J Ér 
  
Ôme V Étois 
  
Jérôme Vétois 
email: vetois@unice.fr
  
STRONG MAXIMUM PRINCIPLES FOR ANISOTROPIC ELLIPTIC AND PARABOLIC EQUATIONS

We investigate vanishing properties of nonnegative solutions of anisotropic elliptic and parabolic equations. We describe the optimal vanishing sets, and we establish strong maximum principles.

Introduction and results

In dimension n ≥ 2, given -→ p = (p 1 , . . . , p n ) with p i > 1 for i = 1, . . . , n, the anisotropic Laplace operator ∆ - → p is defined by

∆ - → p u = n i=1 ∂ ∂x i ∇ p i x i u , (1.1) 
where ∇ p i x i u = |∂u/∂x i | p i -2 ∂u/∂x i . We are concerned with equations of the type ∆ - → p u = f (x, u, ∇u) in Ω (

and

- ∂u ∂t + ∆ - → p u = f (x, t, u, ∇u) in Ω × (0, T ) , (1.3) 
where Ω is a domain in R n , T is a positive real number, f is a continuous function, and ∆ - → p is as in (1.1). Anisotropic equations like (1.2) and (1.3) have strong physical background. They emerge, for instance, from the mathematical description of the dynamics of fluids with different conductivities in different directions. We refer to the extensive books by Antontsev-Díaz-Shmarev [START_REF] Antontsev | Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics[END_REF] and Bear [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF] for discussions in this direction. They also appear in biology, see Bendahmane-Karlsen [START_REF] Bendahmane | Renormalized solutions of an anisotropic reaction-diffusion-advection system with L 1 data[END_REF] and Bendahmane-Langlais-Saad [START_REF] Bendahmane | On some anisotropic reaction-diffusion systems with L 1 -data modeling the propagation of an epidemic disease[END_REF], as a model describing the spread of an epidemic disease in heterogeneous environments.

In this paper, we investigate strong maximum principles for anisotropic equations of the type (1.2) and (1.3). Given a subset K of Ω, we say that equations (1.2) and (1.3) satisfy a strong maximum principle in K if any nonnegative solution which vanishes at some point in K is in fact identically zero on the whole set K. As is well known (see, for instance, Protter-Weinberger [START_REF] Protter | Maximum principles in differential equations[END_REF]), in case of the standard harmonic and heat equations, namely in case f = 0 and p i = 2 for all i = 1, . . . , n, equations (1.2) and (1.3) satisfy a strong maximum principle in the whole domain Ω.

We show in this paper that in presence of anisotropy, the zeros of solutions may not spread over the whole domain Ω, but they spread along directions where the anisotropic configuration is minimal. We illustrate this fact with a first example. In the anisotropic configuration p 1 = • • • = p n-1 = p -, p n = p + , p -< p + one can check that a nonnegative stationary solution of equations (1.2) and (1.3) with f = 0 on Ω = (0, +∞) n-1 × R is given by

U - → p (x 1 , . . . , x n ) = C |x n | p + /(p + -p -) n-1 i=1 x p -/(p --1) i (p --1)/(p + -p -) , (1.4) 
for some constant C = C (n, -→ p ) > 0 under the assumptions that p + > p -(n -2)/(n -1p -) and p -< n -1. The function U - → p vanishes on the set (0, +∞) n-1 × {0} without vanishing elsewhere in the domain. Functions of the form (1.4) were introduced, in a different context, by Giaquinta [START_REF] Giaquinta | Growth conditions and regularity, a counterexample[END_REF] and Marcellini [31]. This example can be generalized by observing that for any C > 0 and ε > 0, the function U - → p satisfies the inequality ∆ - → p u ≤ λu p --1 on Ω = (ε, +∞) n-1 × R for λ > 0 large.

In Theorem 1.1 below, we establish a strong maximum principle for elliptic inequalities of the type ∆ - → p u ≤ f (u) in Ω .

(1.5) In presence of anisotropy, the vanishing sets are of the form

Ω 0 = {x ∈ R n ; [x, ξ 0 ] ⊂ Ω and x i = ξ 0,i ∀i ∈ I + } , (1.6) 
for some point ξ 0 = (ξ 0,1 , . . . , ξ 0,n ) in R n , where I + = {i ∈ {1, . . . , n} ; p i > p -} and p -= min (p 1 , . . . , p n ) is the minimum value in the anisotropic configuration. We prove our result under the assumptions that the function f in the right hand sides of (1.5) is continuous, nondecreasing, and such that

f (u) = O u p --1 as u → 0 . (1.7) 
We let W 1, - → p loc (Ω) be the Sobolev space defined by

W 1, - → p loc (Ω) = u ∈ L p + loc (Ω) ; ∂u ∂x i ∈ L p i loc (Ω) ∀i = 1, . . . , n ,
where p + = max (p 1 , . . . , p n ) and where, for any real number p ≥ 1, L p loc (Ω) is the space of all measurable functions on Ω which belong to L p (Ω ′ ) for all compact subsets Ω ′ of Ω. We say that a function u in W 1, - → p loc (Ω) ∩ C 0 (Ω) is a (weak) solution of the inequality (1.5) if for any nonnegative smooth function ϕ with compact support in Ω, there holds

- Ω ∂u ∂x i p i -2 ∂u ∂x i ∂ϕ ∂x i dx ≤ Ω f (u) ϕdx .
An historic reference on strong maximum principles for elliptic equations is Hopf [START_REF] Hopf | Elementare Bemerkungen über die lösungen partielle differentialgleichungen zweiter ordnung vom elliptischen typus[END_REF]. We refer to Protter-Weinberger [START_REF] Protter | Maximum principles in differential equations[END_REF] for a reference in book form on this topic. Our first result states as follows.

