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Abstract

This paper is devoted to the evaluation of various classical and more recent linearization schemes
for nonlinear homogenization in terms of their efficiency to characterize local field fluctuations in
nonlinear heterogeneous composites. It relies on an unbiased comparison between field statistics
predicted by homogenization theories and those obtained from a reference solution solved using
finite element techniques, based on the same microgeometry and boundary conditions and in which
local nonlinear constitutive relations are exactly verified at each point. Two categories of lineariza-
tion methods have been investigated: classical approaches based on a ”stress-strain” approach
(classical secant, classical and simplified affine) and methods based on ”variational principles”
(variational and Lahellec-Suquet procedures). For each approach, the maps and the statistical
distribution functions of the local fields (strain, stress and incremental work) illustrating the intra-
and inter-phase heterogeneities are provided for reinforced and porous power-law composites. This
study supplements an earlier study focused on comparisons at the global level [38, 39] and provides
additional information on the accuracy of some available classical and recent linearization proce-
dures. The proposed methodology gives access to a deeper insight on nonlinear homogenization
schemes and may eventually lead to improvements of these formulations.

Keywords: nonlinear homogenization; linearization; secant; affine; variational method; local field
fluctuations

1. Introduction

Recent analyses of nonlinear composites or polycrystals [16, 19, 24, 28] suggest that in order to re-
produce accurately their effective behavior with homogenization theories, it is important to capture
correctly the heterogeneity of the strain (or stress) field at local scale. In addition, estimates for
the statistics of the local fields within the composites could be useful to account for the evolution
of the microstructure which can strongly affect the macroscopic behavior of viscoplastic composites
or polycrystals undergoing finite deformation [8, 10, 23, 24]. Moreover, information on the distri-
bution of (residual) stresses in random composites or polycrystals may improve the prediction of
the macroscopic toughness and strength of such materials [21]. In addition, estimates of local stress
or strain field statistics may allow one to develop statistical theories of damage nucleation and/or
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growth in the context of either brittle or ductile damage [2, 3, 26].
In practice, estimates of local fields can be obtained by means of numerical simulations carried
out using either finite element methods or the fast Fourier transform (FFT)-based algorithm de-
veloped by Moulinec and Suquet [28, 29, 30, 31]. Such approaches induce however computational
difficulties due to the large size of the numerical systems to work out, as well as issues relative
to the representativeness of the computer-generated microstructures, the appropriate averaging of
the results and the choice of particular boundary conditions, both in the linear case [20] and, even
more critically, in the nonlinear one [13]. These approaches imply large computational expenses and
may in practice often be restricted to two-dimensional problems especially when a large number of
microstructural configurations or loading conditions are to be investigated. Alternatively, spatial
distributions of kinematic fields can be experimentally measured using full-field strain measurement
tools based for instance on digital image correlation techniques [6, 14, 40, 41, 43]. Such experiments
however are very complex to carry out and usually restricted to surface observations and the statis-
tical representativeness of the measured field fluctuations might be hard to ensure. Techniques to
characterize local stress fields are still in their very early stage of development [9]. Such numerical
or experimental tools are by essence restricted to the characterization of the local field statistics
of a limited number of samples and loading conditions. They are very efficient tools to investigate
the complex interactions governing the development of field fluctuations and to propose models to
describe them. But because of their complexity they can not be used to characterize local field
fluctuations in the context of structural computation, for which it is necessary to adopt some less
demanding tools to describe the local field heterogeneities. To this end, nonlinear mean-field the-
ories seem to be particularly attractive modeling tools to extract low-order statistical information
about the statistical distribution of local strains in the context of multiscale modelling of various
classes of materials.

In the context of linear composites, well-known exact formulas are available to express the first and
second moments of the local fields in the phases, in terms of the effective elastic properties [4, 32].
Such formulas are useful as they allow the extraction of estimates for the statistics of the local fields
from the sole homogenization estimate for the effective thermoelastic potential of the composite.
Recently, these formulas have been generalized to higher order statistics in the context of nonlinear
homogenization. They can be applied to nonlinear homogenization schemes which generate an
estimate for the effective nonlinear potential of the composite, such as those derived from variational
formulations. For schemes based on the concept of linear comparison composite (LCC) [17, 18], it is
possible to compare by means of these formulas the statistical moments of various orders of the local
fields in the nonlinear composite, as predicted by such nonlinear homogenization scheme, to the
corresponding moments in the associated linear comparison composite subjected to the same load.
It is shown that for some nonlinear schemes such as the secant variational formulation (here referred
to as VAR) [34, 42] or the model proposed by Lahellec and Suquet (LS) [22], the first and second
moment of the fields in the nonlinear composite and the LCC do coincide. But this no longer
holds in the context of the tangent second-order [35] and second-order [36, 16] methods, where
”corrections” terms arise [17, 18] because of the lack of full stationarity of the relevant functionals
with respect to the properties of the LCC. Other more classical nonlinear formulations rely on the
ad hoc assumption that local fields in the LCC are good estimates of the fields in the nonlinear
composite and deduce effective properties, not from an effective potential, but from appropriate
averaging procedures of these local fields. This is the case of the classical secant [1] (referred to
as SEC), the affine schemes (AFF-ANI) [27] and its isotropic simplification (AFF-ISOT) [12]. For
such schemes, statistics of the local fields are naturally identical to those in the LCC; it should
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however be noted that these schemes do generally not allow to define an effective potential.

