi

dx

)

= λα

∫

Ωα

|uα|
rα ϕdx+DJα (uα) . (uαϕ)

≤ λα

(∫

Ωα

|uα|
p+ ϕdx+

∫

Ωα

ϕdx

)
+ o (1) (4.10)

as α → +∞. For any i = 1, . . . , n, the functions |∂uα/∂xi|
pi−2 ∂uα/∂xi keep bounded

in Lpi/(pi−1) (Rn), and thus converge, up to a subsequence, weakly to some function ψi in
Lpi/(pi−1) (Rn) as α → +∞. Moreover, for any i = 1, . . . , n − n+, since pi < p+, by the
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compact embeddings in Rákosńık [54], we get that the sequence (uα)α converges to u∞ in
Lpi (Suppϕ) and thus that

∫

Ωα

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi−2

∂uα

∂xi

uα
∂ϕ

∂xi

dx −→

∫

U

ψiu∞
∂ϕ

∂xi

dx (4.11)

as α→ +∞. For any α and any i = n− n+ + 1, . . . , n, we get
∣∣∣∣∣

∫

Ωα

∣∣∣∣
∂uα

∂xi

∣∣∣∣
p+−2

∂uα

∂xi

uα
∂ϕ

∂xi

dx

∣∣∣∣∣ ≤
∥∥∥∥
∂uα

∂xi

∥∥∥∥
p+−1

Lp+ (Ωα)

‖uα‖Lp+ (Ωα)

∥∥∥∥
∂ϕ

∂xi

∥∥∥∥
L∞(Rn)

. (4.12)

By (4.6), (4.7), (4.11), and (4.12), passing to the limit into (4.10) as α→ +∞, we get

n∑

i=1

∫

B0(2R)×V

ϕdνi −
n∑

i=1

∫

U

∣∣∣∣
∂u∞
∂xi

∣∣∣∣
pi

ϕdx+

n−n+∑

i=1

∫

U

ψiu∞
∂ϕ

∂xi

dx

≤ λ

(∫

U

|u∞|p+ ϕdx+

∫

B0(2R)×V

ϕdµ+

∫

Rn

ϕdx

)
+ C

n∑

i=n−n++1

∥∥∥∥
∂ϕ

∂xi

∥∥∥∥
L∞(Rn)

(4.13)

for some positive constant C independent of ϕ. We claim that

n∑

i=1

∫

U

ψiu∞
∂ϕ

∂xi

dx+
n∑

i=1

∫

U

ψi
∂u∞
∂xi

ϕdx = λ

∫

U

|u∞|p+ ϕdx . (4.14)

Since the function u∞ belongs to D1,−→p (U) and since Ωα → U as α → +∞ in the sense
of Definition 3.1, we get that there exist smooth functions bα with compact support in Ωα

converging to u∞ as α → +∞ in D1,−→p (Rn), and thus also in Lp+ (Rn) by the continuity of
the embedding of D1,−→p (Rn) into Lp+ (Rn). Since the sequence (uα)α is Palais–Smale for the
functionals (Jα)α defined in (4.1), it follows that

n∑

i=1

∫

Ωα

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi−2

∂uα

∂xi

bα
∂ϕ

∂xi

dx+
n∑

i=1

∫

Ωα

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi−2

∂uα

∂xi

∂bα
∂xi

ϕdx

= λα

∫

Ωα

|uα|
rα−2 uαbαϕdx+DJα (uα) . (bαϕ)

= λα

∫

Ωα

|uα|
rα−2 uαbαϕdx+ o (1) (4.15)

as α→ +∞. By (4.2), we get that the functions λα |uα|
rα−2 uα keep bounded in Lp+/(p+−1) (Rn).

Moreover the functions λα |uα|
rα−2 uα converge, up to a subsequence, almost everywhere to

λ |u∞|p+−2 u∞ in R
n as α→ +∞. By standard integration theory, it follows that the functions

λα |uα|
rα−2 uα converge weakly to λ |u∞|p+−2 u∞ in Lp+/(p+−1) (Rn). Passing to the limit into

(4.15) as α → +∞, we get (4.14). Increasing if necessary the constant C in (4.13), it follows
from (4.14) that

n∑

i=1

∫

B0(2R)×V

ϕdνi −
n∑

i=1

∫

U

∣∣∣∣
∂u∞
∂xi

∣∣∣∣
pi

ϕdx−
n∑

i=1

∫

U

ψi
∂u∞
∂xi

ϕdx

≤ λ

(∫

B0(2R)×V

ϕdµ+

∫

Rn

ϕdx

)
+ C

n∑

i=n−n++1

∥∥∥∥
∂ϕ

∂xi

∥∥∥∥
L∞(Rn)

. (4.16)
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We let η be a smooth cutoff function on R
n−n+ such that η = 1 in B0 (1), 0 ≤ η ≤ 1 in

B0 (2) \B0 (1), and η = 0 in R
n−n+\B0 (2). For any point y =

(
y1, . . . , yn−n+

)
in B0 (R) and

for any positive real number ε, we let ϕε,y be the function defined on R
n by

ϕε,y (x1, . . . , xn) = η

(
1

ε
(x1 − y1) , . . . ,

1

ε

(
xn−n+ − yn−n+

))
.