Theorem 1.1. Let Ω be a nonempty domain in R n and f be a continuous nondecreasing function on R + satisfying (1.7). Let u be a nonnegative solution in W 1, - → p loc (Ω) ∩ C 0 (Ω) of inequality (1.5). If there holds u (ξ 0 ) = 0 for some point ξ 0 in Ω, then the function u is identically zero on the set Ω 0 , where Ω 0 is as in (1.6).

The vanishing sets Ω 0 are the maximal sets on which the strong maximum principle holds true, see (1.4).

Condition (1.7) is optimal among pure nonlinearities of the type f (u) = u p-1 . Indeed, for any real number p in [1, p -), letting i be such that p i = p -, one can check that a nonnegative solution of the equation ∆ - → p u = u p-1 in R n is given by the function p) , where C p,p -= (p -p)/((p

U p,p -(x) = 1 -C p,p -x i p -/(p --
p --1 - p(p --1) 2 ) 1/p -).
Clearly, the functions U p,p -do not satisfy strong maximum principles on sets of the form (1.6).

In Theorem 1.2 below, we establish strong maximum principles for parabolic inequalities of the type

- ∂u ∂t + ∆ - → p u ≤ f (u) in Ω × (0, T ) . (1.8)
We let L -→ p loc (0, T ; W 1, - → p loc (Ω)) be the function space defined by

L - → p loc (0, T ; W 1, - → p loc (Ω)) = u ∈ L p + loc (0, T ; L p + loc (Ω)); ∂u ∂x i ∈ L p i loc (0, T ; L p i loc (Ω)) ∀i = 1, . . . , n ,
where p + = max (p 1 , . . . , p n ) and where, for any real number p ≥ 1, L p loc (0, T ; L p loc (Ω)) is the space of all measurable functions u on Ω × (0, T ) such that t 2 t 1 Ω ′ |u| p dxdt < ∞ for all real numbers 0 < t 1 < t 2 < T and all compact subsets Ω ′ of Ω. We say that a function u in

L - → p loc (0, T ; W 1, - → p loc (Ω)) ∩ C 0 (Ω × (0, T )
) is a (weak) solution of the inequality (1.8) if for any nonnegative smooth function ϕ with compact support in Ω × (0, T ), there holds

T 0 Ω u ∂ϕ ∂t dxdt - T 0 Ω ∂u ∂x i p i -2 ∂u ∂x i ∂ϕ ∂x i dxdt ≤ T 0 Ω f (u) ϕdxdt .
A strong maximum principle for parabolic equations involving the standard Laplace operator was obtained by Nirenberg [START_REF] Nirenberg | A strong maximum principle for parabolic equations[END_REF]. We refer, once again, to the extensive book by Protter-Weinberger [START_REF] Protter | Maximum principles in differential equations[END_REF] on this topic. Our result states as follows.

Theorem 1.2. Let Ω be a nonempty domain in R n , T be a positive real number, and f be a continuous nondecreasing function on R + satisfying (1.7). Let u be a nonnegative solution in

L - → p loc (0, T ; W 1, - → p loc (Ω))∩C 0 (Ω × (0, T )) of inequality (1.8).
Assume that there holds u (ξ 0 , t 0 ) = 0 for some point ξ 0 in Ω and some real number t 0 in (0, T ). Let Ω 0 be as in (1.6). Then we get the following assertions. The vanishing sets in Theorem 1.2 are optimal in the sense that in case p -< 2, we get existence of solutions which extinct in finite time (see Antontsev-Shmarev [START_REF]Parabolic equations with anisotropic nonstandard growth conditions[END_REF][START_REF]Extinction of solutions of parabolic equations with variable anisotropic nonlinearities[END_REF][START_REF]Vanishing solutions of anisotropic parabolic equations with variable nonlinearity[END_REF][START_REF]Localization of solutions of anisotropic parabolic equations[END_REF]), and in case p -> 2, we get existence of solutions which vanish only on a time segment. As an example in case p -> 2, letting i be such that p i = p -, one can consider the function 2) , where