In this work, we focus our attention on the category of nonlinear homogenization theories, for which
it is possible to investigate the local fields up to second order statistics in the LCC defined by these
methods as consistent approximations for the corresponding quantities in the nonlinear composite.
This category avoids additional analytical or numerical expenses related to the interpretation of the
local field statistics in the LCC as approximations of the corresponding quantities in the nonlinear
composite. In this context, it is then easy to extend the non-biased methodology presented in
[39] to evaluate the accuracy of nonlinear homogenization schemes in terms of effective properties
to the evaluation of their ability to predict local field statistics. We recall that this methodology
relies on the analysis of a periodic composite for which both the nonlinear homogenization problem
and the linear homogenization problems associated with the chosen linear comparison composite
(LCC) can be solved for exactly the same microstructure, for the same loading conditions and
with a similar level of numerical approximation, so that the effects of the sole linearization scheme
can be evaluated without ambiguity. Both the problem of the initial nonlinear periodic unit cell
and the linear one associated with the LCC are solved with high accuracy and low computational
expense using classical finite element techniques. Unlike numerous previous studies, there is no
approximation related to a change of microstructure between the nonlinear problem and the linear
ones related to the LCC derived from various available linearization methods. This methodology
allows comparisons between the local field statistics of the fully nonlinear problem and those of
the LCC. For the considered linearization methods for which an effective potential can be defined,
namely the VAR and LS procedures, the proposed methodology allows the computation of second-
order field statistics without any obligation to handle the effective potential of the LCC. In the
literature, similar studies i.e. comparisons between field-statistics derived from full-field information
and mean-field theories, have been performed but for a limited number of nonlinear linearization
methods, such as Suquet [42] and Bornert [6] who made use of the VAR method to extract the
isotropic trace of the second moments of the strain in two-phase, elasto-plastic composites, and
compared the predictions with experimental results. Brenner et al [8] also studied field statistics
in viscoplastic polycrystals by means of the ”affine method”. Field fluctuations for two-phase
composites with ”particulate” microstructures were also studied by Moulinec and Suquet [30, 31],
by means of the VAR homogenization method and full-field numerical simulations. More recently,
Rekik [38] has provided comparisons between numerical simulations and most available linearization
methods including the first version of the second-order method [35] denoted hereafter by the tangent
second-order [16, 17, 18]. Pierard et al [33] compared the global and local responses of elasto-plastic
composites reinforced with elastic and aligned ellipsoids derived both by the secant (classical and
second-order methods) and incremental approaches and by Finite Element simulations performed
on a random representative volume element. Idiart et al [15] proposed corrections terms for the
assessment of the field statistics for the tangent second-order and a sophisticated version of this
method. They also made comparisons at the local level between the numerical fields provided by
the FFT method, the tangent second-order and its improved version. More recently, Idiart et al
[19] made comparisons between the second-order homogenization estimates and the FFT full-field
numerical simulations for the first- and second-order field statistics of the stress and strain fields.

In this paper, the proposed methodology can be relevant for a rigorous assessment of local field
statistics up to second order for various linearization methods, especially those based on a ”stress-
strain” approach (such as classical secant and affine methods) as well as ”potential-based” ap-
proaches such as the VAR and LS models, for which the ”stress-strain” variant of their formu-
lations coincide with the potential-based ones. In particular the accuracy of the LS linearization
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is evaluated at the local scale thus complementing its global evaluation in [38, 39]. On the other
hand the evaluation at the local scale of the variants of the second-order method is not addressed
as similar comparisons are performed in other studies such as Idiart et al [17, 18]. Finally, the
proposed methodology can be extended to handle large classes of problems, whatever the choices of
the local constitutive laws, the morphology of the periodic microstructure and the type of loading.