Plugging ϕ = ϕε,σ,y into (4.16), and passing to the limit as ε→ 0, we get

n∑

i=1

νi

(
V y

)
≤ λµ

(
V y

)
, (4.17)

where V y is as in (4.3). By (4.9) and (4.17), we get that there holds either

µ
(
V y

)
= 0 or λµ

(
V y

) p+
n+p+ ≥ Λ

−n
n+p+ (4.18)

for all points y in R
n−n+ . In particular, since the measure µ is finite, it follows from (4.18)

that the index set J in (4.8) is finite. Passing to the limit as R → +∞, by (4.6) and (4.8), we
get the decomposition (4.4). Finally, (4.5) follows from (4.18). �

5. Proof of the main result

In this section, we prove Theorem 1.1 by using Proposition 4.1 and Proposition 5.1 below.

Proposition 5.1. Let n ≥ 3 and −→p = (p1, . . . , pn), and assume that
∑n

i=1 1/pi > 1 and
p+ = p∗. Then there exists a positive constant E0 = E0 (−→p ) such that for any positive real
number λ and any −→p -bubble (Bα)α of multiplier λ, there holds

E (Bα) ≥ E0λ
−n/p+ , (5.1)

where E (Bα) is as in (1.7).

Proof of Proposition 5.1. Without loss of generality, we may assume that there exists an index
n+ such that pn−n++1 = · · · = pn = p+ and pi < p+ for all i ≤ n− n+. We let λ be a positive
real number and (Bα)α be a −→p -bubble of profile u and multiplier λ. Since p+ = p∗, by the
anisotropic Sobolev inequality in Troisi [65], we get

∫

Rn

|u|p+ dx ≤ Λ
n∏

i=1

(∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx

) p+
npi

for some positive constant Λ independent of u. By Young’s inequality, it follows that for any
positive real number ε, there holds

∫

Rn

|u|p+ dx ≤
Λ

n

(
(n− n+) ε

−n+
n−n+

n−n+∏

i=1

(∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx

) p+

(n−n+)pi

+ ε
n∑

i=n−n++1

∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
p+

dx

)
. (5.2)

On the other hand, since u is a solution of problem (1.6), we get

n∑

i=1

∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx = λ

∫

Rn

|u|p+ dx . (5.3)
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Taking ε = n
Λλ

, since
∑n−n+

i=1
1
pi

= n−n++p+

p+
, it follows from (5.2) and (5.3) that

n−n+∑

i=1

∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx ≤

(
Λλ

n

) n
n−n+

(n− n+)

(
n−n+∑

i=1

∫

Rn

∣∣∣∣
∂u

∂xi

∣∣∣∣
pi

dx

)n−n++p+
n−n+

.

We then easily get (5.1). �

Proof of Theorem 1.1. Without loss of generality, we may assume that there exists an index
n+ such that pn−n++1 = · · · = pn = p+ and pi < p+ for all i ≤ n − n+. We let (uα)α be a
bounded Palais–Smale sequence for the functionals (Iα)α defined in (1.9). Passing if necessary

to a subsequence, we may assume that (uα)α converges weakly to a function u∞ in D1,−→p (Ω).
Proceeding in the same way as in El Hamidi–Vétois [29], we can prove that u∞ is a solution of
problem (1.2). By an easy adaptation of the argument in Brézis–Lieb [18] and by the growth
condition (1.3), we also get that, up to a subsequence, (u0

α)α, where u0
α = uα − u∞, is Palais–

Smale for the functionals (Jα)α defined in (4.1) with λα = λ and Ωα = Ω for all α, and that
there holds Jα(u0

α) = Iα(uα) − Iα(u∞) + o (1) as α → +∞. If the sequence (uα)α converges

strongly, up to a subsequence, to the function u∞ in D1,−→p (Ω), then we get (1.11) and (1.12)
with k = 0. From now on, subtracting if necessary the weak limit u∞, we may assume that
the sequence (uα)α converges weakly but not strongly to 0 in D1,−→p (Ω), and that (uα)α is
Palais–Smale for the functionals (Jα)α with λα = λ and Ωα = Ω for all α. In particular,
passing if necessary to a subsequence, we get

lim inf
α→+∞

n∑

i=1

∫

Ω

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi

dx > 0 .