U p -(x, t) = 1 -C p -x i p -/ (1 -(p --2) t) 1/(p --
C p -= (p --2) /(2p p --1 - (p --1) 2 ) 1/p -. As is easily checked, the function U p -is a nonnegative solution of the equation ∂u/∂t = ∆ - → p u in R n × (0, 1/ (p --2)), and we get U p -(x, t) = 0 if and only if x i = 1/C p -.
We refer to Antontsev-Shmarev [START_REF]Parabolic equations with anisotropic nonstandard growth conditions[END_REF][START_REF]Extinction of solutions of parabolic equations with variable anisotropic nonlinearities[END_REF][START_REF]Vanishing solutions of anisotropic parabolic equations with variable nonlinearity[END_REF][START_REF]Localization of solutions of anisotropic parabolic equations[END_REF] for several results on the existence of solutions with finite waiting time or finite extinction time and on the localization of solutions of parabolic equations like (1.3). Other possible references on anisotropic parabolic equations are Antontsev-Chipot [START_REF] Antontsev | Anisotropic equations: uniqueness and existence results[END_REF], Bendahmane-Karlsen [START_REF] Bendahmane | Renormalized solutions of an anisotropic reaction-diffusion-advection system with L 1 data[END_REF][START_REF]Nonlinear anisotropic elliptic and parabolic equations in R N with advection and lower order terms and locally integrable data[END_REF], Bendahmane-Langlais-Saad [START_REF] Bendahmane | On some anisotropic reaction-diffusion systems with L 1 -data modeling the propagation of an epidemic disease[END_REF], and Lieberman [START_REF] Lieberman | Gradient estimates for a new class of degenerate elliptic and parabolic equations[END_REF]. Elliptic equations like (1.2) also received much attention in recent years. Possible references on elliptic equations like (1.2) are Alves-El Hamidi [START_REF] Alves | Existence of solution for a anisotropic equation with critical exponent[END_REF], Antontsev-Shmarev [START_REF] Antontsev | Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions[END_REF], Cianchi [START_REF] Cianchi | Symmetrization in anisotropic elliptic problems[END_REF], D'Ambrosio [START_REF] Ambrosio | Liouville theorems for anisotropic quasilinear inequalities[END_REF], Di Castro [START_REF] Castro | Existence and regularity results for anisotropic elliptic problems[END_REF], Di Castro-Montefusco [START_REF] Castro | Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations[END_REF],El Hamidi-Rakotoson [START_REF] Hamidi | On a perturbed anisotropic equation with a critical exponent[END_REF][START_REF]Extremal functions for the anisotropic Sobolev inequalities[END_REF], El Hamidi-Vétois [START_REF] Hamidi | Sharp Sobolev asymptotics for critical anisotropic equations[END_REF], Fragalà-Gazzola-Kawohl [START_REF] Fragalà | Existence and nonexistence results for anisotropic quasilinear elliptic equations[END_REF], Fragalà-Gazzola-Lieberman [START_REF] Fragalà | Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains[END_REF], García-Melián-Rossi-Sabina de Lis [START_REF] García-Melián | Large solutions to an anisotropic quasilinear elliptic problem[END_REF], Li [START_REF] Li | Anisotropic elliptic equations in L m[END_REF], Lieberman [START_REF] Lieberman | Gradient estimates for a new class of degenerate elliptic and parabolic equations[END_REF][START_REF]Gradient estimates for anisotropic elliptic equations[END_REF], Marcellini [START_REF]Regularity and existence of solutions of elliptic equations with p, q-growth conditions[END_REF],

Mihȃilescu-Pucci-Rȃdulescu [START_REF] Mihȃilescu | Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent[END_REF], Mihȃilescu-Rȃdulescu-Tersian [START_REF] Mihȃilescu | Eigenvalue problems for anisotropic discrete boundary value problem[END_REF], Namlyeyeva-Shishkov-Skrypnik [START_REF] Namlyeyeva | Isolated singularities of solutions of quasilinear anisotropic elliptic equations[END_REF], Skrypnik [START_REF] Skrypnik | Removability of an isolated singularity for anisotropic elliptic equations with absorption[END_REF], Tersenov-Tersenov [START_REF] Tersenov | The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations[END_REF], and Vétois [START_REF] Vétois | A priori estimates for solutions of anisotropic elliptic equations[END_REF][START_REF]Asymptotic stability, convexity, and Lipschitz regularity of domains in the anisotropic regime[END_REF][START_REF]Existence and regularity for critical anisotropic equations with critical directions[END_REF][START_REF]The blow-up of critical anistropic equations with critical directions[END_REF]. We refer to Mercaldo-Rossi-Segura de León-Trombetti [START_REF] Mercaldo | Anisotropic p, q-Laplacian equations when p goes to 1[END_REF] for a description of the asymptotic behavior of solutions of equations like (1.2) as p -→ 1, and we refer to Di Castro-Pérez-Llanos-Urbano [START_REF] Castro | Limits of anisotropic and degenerate elliptic problems[END_REF] and Pérez-Llanos-Rossi [START_REF] Pérez-Llanos | An anisotropic infinity Laplacian obtained as the limit of the anisotropic (p, q)-Laplacian[END_REF] for the case p -→ ∞, where p -= min (p 1 , . . . , p n ) and p + = max (p 1 , . . . , p n ) are the minimum and maximum values in the anisotropic configuration.

In the isotropic configuration where p i = p for all i = 1, . . . , n, the operator (1.1) is comparable, though slightly different, to the p-Laplace operator ∆ p = div |∇u| p-2 ∇u . We refer to Vázquez [START_REF] Vázquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] where the strong maximum principle was established for elliptic equations involving the p-Laplace operator. As for parabolic equations involving the p-Laplace operator, the question of the strong maximum principle was addressed in Nazaret [START_REF] Nazaret | Principe de maximum strict pour un opérateur quasi linéaire[END_REF]. For more material on p-Laplace equations, we refer to the lecture notes by Peral [START_REF] Alonso | Multiplicity of solutions for the p-Laplacian[END_REF].

We also mention the work by Fortini-Mugnai-Pucci [START_REF] Fortini | Maximum principles for anisotropic elliptic inequalities[END_REF] where maximum principles are established for a general class of anisotropic inequalities in divergence form, in particular in the case of variable exponents (see also Zhang [49] concerning this case).