The tensor notation used herein is a fairly standard one. Products containing dots denote sum-
mation over repeated indices. For example, L : ε = Lijklεklei ⊗ ej and E :: F = EijklFklij where
ei (i = 1, 2, 3) is a time-independent orthogonal cartesian basis and the operation ⊗ denotes
the classical tensorial diadic product. Cylindrical coordinates (r, θ, z) will be used as well, with
er, eθ, ez = e3 being the unit vectors of the orthonormal cylindrical basis and ur, uθ, uz the cylin-
drical coordinate components of a 3D vector u. Use will also be made of the fourth-order tensors
K = I − J and J = 1

3 i ⊗ i which are the usual projectors on the subspaces of purely spherical
or deviatoric second-order tensors. The tensors i and I are second and fourth-order symmetric
identity tensors.

2. A brief outline of the considered linearization schemes

The main objective of homogenization is to predict the macroscopic behaviour of composite ma-
terials in terms of the behaviour of their constituents and prescribed statistical information about
their microstructure. In this framework, we consider composite materials made of N different ho-
mogeneous constituents which are assumed to be randomly distributed in a specimen occupying a
volume V , at a length scale that is much smaller than the size of the structure and the scale of
variation of the loading conditions. The constitutive behaviour of each phase is characterized by a
strictly convex single potential or strain energy function wr (r = 1, ..., N), such that the stress σ
and strain ε tensors are related by

σ =
∂w(x, ε)

∂ε
, w(x, ε) =

N
∑

r=1

χr(x)wr(ε), (1)

where ∂
∂ε

denotes differentiation with respect to ε, and the characteristic functions χr(x) serve to
describe the microstructure, being 1 if the position vector x is in phase r, and 0 otherwise. This
constitutive relation corresponds to a nonlinear elastic behavior within the context of small strain.
However, equation (1) can also be used either within the context of the deformation theory of
plasticity or for viscoplastic materials, in which case σ and ε are the Cauchy stress and Eulerian
strain rate, respectively. In the following, the constitutive behavior of the individual constituents
of the composite is assumed to be nonlinear elastic. Let < . > and < . >r denote the volume
averages over the composite (V ) and over phase r (V r), respectively. The effective behaviour of the
composite, which is defined as the relation between the average stress σ̄ =< σ > and the average
strain ε̄ =< ε > can be characterized by an effective strain potential W̃ , such that

σ̄ =
∂W̃ (ε̄)

∂ε̄
, W̃ (ε̄) = inf

u∈κ(ε̄)
〈w(x, ε(u))〉 , (2)

where κ(ε̄) =
{

u, ε(u) = 1
2

(

∇u+T ∇u
)

and < ε(u) >= ε
}

. The nonlinear problem (2) can be
approached using nonlinear homogenization theories based on two steps: linearization and linear
homogenization. One way to apprehend what these two steps consist of is first to notice that the
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local strain field ε(u) solution of the variational theorem (2)2 solves the so-called nonlinear local
problem consisting of the following set of equations















div(σ) = 0, ∀x ∈ V

σ(x) =
∑N

r=1 χ
r(x)f r(ε(x)), ∀x ∈ V

ε(u(x)) = 1
2

(

∇u(x) +t ∇u(x)
)

, ∀x ∈ V
< ε(u) >= ε,

(3)

where f r(ε) =
∂wr(ε)

∂ε
denotes the constitutive law of phase r, and second to approximate the

nonlinear problem (3) by the following system























div(σ) = 0, ∀x ∈ V

σ(x) =
∑N

r=1 χ
r(x) (Lr : ε(x) + τ r) , ∀x ∈ V

ε(u(x)) = 1
2

(

∇u(x) +t ∇u(x)
)

, ∀x ∈ V
< ε(u) >= ε,















local linear problem (a)

Lr = Lr {ε(x), x ∈ V } , τ r = τ r {ε(x), x ∈ V } , nonlinear relations (b)

(4)

where Lr {ε(x), x ∈ V } and τ r {ε(x), x ∈ V } are known functionals of the local strain field ε(x) of
the local linear problem (4a). Problem (4a) coincides with the so-called local problem associated
with a fictitious linear composite usually called the Linear Comparison Composite (LCC), the
behavior of each of its individual constituents being linear thermo-elastic and defined by σ = Lr :
ε + τ r. The linearization stage consists in linearizing the phase constitutive relations σ = f r(ε)
of the actual nonlinear composite and therefore providing analytical expressions of the functional
Lr {ε(x), x ∈ V )} and τ r {ε(x), x ∈ V )} while the linear homogenization stage aims at solving
the local linear problem and deriving its effective behavior by means of linear homogenization
techniques. The effective behavior of the LCC - which varies nonlinearly with respect to the
macroscopic strain ε - is interpreted as an estimate of the nonlinear effective constitutive law of the
nonlinear composite (2)1. Of course, for each macroscopic strain ε, the local problem associated with
the LCC has to be solved several times until the nonlinear relations (4b) do not evolve anymore.
System (4) can be solved by means of a fixed-point iterative procedure which is iterated on a
set of reference strains which are computed from the local strain field in the LCC (ε(x), x ∈ V ).
The definition of these reference strains depends on considered linearization procedure and will be
specified for each of them in Sections 2.1 and 2.2.
In the following the main concepts of the investigated linearization methods are recalled. Each
phase constituting the LCC is therefore assumed to follow a (thermo-)elastic constitutive law σ =
Lr : ε+ τ r, with a uniform tensor of moduli Lr and a pre-stress or polarization tensor τ r.