By Palais–Smale properties and by Hölder’s inequality, it follows that

n∑

i=1

∫

Ω

∣∣∣∣
∂uα

∂xi

∣∣∣∣
pi

dx =

∫

Ω

|uα|
rα dx+ o (1) ≤ |Ω|

p+−rα

p+

(∫

Ω

|uα|
p+ dx

) rα
p+

+ o (1)

as α→ +∞, and thus that

lim inf
α→+∞

∫

Ω

|uα|
p+ dx > 0 . (5.4)

For any α, we then define the concentration function Qα : R+ → R+ by

Qα (s) = max
y∈Ω

∫

P
−→p
y (s)

|uα|
p+ dx ,

where

P
−→p
y (s) =

{
(x1, . . . , xn) ∈ R

n; |xi − yi| < s
p+−pi

pi ∀i ∈ {1, . . . , n− n+}
}

for any positive real number s and for any point y = (y1, . . . , yn) in R
n. By (5.4) and since

the domain Ω is bounded, we get the existence of two positive real numbers s0 and δ0 such
that there holds Qα (s0) > δ0 for all α. By the continuity of the functions Qα, it follows that
there exists a sequence (µα)α of real numbers in (0, s0) such that there holds Qα (µα) = δ0 for

all α. We let xα be a point in Ω for which Qα (µα) is reached, so that

max
y∈Ω

∫

P
−→p
y (µα)

|uα|
p+ dx =

∫

P
−→p
xα (µα)

|uα|
p+ dx = δ0 (5.5)
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for all α. We claim that if the constant δ0 is chosen small enough, then the sequence (µα)α

converges to 0. Indeed, if not the case, then for any ε > 0, there exists sε > 0 such that for
any α and any point y in Ω, there holds

∫

P
−→p
y (sε)

|uα|
p+ dx ≤ ε . (5.6)

By Proposition 4.1 with λα = λ and Ωα = Ω for all α (in this case, we can easily drop the
segment condition), it follows from (5.6) that the sequence (uα)α converges in fact strongly to
0 in Lp+ (Ω). There is a contradiction with (5.4), and this proves our claim, namely that if
the constant δ0 is chosen small enough, then the sequence (µα)α converges to 0. For any α,
we then define the function ũα by

ũα = µαuα ◦
(
τ
−→p
µα,xα

)−1
,

where τ
−→p
µα,xα

is as in (1.5). As well as (uα)α, the sequence (ũα)α is Palais–Smale for the

functionals (Jα)α with λα = λµp+−rα
α and Ωα = τ

−→p
µα,xα

(Ω) for all α. Passing if necessary to a
subsequence, we may assume that the sequence (λα)α converges to a nonnegative real number

λ̃. By an easy change of variable, we also find

λα

∫

Ωα

|ũα|
rα dx = λ

∫

Ω

|uα|
rα dx (5.7)

and

λ

p+
p+−1

α

∫

Ωα

|ũα|

(rα−1)p+
p+−1

dx = λ
p+

p+−1

∫

Ω

|uα|
(rα−1)p+

p+−1 dx . (5.8)

It follows from (5.7) and (5.8) that (ũα)α is a bounded Palais–Smale sequence for the func-
tionals (Jα)α. Passing if necessary to a subsequence, since the domain Ω is asymptotically
−→p -stable, we may assume that there exists an open subset U , either empty or satisfying the
segment property, such that Ωα → U as α → +∞ in the sense of Definition 3.1. Moreover,
since Ω is bounded and since the maps τ

−→p
µα,xα

do not rescale the domain in critical directions,
we get that the sets Ωα and U are included in R

n−n+ × V for some bounded, open subset
V independent of α. By Proposition 4.1, we get the existence of a function ũ in D1,−→p (U)
(ũ = 0 in case U = ∅) and a finite number k of distinct points yj =

(
yj

1, . . . , y
j
n−n+

)
in R

n−n+ ,

j = 1, . . . , k, and nonnegative finite measures ξj with support in V yj
, j = 1, . . . , k, such that,

up to a subsequence, there holds

|ũα|
p+ −⇀ |ũ|p+ +

k∑

j=1

ξj

as α → +∞ in the sense of measures on compact subsets of R
n. If λ̃ = 0, then k = 0.