The proofs of Theorems 1.1 and 1.2 rely on the comparison of solutions with a family of anisotropic test functions (see (2.5) and (3.3)). We prove Theorem 1.1 in Section 2, and we prove Theorem 1.2 in Section 3.

Anisotropic elliptic equations

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Renumbering, if necessary, the coordinates, we may assume that there exists an index n -such that p 1 = • • • = p n -= p -and p -< p i for all i > n -. We let ξ 0 = (ξ 0,1 , . . . , ξ 0,n ) be a point in Ω such that u (ξ 0 ) = 0. We proceed by contradiction and assume that the function u is not identically zero on Ω 0 , where Ω 0 is as in (1.6). We let P be the set of points x in Ω such that u (x) > 0. Since Ω 0 is arcwise connected and since both the sets P ∩ Ω 0 and Ω 0 \P are nonempty, we get that ∂P ∩ Ω 0 is nonempty. We choose a point

ξ 1 = (ξ 1,1 , . . . , ξ 1,n ) in P ∩ Ω 0 such that inf x∈Ω 0 \P n - i=1 |x i -ξ 1,i | p - p --1 < inf x∈∂Ω n - i=1 |x i -ξ 1,i | p - p --1 , (2.1) 
where, by convention, inf ∅ = +∞. Since P is open, it follows from (2.1) that there exist a positive real number r 0 and a point

ζ 0 = (ζ 0,1 , . . . , ζ 0,n ) in Ω 0 \P such that ζ 0 ∈ ∂B p - ξ 1 (r 0 ) and B p - ξ 1 (r 0 )\ {ζ 0 } ⊂ P , where B p - ξ 1 (r 0 ) = x ∈ R n ; n - i=1 |x i -ξ 1,i | p - p --1 < r 0 and x i = ξ 0,i ∀i > n - (2.2)
and

∂B p - ξ 1 (r 0 ) = x ∈ R n ; n - i=1 |x i -ξ 1,i | p - p --1 = r 0 and x i = ξ 0,i ∀i > n -. (2.3) 
For any positive real numbers δ and ε, we let A -→ p ξ 1 (r 0 , δ, ε) be the annular set defined by

A - → p ξ 1 (r 0 , δ, ε) = x ∈ R n ; r 0 -ε < n i=1 δ p --p i p i -1 |x i -δζ 0,i -(1 -δ) ξ 1,i | p i p i -1 < r 0 . (2.4) 
Since B p - ξ 1 (r 0 )\ {ζ 0 } ⊂ P , we get that for δ small and any ε, A -→ p ξ 1 (r 0 , δ, ε) is included in Ω. Moreover, we get that for ε fixed and δ small, the point ζ 0 belongs to A -→ p ξ 1 (r 0 , δ, ε). For any positive real numbers λ and δ, we define our test function v λ,δ on R n by

v λ,δ (x) = λδ e λ r 0 -n i=1 (λ 2 δ) p --p i p i -1 |x i -δζ 0,i -(1-δ)ξ 1,i | p i p i -1 -1 .
(2.5)

Letting ∆ - → p be as in (1.1), we find

∆ - → p v λ,δ (x) = λ 2 δ p --1 n i=1 p i p i -1 p i -1 e (p i -1)λ r 0 -n j=1 (λ 2 δ) p --p j p j -1 |x j -δζ 0,j -(1-δ)ξ 1,j | p j p j -1 × p i λ 2p --p i -1 p i -1 δ p --p i p i -1 |x i -δζ 0,i -(1 -δ) ξ 1,i | p i p i -1 -1 . (2.6)
For any point x in A -→ p ξ 1 (r 0 , λ 2 δ, ε), by (1.7), (2.5), and (2.6), we get

-∆ - → p v λ,δ (x) + f (v λ,δ (x)) ≤ (λδ) p --1 n i=1 p i p i -1 p i -1 λ p --1 e (p i -1)λε - p p - -λ p -(r 0 -ε) (p --1) p --1 + C e λε -1 p --1 (2.7)
when λδ and λε are small, for some positive constant C independent of λ, δ, ε, and x. Choosing λ large enough so that

λ > (p --1) p --1 p p - -r 0 n i=1 p i p i -1 p i -1
, and then, choosing δ and ε small, it follows from (2.7) that v λ,δ is a C 1 -solution of the inequality

-∆ - → p v λ,δ + f (v λ,δ ) < 0 in A - → p ξ 1 r 0 , λ 2 δ, ε , (2.8) 
where

A - → p ξ 1 (r 0 , λ 2 δ, ε) is as in (2.4). We let ∂ 1 A - → p ξ 1 (r 0 , λ 2 δ, ε) and ∂ 2 A - → p
ξ 1 (r 0 , λ 2 δ, ε) stand for the respective interior and exterior boundaries of the annular set A -→ p ξ 1 (r 0 , λ 2 δ, ε). Since the function u is positive on B p - ξ 1 (r 0 ), by continuity, we get the existence of a positive constant