Though the considered linearization schemes and the methodology developed here could be applied
to more general situations, the presentation is restricted, for the sake of clarity, to composites made
of isotropic constitutive phases, with local constitutive relations of the form:

σ(ε) = σmi+
2

3
σeq ê with σm = 3kεm, σeq = f(εeq) and ê = (1/εeq)K : ε (5)

where σm = σ : i/3 (resp. εm = ε : i/3) and σeq =
√

3
2σ : K : σ (resp. εeq =

√

2
3ε : K : ε) are

the isotropic part and the von Mises measure of the deviatoric part of the stress (resp. strain)
tensor. The deviatoric unit second order tensor ê is parallel to the deviatoric part of the strain. In
such a constitutive relation, only the deviatoric parts of the stress and strain tensors are concerned
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with the nonlinearity, while the isotropic parts obey a linear relation, characterized by the bulk
modulus k. The particular loading conditions, microstructure and form of the nonlinear relation
σeq = f(εeq) considered in the numerical simulations will be described in section 3.2.

2.1. Elastic LCC

Some linearization schemes define an elastic LCC (τ r = 0). The linearity of the local problem
ensures a linear dependence of the local strain field in the LCC with the macroscopic strain ε̄ which
reads

ε(x) = A(x) : ε̄ , (6)

where A(x) is the fourth-order localization tensor. The per-phase average of relation (6) reads
ε̄r =< ε >r= Ar : ε̄ where the fourth-order tensor Ar =< A >r is not necessarily symmetric and
only depends on the microstructure and the local properties, but not on the overall load.

2.1.1. Classical secant (SEC)

For this formulation, the constitutive behaviour per phase inside the LCC reads: σ(x) = Lr : ε(x),
where Lr is defined as the isotropic tensor of secant moduli evaluated at the reference strain εr,

namely Lr = 3krJ + 2µr
sct(ε

r)K, where µr
sct(ε

r) =
σr
eq(ε

r)

3εr
is the secant shear modulus of the

nonlinear constitutive relation of phase r. According to the SEC method, the reference strain is
defined as the equivalent per phase average of the strain in the LCC: εr = ε̄req =< ε >r

eq= (Ar : ε̄)eq.

2.1.2. Modified secant extension (VAR)

This formulation coincides with the variational approach of Ponte Castañeda [34, 42]. In the LCC,
the constitutive behaviour of the phases is identical to that defined by the SEC method but the
reference strain εr is set equal to the scalar second-order moment of the strain in phase r in the

LCC: εr = ¯̄εreq =
√

〈

ε2eq
〉r
. It is worth recalling that the variational procedure provides an upper

bound for the effective potential.

2.2. Thermoelastic LCC

In a thermoelastic LCC (τ 6= 0), the local strain field and its per-phase averages read

ε(x) = A(x) : ε̄+ a(x), ε̄r = Ar : ε̄+ ar, with Ar =< A >r and ar =< a >r . (7)

The fourth-order tensor A(x) coincides with the localization tensor field of the elastic LCC. The
second-order tensor a(x) is the local strain under vanishing overall strain. In the framework of a
two-phase composite and in particular for the matrix-inclusion microstructure considered hereafter,
we apply Levin’s relation [25] which allows one to compute a(x) from A(x) as follows

a(x) = (A(x)− I) : (△L)−1 : (△τ), where △L = Lm − Lp and △τ = τm − τp, (8)

so that
ε(x) = A(x) : (ε̄+ (△L)−1 : △τ)− (△L)−1 : △τ = A : C −B, (9)

with B = (△L)−1 : △τ and C = ε̄+B. (10)

The superscripts ”m” and ”p” refer to the matrix and the inclusion phases considered hereafter,
respectively.
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2.2.1. Classical affine (AFF-ANI)

This formulation coincides with the original affine approach proposed by Masson et al [27]. The
linear constitutive behaviour of the individual constituents of the LCC follows the thermoelastic
law