Otherwise, in case λ̃ > 0, we claim that if the constant δ0 is chosen small enough, then k = 0.
We assume by contradiction that k 6= 0. By (5.5) and by an easy change of variable, for any
α and j = 1, . . . , k, we get ∫

P
−→p
yj

(1)

|ũα|
p+ dx ≤ δ0 . (5.9)

Since there holds V yj
⊂ P

−→p
yj

(1), passing to the limit into (5.9) as α→ +∞, it follows that
∫

P
−→p
yj

(1)

|ũ|p+ dx+ ξj
(
V yj

)
≤ δ0 . (5.10)
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On the other hand, by (4.5), we get ξj
(
V yj

)
≥ Λ0λ̃

−(n+p+)/p+ . Since there hold µp+−rα
α ≤ 1

for α large and λµp+−rα
α → λ̃ as α → +∞, we get λ̃ ≤ λ, and thus ξj

(
V yj

)
≥ Λ0λ

−(n+p+)/p+ .

There is a contradiction with (5.10) in case δ0 < Λ0λ
−(n+p+)/p+ . This ends the proof of our

claim, namely that if the constant δ0 is chosen small enough, then k = 0. By Radon’s theorem,
it follows that the sequence (ũα)α converges to ũ in L

p+

loc (Rn). By (5.5) and by an easy change
of variable, for any α, we get ∫

P
−→p
0 (1)

|ũα|
p+ dx = δ0 . (5.11)

Passing to the limit into (5.11) as α→ +∞, it follows that
∫

P
−→p
0 (1)

|ũ|p+ dx = δ0 ,

and thus that the function ũ is not identically zero. In particular, the domain U is not
empty. The end of the proof follows Struwe [62] (see El Hamidi–Vétois [29] for the case of
the anisotropic Laplace operator with p+ < p∗), and we sketch it for sake of completeness.

We prove that the function ũ is a solution of problem (1.6) with λ = λ̃, so that we can
define the −→p -bubble (B1

α)α, B1
α = µ−1

α ũ ◦ τ
−→p
µα,xα

. We then prove that there exists a sequence

(R1
α)α converging strongly to 0 in D1,−→p (Rn) such that, up to a subsequence, (u1

α)α, where
u1

α = uα −B1
α +R1

α, is Palais–Smale for the functionals (Jα)α and satisfies Jα(u1
α) = Jα(uα)−

E(B1
α) + o (1) as α → +∞. We iterate the above arguments in order to construct the −→p -

bubbles (B1
α)α , . . . ,

(
Bk

α

)
α
. Our induction has to stop for some finite number k since, by

Proposition 5.1, the energy of −→p -bubbles is bounded from below by a positive constant which
only depends on λ and on the anisotropic configuration −→p . We finally obtain (1.11) and (1.12).
Moreover, in case the functions uα are nonnegative, their weak limit u∞ is nonnegative, and
by considering the functions max (uj

α −Bj
α, 0), we prove that the −→p -bubbles (B1

α)α , . . . ,
(
Bk

α

)
α

are also nonnegative (see [29]). This ends the proof of Theorem 1.1. �
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[19] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev

exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477.
[20] A. Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Partial Differential Equations 32

(2007), no. 4-6, 693–717.
[21] L. D’Ambrosio, Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal. 70 (2009),

no. 8, 2855–2869.
[22] F. Demengel and E. Hebey, On some nonlinear equations involving the p-Laplacian with critical Sobolev

growth, Adv. Differential Equations 3 (1998), no. 4, 533–574.
[23] , On some nonlinear equations involving the p-Laplacian with critical Sobolev growth and pertur-

bation terms, Appl. Anal. 72 (1999), no. 1–2, 75–109.
[24] A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlin. Stud. 9

(2009), 367–393.
[25] A. Di Castro and E. Montefusco, Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic

equations, Nonlinear Anal. 70 (2009), no. 11, 4093–4105.
[26] O. Druet, E. Hebey, and F. Robert, Blow-up theory for elliptic PDEs in Riemannian geometry, Mathe-

matical Notes, vol. 45, Princeton University Press, Princeton, 2004.
[27] A. El Hamidi and J.-M. Rakotoson, On a perturbed anisotropic equation with a critical exponent, Ricerche

Mat. 55 (2006), no. 1, 55–69.
[28] , Extremal functions for the anisotropic Sobolev inequalities, Ann. Inst. H. Poincaré Anal. Non
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[50] M. Mihăilescu, P. Pucci, and V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equa-

tions with variable exponent, J. Math. Anal. Appl. 340 (2008), no. 1, 687–698.
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