C ε such that u > C ε on B p - ξ 1 (r 0 -ε), where B p - ξ 1 (r 0 -ε) is as in (2.2). Still by continuity of u, it follows that u ≥ C ε on ∂ 1 A - → p ξ 1 (r 0 , λ 2 δ, ε) for δ small. Since v λ,δ = λδ e λε -1 on ∂ 1 A - → p ξ 1 (r 0 , λ 2 δ, ε) and v λ,δ = 0 on ∂ 2 A - → p ξ 1 (r 0 , λ 2 δ, ε), we then get v λ,δ ≤ u on ∂A - → p ξ 1 (
r 0 , λ 2 δ, ε) for δ small. In particular, there holds (v λ,δu) + = 0 on ∂A -→ p ξ 1 (r 0 , λ 2 δ, ε), where (v λ,δu) + = max (v λ,δu, 0). Testing (1.5) and (2.8) against (v λ,δu) + and integrating by parts on A -→ p ξ 1 (r 0 , λ 2 δ, ε), we then get

n i=1 W λ,δ,ε ∂v λ,δ ∂x i p i -2 ∂v λ,δ ∂x i - ∂u ∂x i p i -2 ∂u ∂x i ∂v λ,δ ∂x i - ∂u ∂x i dx + W λ,δ,ε (f (v λ,δ ) -f (u)) (v λ,δ -u) dx ≤ 0 , (2.9) 
where

W λ,δ,ε = x ∈ A - → p ξ 1 r 0 , λ 2 δ, ε ; v λ,δ (x) > u (x) .
Since the function f is nondecreasing, it follows from (2.9) that

n i=1 W λ,δ,ε ∂v λ,δ ∂x i p i -2 ∂v λ,δ ∂x i - ∂u ∂x i p i -2 ∂u ∂x i ∂v λ,δ ∂x i - ∂u ∂x i dx = 0 ,
and thus that ∇u = ∇v λ,δ almost everywhere in W λ,δ,ε . Since W λ,δ,ε is open, we then get that the function v λ,δu is constant in W λ,δ,ε . By continuity of u and v λ,δ , it follows that

|W λ,δ,ε | = 0, i.e. v λ,δ ≤ u in A - → p ξ 1 (r 0 , λ 2 δ, ε). In particular, we get u (ζ 0 ) ≥ v λ,δ (ζ 0 ) > 0.
There is a contradiction. This ends the proof of Theorem 1.1.

Anisotropic parabolic equations

This section is devoted to the proof of Theorem 1.2. Renumbering, if necessary, the coordinates, we may assume in what follows that there exists an index n -such that p 1 = • • • = p n -= p -and p -< p i for all i > n -. For any positive real numbers µ, r, and any point (ξ, t) in R n × R + , we define the sets

B p - (ξ,t) (µ, r) and ∂B p - (ξ,t) (µ, r) by B p - (ξ,t) (µ, r) = (x, s) ∈ R n × R + ; n - i=1 |x i -ξ i | p - p --1 + µ |s -t| p - p --1 < r and x i = ξ i ∀i > n - (3.1) and ∂B p - (ξ,t) (µ, r) = (x, s) ∈ R n × R + ; n - i=1 |x i -ξ i | p - p --1 + µ |s -t| p - p --1 = r and x i = ξ i ∀i > n -. (3.2)
As a preliminary step in the proof of Theorem 1.2, we prove the following lemma. Lemma 3.1. Let Ω, T , f , and u be as in Theorem 1.2. Let µ be a positive real number. Assume that there exist a positive real number r 0 and two points (ξ 0 , t 0 ) and (ξ 1 , t 1 ) in Ω×(0, T ) such that u (ξ 0 , t 0 ) = 0, (ξ 0 , t 0 ) ∈ ∂B p - (ξ 1 ,t 1 ) (µ, r 0 ), B p - (ξ 1 ,t 1 ) (µ, r 0 ) ⊂ Ω 0 × (0, T ), and u (x, t) > 0 for all points (x, t) in B p - (ξ 1 ,t 1 ) (µ, r 0 ) \ {(ξ 0 , t 0 )}, where Ω 0 is as in (1.6), B p - (ξ 1 ,t 1 ) (µ, r 0 ) is as in (3.1), and ∂B p - (ξ 1 ,t 1 ) (µ, r 0 ) is as in (3.2). Then we get the following assertions.

(i) If p -≤ 2, then ξ 0 = ξ 1 . (ii) If p -= 2 and µ > 1 4r 0 n i=1 p i p i -1 p i -1 2 , then t 0 = t 1 -r 0 /µ. (iii) If p -> 2, then t 0 ≤ t 1 .
Proof of Lemma 3.1. We proceed by contradiction and assume that ξ 0 = ξ 1 if p -< 2, either ξ 0 = ξ 1 or t 0 > t 1 if p -= 2, and t 0 > t 1 if p -> 2. Moreover, decreasing, if necessary, the real number r 0 , we may assume that u (x, t) > 0 for all points (x, t) on ∂B

p - (ξ 1 ,t 1 ) (µ, r 0 ) \ {(ξ 0 , t 0 )}, where ∂B p - (ξ 1 ,t 1 ) (µ, r 0 ) is as in (3.
2). For any positive real numbers λ, µ, and δ, we define our

test function v λ,µ,δ on R n × R + by v λ,µ,δ (x) = λδ e λ r 0 -n i=1 (λ 2 δ) p --p i p i -1 |x i -δξ 0,i -(1-δ)ξ 1,i | p i p i -1 -µ|t-δt 0 -(1-δ)t 1 | p - p --1 -1 , (3.3) 
where ξ 0 = (ξ 0,1 , . . . , ξ 0,n ) and ξ 1 = (ξ 1,1 , . . . , ξ 1,n ). We find