σ(x) = Lr : ε(x) + τ r, (11)

where Lr and τ r are the tensor of elastic moduli and the polarization tensor defined by Lr =
Lr
tgt(ε

r) = ∂2wr

∂ε2
(εr) and τ r = ∂wr

∂ε
(εr) − Lr : ε̄r, respectively. Again εr = ε̄r in the LCC. We note

that the thermoelastic law of each individual constituent of the LCC is tangent to the nonlinear
constitutive law of each phase of the real nonlinear composite σ = ∂wr

∂ε
(ε) at ε = ε̄r. Unlike the

secant methods, the tensor Lr is anisotropic and can be written as

Lr = 3krJ + 2µr
sct(ε̄

r
eq)F

r + 2µr
tgt(ε̄

r
eq)E

r, (12)

where µr
tgt(εeq) =

dσeq
3dεeq

(εeq) is the tangent shear modulus. The fourth order tensor Er = 2
3 ê

r ⊗ êr

with êr = (K : ε̄r) /ε̄req is the projector onto the direction of the strain ε̄r and F r = K −Er. When
ε̄r is uniaxial, Lr is transversely isotropic with respect to the same axis.

2.2.2. Simplified affine (AFF-ISOT)

Due to the anisotropy of Lr in the original affine formulation, the application of this scheme requires
more analytical developments and numerical expenses than the linearization schemes defining an
isotropic LCC. To simplify this formulation, Chaboche and Kanouté [12] have proposed a new
variant referred to as AFF-ISOT with an isotropic tensor of elastic moduli defined by: Lr =
3krJ+2µr

tgt(ε
r)K, where εr = ε̄req. Note that both relations coincide for local strains ε proportional

to ε̄r but not in general.

2.2.3. Lahellec and Suquet method (LS)

This formulation retains the energetic framework of the initial second-order formulation and mod-
ifies it such that the field formulation (σ̄ =< σ >) is in exact agreement with the energetic
formulation (σ̄ = ∂w̃

∂ε̄
). The strain-energy function is approximated by a third-order Taylor ex-

pansion around a reference strain εr and the cubic term is linearized around an additional ref-
erence strain ε̂r. The approximate effective potential is then rendered stationary with respect
to both variables εr and ε̂r such that the following expressions are generated for the LCC mod-
uli: Lr = Lr

tgt(ε̄
r) and τ r = ∂wr

∂ε
(ε̄r) − Lr : ε̄r + 1

2N
r(ε̄r) :: Cr

ε , where N r(ε) = ∂3wr

∂ε3
(ε) and

Cr
ε = 〈(ε− ε̄r)⊗ (ε− ε̄r)〉r.

It is worth noting that the main difference between the LS and AFF-ANI approaches lies in the
polarization tensor τ r, which in the case of the LS formulation, explicitly takes into account the
strain field fluctuations and generates a ”softer” LCC material (at least in the case of power-law
materials). For both formulations, the tensor of elastic moduli Lr is defined in the same way.

3. Local fields evaluation

3.1. General definitions of the local field statistics

In this part we give general expressions of quantities useful for the evaluation of the per-phase
averages of the strain field and its fluctuations both in the reference medium (i.e. the nonlinear
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composite) and in the various LCCs (elastic or thermoelastic). Similar expressions related to the
stress field are reported in Appendix A. The so-called inter-phase heterogeneity of the stress
and strain fields are characterized by their first-order moments ε̄r and σ̄r. In order to analyze
the intra-phase fluctuations of the local field, it is appropriate to identify two ”components” of
the deviatoric strain (respectively stress) which represent its projection ”parallel” ε‖ (respectively
σ‖) and ”perpendicular” ε⊥ (respectively σ⊥) to the deviatoric per phase average of the strain ε̄rd,
which in the present situation, as it will be shown in section 3.3, is proportional to the macroscopic
deviatoric strain ε̄d. These components can be derived through the following relations

ε2‖ =
2

3
E :: ε⊗ ε, ε2⊥ =

2

3
F :: ε⊗ ε, σ2

‖ =
3

2
E :: σ ⊗ σ, σ2

⊥ =
3

2
F :: σ ⊗ σ,

where E = 2
3 ê⊗ ê, F = K − E, ê = ε̄d

ε̄eq
=

ε̄r
d

ε̄req
.

(13)

The fourth order tensor E and F are the classical projectors defined as previously, based on
the overall load [35] and related to the directions parallel and perpendicular to the overall load,
respectively. Note that the parallel and perpendicular components of the local fields satisfy the
relations: ε2eq = ε2‖ + ε2⊥ and σ2

eq = σ2
‖ + σ2

⊥. Furthermore, one has ε‖(x) = |2ê : ε(x)/3|.
Based on the parallel and perpendicular components of the fields introduced in (13), we define
three different measures of the fluctuations of the local strain field over the phase by

δr‖(ε) =

√

2

3
E :: Cr

ε , δr⊥(ε) =

√

2

3
F :: Cr

ε , δreq(ε) =

√

2

3
K :: Cr

ε =
√

(δr‖(ε))
2 + (δr⊥(ε))

2, (14)

where Cr
ε = 〈ε⊗ ε〉r − 〈ε〉r ⊗ 〈ε〉r is the phase covariance strain tensor. In the sequel, δr‖(ε), δ

r
⊥(ε)

and δreq(ε) will be referred to as the parallel, perpendicular and isotropic (or equivalent) Measures of
the Intraphase Strain Fluctuations (MISF) over the phase r, respectively. Their stress counterparts
are defined in Appendix A.1.

To fully characterize the fluctuations of the strain field, it is necessary not only to compute its
phase covariance tensors Cr

ε but also the spatial distributions of its fluctuations. We restrain
the present study to the evaluation of the parallel δr‖(ε(x)), perpendicular δr⊥(ε(x)) and isotropic

δreq(ε(x)) fluctuations of the strain fields defined by means of the trace of the strain local covariance
tensor Cr

ε (x) = (ε(x)− ε̄r) ⊗ (ε(x)− ε̄r) with respect to the fourth-order projector E, F and K,
respectively, as follows

δr‖(ε(x)) =

√

2

3
E :: Cr

ε (x), δr⊥(ε(x)) = ε⊥(x) =

√

2

3
F :: Cr

ε (x),

δreq(ε(x)) =

√

2

3
K :: Cr

ε (x) =

√

(

δr‖(ε(x))
)2

+
(

δr⊥(ε(x))
)2
.

(15)

The measures of the strain fluctuations defined in (14) are the second-order moments of their local

counterpart (15) - namely δr‖(ε) =

√

〈

(

δr‖(ε(x))
)2

〉r

. However, it is worth noting that they are

not the standard deviations of the strain components ε‖(x), ε⊥(x), εeq(x) introduced in (13) except

for the parallel measure δr‖(ε) for which we have δr‖(ε) =

√

〈

(

ε‖
)2
〉r

−
(〈

ε‖
〉r)2

.

In addition to the computation of the spatial distribution of the local strain field fluctuations
δr‖(ε(x)), δ

r
⊥(ε(x)) and δreq(ε(x)), we also determine their probability density functions. The com-

putations are carried out by means of a procedure described in Appendix B which allows one to
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smooth a probability density function when the numbers of available values in the classes are not
so high.

To supplement these investigations of the fluctuations of these local kinematic and static quantities,
classically considered in the context of nonlinear homogenization, we focus also our attention on an
energetic quantity, namely the local density of the incremental work σ : dε due to a change of overall
load from ε̄ to ε̄+ dε̄. By Hill-Mandel’s macrohomogeneity principle, one has σ̄ : dε̄ =< σ : dε >.
The spatial distribution of this quantity is the signature of the local contributions of the medium
to the overall work, for the considered loading history, and the statistical characterization of its
fluctuations is another micromechanical signature of the way a material reacts to an overall load.
The ability of a nonlinear homogenization scheme to accurately predict such an information is an
important factor of its overall performance. Note that in the present case of nonlinear elasticity,
without dissipation, this quantity also reads σ : dε = ∂w

∂ε
: dε = dw(ε). It is however numerically

easier to compute it from the local stress and strain fields. In practice, it is evaluated for finite but
small loading increments and is averaged over each element e of the finite element mesh according
to

∆we =< σ(i) : ε(i+1) >
e − < σ(i) : ε(i) >

e, (16)

where subscripts (i) and (i+1) refer to two successive loading steps - the averages over the elements
are carried out through the procedure INTG of the FE software Cast3M used in this study [11].
As loading increments are small and identical in the nonlinear solution and the solutions based on
the tested nonlinear homogenization procedures, this approximation is sufficient.