∂v λ,µ,δ ∂t (x, t) = p - p --1 µλ 2 δe λ r 0 -n i=1 (λ 2 δ) p --p i p i -1 |x i -δξ 0,i -(1-δ)ξ 1,i | p i p i -1 -µ|t-δt 0 -(1-δ)t 1 | p - p --1 × |δt 0 + (1 -δ) t 1 -t| 2-p - p --1 (δt 0 + (1 -δ) t 1 -t) . (3.4)
Moreover, letting ∆ - → p be as in (1.1), we find

∆ - → p v λ,µ,δ (x, t) = λ 2 δ p --1 n i=1 p i p i -1 p i -1 × e (p i -1)λ r 0 -n j=1 (λ 2 δ) p --p j p j -1 |x j -δξ 0,j -(1-δ)ξ 1,j | p j p j -1 -µ|t-δt 0 -(1-δ)t 1 | p - p --1 × p i λ 2p --p i -1 p i -1 δ p --p i p i -1 |x i -δξ 0,i -(1 -δ) ξ 1,i | p i p i -1 -1 . (3.5)
As is easily seen, for δ small, for any i = 1, . . . , n and any point (x, t) in R n × R + , there holds

|x i -δξ 0,i -(1 -δ) ξ 1,i | p i p i -1 -|ξ 0,i -ξ 1,i | p i p i -1 ≤ C |ξ 0,i -ξ 1,i | 1 p i -1 |x i -ξ 0,i | + |x i -ξ 0,i | p i p i -1 + δ |ξ 0,i -ξ 1,i | p i p i -1 , (3.6) |t -δt 0 -(1 -δ) t 1 | p - p --1 -|t 0 -t 1 | p - p --1 ≤ C |t 0 -t 1 | 1 p --1 |t -t 0 | + |t -t 0 | p - p --1 + δ |t 0 -t 1 | p - p --1 , (3.7) 
and

|t -δt 0 -(1 -δ) t 1 | 2-p - p --1 (t -δt 0 -(1 -δ) t 1 ) -|t 0 -t 1 | 2-p - p --1 (t 0 -t 1 ) ≤      C |t 0 -t 1 | 2-p - p --1 |t -t 0 | + |t -t 0 | 1 p --1 + δ 0 -t 1 | 1 p --1 if p -≤ 2 C |t -t 0 | 1 p --1 + δ 1 p --1 |t 0 -t 1 | 1 p --1 if p -> 2 (3.8)
for some positive constant C independent of δ, x, and t. For any positive real numbers µ, δ, and ε, we define the ellipsoidal ball

B - → p (ξ 0 ,t 0 ) (µ, δ, ε) by B - → p (ξ 0 ,t 0 ) (µ, δ, ε) = (x, s) ∈ R n × R + ; n i=1 δ p --p i p i -1 |x i -ξ 0,i | p i p i -1 + µ |t -t 0 | p - p --1 < ε . (3.9)
Clearly, for µ large and for δ and ε small, B -→ p (ξ 0 ,t 0 ) (µ, δ, ε) is included in Ω × (0, T ). For any positive real numbers λ, µ, δ, ε, and any point (x, t) in B -→ p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε), by (1.7), (3.3)-(3.8), and since (ξ

0 , t 0 ) ∈ ∂B p - (ξ 1 ,t 1 ) (µ, r 0 ), we get ∂v λ,µ,δ ∂t (x, t) ≤ p - p --1 µλ 2 δ (3.10) ×                                  e Cλ(µ+1) ε p --1 p -+δ |t 1 -t 0 | 2-p - p --1 (t 1 -t 0 ) + C ε p --1 p - + δ if p -≤ 2 and t 0 ≤ t 1 e -Cλ(µ+1) ε p --1 p -+δ |t 1 -t 0 | 2-p - p --1 (t 1 -t 0 ) + Ce Cλ(µ+1) ε p --1 p -+δ ε p --1 p - + δ if p -≤ 2 and t 0 > t 1 e -Cλ(µ+1) ε p --1 p -+δ |t 1 -t 0 | 2-p - p --1 (t 1 -t 0 ) + Ce Cλ(µ+1) ε p --1 p -+δ ε 1 p -+ δ 1 p --1 if p -> 2 and t 0 > t 1 and -∆ - → p v λ,µ,δ (x, t)+f (v λ,µ,δ (x, t)) ≤ (λδ) p --1 n i=1 p i p i -1 p i -1 λ p --1 e (p i -1)Cλ(µ+1) ε p --1 p -+δ - p p - -λ p - (p --1) p --1 e -(p + -1)Cλ(µ+1) ε p --1 p -+δ r 0 -µ |t 1 -t 0 | p - p --1 + Ce Cλ(µ+1) ε p --1 p -+δ ε p --1 p - + δ + C e Cλ(µ+1) ε p --1 p -+δ -1 p --1 (3.11) 
when δ, ε, and λ (µ + 1) ε (p --1)/p -+ δ are small, for some positive constant C independent of λ, µ, δ, ε, x, and t. In case p -≤ 2 and ξ 0 = ξ 1 , since (ξ 0 , t 0 ) ∈ ∂B p - (ξ 1 ,t 1 ) (µ, r 0 ), we get µ |t 1t 0 | p -/(p --1) < r 0 . We choose λ large enough so that