3.2. The nonlinear periodic composite

In order to avoid large numerical costs and the computational difficulties mentioned in introduction
when solving computational homogenization problems associated with complex microstructures,
we consider as a first illustration of the proposed methodology a two-phase composite with a
simple periodic microstructure. The periodic composite is made of identical isotropic linear elastic
spherical inclusions embedded in a nonlinear isotropic matrix. The matrix is assumed to obey a
Ramberg-Osgood equation defined by

εm =
σm
3km

and εeq =
σeq
3µm

e

+ ε0

(

σeq
σ0

)n

, (17)

where km and µm
e are respectively the bulk and shear modulus of the elastic part of the matrix

constitutive law. Both moduli are chosen to be finite in order to avoid numerical difficulties related
to infinite tangent or secant modulus at ε = 0 and to material incompressibility. Besides, m = 1/n
is the strain-hardening parameter (n is the nonlinearity exponent) such that 0 ≤ m ≤ 1, ε0 is an
auxiliary strain, σ0 is the flow stress. The constitutive relation σeq = f r(εeq) is obtained by means
of a numerical inversion procedure.
Matrix and inclusion are assumed to be perfectly bonded, thus ensuring the continuity of the dis-
placement and the stress vectors at the inclusion/matrix interface. Note that such type of composite
enables to study the case of a rigidly reinforced or porous material by assigning to the bulk kp and
shear µp moduli of the inclusion numerical values close to infinity or zero, respectively.
The spherical inclusions are distributed according to a hexagonal network in the transverse plane
and are aligned along the third direction, such that a cylinder with a hexagonal basis with a sin-
gle spherical inclusion located at the cylinder’s center can be used as unit cell. The macroscopic
loading conditions that will be considered are axial symmetric along the third direction. In a first
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and classical approximation [37], this hexagonal cell can be replaced by a cylinder with a circular
basis, and the periodic boundary conditions (BC) replaced by symmetry conditions, making the
whole unit cell problem fully invariant with respect to any rotation along this direction. This 3D
homogenization problem then reduces to a 2D axial symmetrical problem which can be solved at
a particularly low numerical cost. The unit cell being in addition symmetric with respect to the
transverse plane, only one fourth of the cross section of the cylinder needs to be meshed. Symme-
try conditions are prescribed on the transverse plane and along the symmetry axis. Homogeneous
longitudinal (resp. radial) displacements are imposed on the upper (resp. lateral) face to ensure
(quasi-)periodic BC - see Eq. (14) in [39] for a detailed expression of the BC. With such a simplifi-
cation of the boundary conditions, the considered nonlinear FE solution will no longer provide the
exact fields in the periodic composite. However the corresponding approximations are likely to be
small. Most importantly, it should be emphasized that exactly the same approximation is used in
the nonlinear solution and in the LCC, so that the only difference between both calculations is the
substitution of the exact local nonlinear constitutive relation by the linearized, per-phase uniform,
approximate relation defined by the considered linearisation scheme. For this reason, the nonlinear
solutions will be sometimes referred to in the following as the ”exact” result (with quotation marks).
Indeed it does not provide the exact fields in the nonlinear periodic composite, but gives the local
fields in the axisymmetric unit cell associated with the exact nonlinear local constitutive relation,
which serve as references to the approximate fields in the same cell under the same conditions but
associated with linearized local constitutive relations.
In the ensuing calculations, the unit cell is submitted to a monotonic uniaxial purely deviatoric
extension along the symmetry axis, such that the overall strain is ε̄ = ε̄eq ê where ê is reduced here
to the axisymmetric tensor e3 ⊗ e3 − 1

2(e1 ⊗ e1 + e2 ⊗ e2).

3.3. Computations of the field statistics

Hereafter, we address more technical issues relative to the computation of the reference exact field
statistics in the nonlinear composite (§3.3.1) and the predicted ones in the elastic or thermoelastic
LCC (§3.3.2) derived by the various considered linearization schemes.
Let us before recall that, because of the rotational invariance along the third axis of all the data
of the nonlinear problem (cell geometry, isotropic nonlinear local constitutive laws, macroscopic
imposed strain), all quantities derived from these data will exhibit the same invariance. More
specifically:

• The deviatoric strain average over the phase r reads ε̄rd = K : ε̄r = ε̄req ê ; therefore

êr =
ε̄rd
ε̄req

= ê, Er = E =
2

3
ê⊗ ê, F r = F = K − E.

• Second-order tensors, such as the overall stress and per phase averages of stress and strain,
admit the decomposition

c = cmi+ cdê.

where cm and cd are (positive or negative) scalars. If c is a strain, |cd| = ceq while |cd| = 2
3ceq

if c is a stress.

• Symmetric second-order tensor fields (such as local stress and strain fields) are axisymmetric

c(x) = crr(r, z)er ⊗ er + crz(r, z)(er ⊗ ez + ez ⊗ er) + czz(r, z)ez ⊗ ez + cθθ(r, z)eθ ⊗ eθ.
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• Fourth-order tensors, such as the aforementioned covariance tensors, are transversely isotropic
and admit the decomposition

H = αEL + βJT + γF 0 + γ′ TF 0 + δKT + δ′KL (18)

The adopted notation is that of Bornert and Suquet [7], which is derived from the decom-
position of transversely isotropic tensors introduced by Walpole [44]. The definition of the
tensors EL, JT , F

0, KT and KL, is recalled in Appendix C.