             λ > (p --1) p --1 p p - - r 0 -µ |t 1 -t 0 | p - p --1 n i=1 p i p i -1 p i -1 if p -< 2 and ξ 0 = ξ 1 λ > 1 4 r 0 -µ (t 1 -t 0 ) 2 2µ (t 1 -t 0 ) + n i=1 p i p i -1 p i -1 if p -= 2 and ξ 0 = ξ 1 (3.12)
It follows from (3.10), (3.11), and (3.12) that in case p -≤ 2 and ξ 0 = ξ 1 , for δ and ε small, the function v λ,µ,δ is a C 1 -solution of the inequality

∂v λ,µ,δ ∂t -∆ - → p v λ,µ,δ + f (v λ,µ,δ ) < 0 in B - → p (ξ 0 ,t 0 ) µ, λ 2 δ, ε , (3.13) 
where B -→ p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε) is as in (3.9). In case p -= 2 and t 0 = t 1 + r 0 /µ, we assume that µ > 1 4r 0 n i=1 p i p i -1 p i -1 2 , we let λ be an arbitrary positive real number, and we also find (3.13) for δ and ε small. In case p -> 2 and t 0 > t 1 , without assumption on λ and µ, we still get (3.13) for δ and ε small. Now, we claim that there exists a positive constant

C ε such that u ≥ C ε on B - → p (ξ 1 ,t 1 ) (µ, λ 2 δ, r 0 ) ∩ ∂B - → p
(ξ 0 ,t 0 ) (µ, λ 2 δ, ε) for δ small, where B -→ p (ξ 1 ,t 1 ) (µ, λ 2 δ, r 0 ) and B -→ p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε) are as in (3.9). In order to prove this claim, we proceed by contradiction and assume that there exist a sequence of positive real numbers (δ α ) α and a sequence of points (ξ α , t α ) α such that δ α → 0, u (ξ α , t α ) → 0 as α → +∞, and (ξ α , t α ) ∈ B -→ p (ξ 1 ,t 1 ) (µ, λ 2 δ α , r 0 ) ∩ ∂B -→ p (ξ 0 ,t 0 ) (µ, λ 2 δ α , ε) for all α. Up to a subsequence, we get that (ξ α , t α ) converges to a point (ξ ∞ , t ∞ ) in B p - (ξ 1 ,t 1 ) (µ, r 0 )∩∂B p - (ξ 0 ,t 0 ) (µ, ε), where B p - (ξ 1 ,t 1 ) (µ, r 0 ) and ∂B p - (ξ 0 ,t 0 ) (µ, ε) are as in (3.1) and (3.2). By continuity of the function u, we get u (ξ ∞ , t ∞ ) = 0, and thus (ξ ∞ , t ∞ ) = (ξ 0 , t 0 ). Since (ξ α , t α ) ∈ B -→ p (ξ 1 ,t 1 ) (µ, λ 2 δ α , r 0 ) for all α and since ξ 1,i = ξ 0,i for all i > n -, it follows that (3.14) as α → +∞. On the other hand, since (ξ α , t α ) ∈ ∂B -→ p (ξ 0 ,t 0 ) (µ, λ 2 δ α , ε) for all α, we get

n i=n -+1 λ 2 δ α p --p i p i -1 |ξ α,i -ξ 0,i | p i p i -1 < r 0 -µ |t α -t 1 | p - p --1 - n - i=1 |ξ α,i -ξ 1,i | p - p --1 = o (1)
n i=n -+1 λ 2 δ α p --p i p i -1 |ξ α,i -ξ 0,i | p i p i -1 = ε -µ |t α -t 0 | p - p --1 - n - i=1 |ξ α,i -ξ 0,i | p - p --1 = ε + o (1) (3.15)
as α → +∞. There is a contradiction between (3.14) and (3.15). This ends the proof of our claim, namely that there exists a positive constant

C ε such that u ≥ C ε on B - → p (ξ 1 ,t 1 ) (µ, λ 2 δ, r 0 ) ∩ ∂B - → p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε) for δ small. Since v λ,µ,δ ≤ λδ e λr 0 -1 in B - → p (ξ 1 ,t 1 ) (µ, λ 2 δ, r 0 ) and v λ,µ,δ ≤ 0 in (R n × R + ) \B - → p (ξ 1 ,t 1 ) (µ, λ 2 δ, r 0 ), we then get v λ,µ,δ ≤ u on ∂B - → p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε) for δ small.
In particular, there holds (v λ,µ,δu) + = 0 on ∂B -→ p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε), where (v λ,µ,δu) + = max (v λ,µ,δu, 0). Testing (1.8) and (3.13) against (v λ,µ,δu) + on B -→ p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε) (up to an approximation in terms of Steklov averages, see, for instance, DiBenedetto [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF]), we get

1 2 W λ,µ,δ,ε,t |v λ,µ,δ -u| 2 dx + n i=1 t 0 W λ,µ,δ,ε,s ∂v λ,µ,δ ∂x i p i -2 ∂v λ,µ,δ ∂x i - ∂u ∂x i p i -2 ∂u ∂x i ∂v λ,µ,δ ∂x i - ∂u ∂x i dxds + t 0 W λ,µ,δ,ε,s (f (v λ,µ,δ ) -f (u)) (v λ,µ,δ -u) dxds ≤ 0 (3.16)
for all real numbers t in (0, T ), where

W λ,µ,δ,ε,t = x ∈ R n ; (x, t) ∈ B - → p (ξ 0 ,t 0 ) µ, λ 2 δ, ε and v λ,µ,δ (x, t) > u (x, t) .
Since the function f is nondecreasing, it follows from (3.16) that for any real number t in (0, T ), there holds

W λ,µ,δ,ε,t |v λ,µ,δ -u| 2 dx = 0 . We then get |W λ,µ,δ,ε,t | = 0, i.e. v λ,µ,δ ≤ u in B - → p (ξ 0 ,t 0 ) (µ, λ 2 δ, ε).
In particular, we get u (ξ 0 , t 0 ) ≥ v λ,µ,δ (ξ 0 , t 0 ) > 0. There is a contradiction. This ends the proof of Lemma 3.1. Now, we can prove Theorem 1.2 by using Lemma 3.1.

Proof of Theorem 1.2. To begin with, we assume that p -≤ 2 and prove that the function u is identically zero on the set Ω 0 × {t 0 }, where Ω 0 is as in (1.6). We let P be the set of points (x, t) in Ω × (0, T ) such that u (x, t) > 0. We proceed by contradiction and assume that P ∩ (Ω 0 × {t 0 }) is not empty. In a similar way as in the proof of Theorem 1.1, we can choose a positive real number r 0 and two points ζ 0 = (ζ 0,1 , . . . , ζ 0,n ) and ξ 1 = (ξ 1,1 , . . . , ξ 1,n )

in Ω 0 such that u (ζ 0 , t 0 ) = 0, ζ 0 ∈ ∂B (3.17)

Since u (ζ 0 , t 0 ) = 0, we get h (δ) → 0 as δ → 0. In particular, we get ∂B p - (δξ 1 +(1-δ)ζ 0 ,t 0 ) (1, h (δ)) ⊂ Ω 0 × (0, T ) and B p - (δξ 1 +(1-δ)ζ 0 ,t 0 ) (1, h (δ)) ⊂ P for δ small, where B p - (δξ 1 +(1-δ)ζ 0 ,t 0 ) (1, h (δ)) and ∂B p - (δξ 1 +(1-δ)ζ 0 ,t 0 ) (1, h (δ)) are as in (3.1) and (3.2). Since P is open, it follows that for δ small, the infimum in (3.17) is achieved, i.e. there exists a point (ζ δ , t δ ) on ∂B p - (δξ 1 +(1-δ)ζ 0 ,t 0 ) (1, h (δ)) such that u (ζ δ , t δ ) = 0. By Lemma 3.1, we get ζ δ = δξ 1 + (1δ) ζ 0 , and thus h (δ) = |t δt 0 | p -/(p --1) for δ small. It follows from (3.17) that for δ 1 and δ 2 small, there holds

h (δ 1 ) ≤ n - i=1 |ξ 1,i -ζ 0,i | p - p --1 |δ 2 -δ 1 | p - p --1 + h (δ 2 ) .
In particular, for δ small, the function h is differentiable and h ′ = 0 on [0, δ]. It follows that the function h is constant on [0, δ]. Since h (0) = 0, we then get h = 0 on [0, δ], i.e. u = 0 on [δξ 1 + (1δ) ζ 0 , ζ 0 ] × {t 0 }. There is a contradiction. This ends the proof of the first part of Theorem 1.2. Now, we assume that p -≥ 2, and we prove that the function u is identically zero on the set {ξ 0 } × (0, t 0 ]. We proceed by contradiction and assume that there exists a real number t 1 in (0, t 0 ) such that u (ξ 0 , t 1 ) > 0. Since P is open, we get B p - (ξ 0 ,t 1 ) (µ, ε) ⊂ P for µ large and ε small, where B p - (ξ 0 ,t 1 ) (µ, ε) is as in (3.1). We may assume that the real number µ is large enough so that µ > 1 2ε n i=1 p i p i -1 p i -1 . Increasing, if necessary, the real number t 1 , since P is open, we may assume that t 1 = sup t ∈ (0, t 0 ) ; B p - (ξ 0 ,t 1 ) (µ, ε) ⊂ P .

It follows that there exists a point (ξ 2 , t 2 ) on ∂B p - (ξ 0 ,t 1 ) (µ, ε) such that t 2 > t 1 and u (ξ 2 , t 2 ) = 0. We get a contradiction with Lemma 3.1. This ends the proof of Theorem 1.2.
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  (i) If p -< 2, then the function u is identically zero on the set Ω 0 × {t 0 }. (ii) If p -= 2, then the function u is identically zero on the set Ω 0 × (0, t 0 ]. (iii) If p -> 2, then the function u is identically zero on the set {ξ 0 } × (0, t 0 ].

p - ξ 1

 1 (r 0 ), and B p - ξ 1 (r 0 ) × {t 0 } ⊂ P , where B p - ξ 1 (r 0 ) and ∂B p - ξ 1 (r 0 ) are as in (2.2) and (2.3). We let h : [0, 1] → R + be defined byh (δ) = inf (x,t)∈(Ω 0 ×(0,T ))\P n - i=1 |x iδξ 1,i -(1δ) ζ 0,i | pp --1 + |tt 0 | pp --1.
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