Such decompositions and the associated invariance properties are valid for both the nonlinear
problem and the quantities associated with the LCC. In particular, the tensors of moduli of the
phases admit decomposition (18), with γ = γ′.

3.3.1. ”Exact” results

The FE code Cast3M has been used for the determination of the local fields. An appropriate
iterative procedure is used to resolve the nonlinear problem. After convergence at the imposed
macroscopic strain ε̄, the hydrostatic ε̄rm and equivalent strains ε̄req are given by

ε̄rm =
1

3
〈εrr + εθθ + εzz〉r , ε̄req =

2

3
< ε : ê >r . (19)

Moreover, parallel, perpendicular and equivalent Measures of Intraphase Strain Fluctuations (MISF)
read

δr‖(ε) =

√

√

√

√

4

9

〈

(

εzz −
εrr + εθθ

2

)2
〉r

− (ε̄req)
2 ,

δr⊥(ε) =

√

√

√

√

〈

ε2eq
〉r − 4

9

〈

(

εzz −
εrr + εθθ

2

)2
〉r

,

δreq(ε) =
√

〈

ε2eq
〉r − (ε̄req)

2. (20)

To get all the desired quantities to characterize the inter- and intra-phase heterogeneity of the
strain field, one has thus to integrate over each phase domain functions of the four scalars εzz,
(εrr + εθθ), εeq and (ε : ê). Similar relations hold for the stress field.
Lastly, the incremental work density δwe per mesh element e reads

δwe = < (σzz)(i) :
(

(εzz)(i+1) − (εzz)(i)
)

>e + < (σrr)(i) :
(

(εrr)(i+1) − (εrr)(i)
)

>e

+ < (σθθ)(i) :
(

(εθθ)(i+1) − (εθθ)(i)
)

>e +2 < (σrz)(i) :
(

(εrz)(i+1) − (εrz)(i)
)

>e .
(21)

In the following numerical simulations, note that the loading strain increment between steps i and
i+ 1 is always equal to 2.5% of the final macroscopic strain which was set equal to ε̄eq = 4%.

3.3.2. Local fields evaluated in the elastic and thermoelastic LCC

For the considered problem, the polarization tensor τ r is axisymmetric and exclusively deviatoric
(τ rm = 0). Therefore it can be given the form τ r = 2

3τ
r
eq ê. Accordingly the tensor B is axisymmetric

and purely deviatoric B = Beq ê. Moreover, as the applied macroscopic strain is axisymmetric:
ε̄ = ε̄mi + ε̄eq ê, the tensor C is axisymmetric and reads C = Cmi + Ceq ê where Cm = ε̄m and
Ceq = ε̄eq+Beq. Note that Ceq, Beq and ε̄eq are the algebraic scalars describing the deviatoric parts
of the second order tensors C, B and ε̄.
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Substituting such a decomposition in equation (9), the local strain field induced by this loading in
a thermoelastic LCC can be written in the form

ε(x) = Cmεi(x) + Ceqε
ê(x)−Beq ê . (22)

It is then a superposition of two independent local strains εi(x) = A(x) : i and εê(x) = A(x) : ê
induced in an elastic LCC by the specific axisymmetric loadings ε̄ = i and ε̄ = ê, respectively.
Accordingly, it is necessary to solve independently two elastic problems related to the elastic LCC
submitted to the loadings i and ê, respectively, in order to get access to their response in terms of
the strain fields εi(x) and εê(x). This will allow to assess field statistics (first-order moment and
measures of the strain fluctuations) in the elastic and thermoelastic LCCs. It is noted that strain
field statistics in the elastic LCC are deduced from that in the thermoelastic LCC by replacing Ceq

by ε̄eq as the tensor B is zero in the elastic LCC. In the following we give expressions of J :: Cr
ε ,

E :: Cr
ε and I :: Cr

ε useful to compute the field statistics in the thermoelastic LCC (Eq. (14)), the
traces K :: Cr

ε and F :: Cr
ε being obtained by means of K = I − J and F = K −E. To this end we

define a fourth-order tensor ξr and a second-order tensor Ar so that

J :: Cr
ε = tV







ξriIIi − (Ar
iI)

2 ξriIEi − (Ar
iIA

r
iE)

ξriEIi − (Ar
iEA

r
iI) ξriEEi − (Ar

iE)
2






V, (23)

E :: Cr
ε = tV







ξreIIe − (Ar
eI)

2 ξreIEe − (Ar
eIA

r
eE)

ξreEIe − (Ar
eEA

r
eI) ξreEEe − (Ar

eE)
2






V, (24)

I :: Cr
ε = tV









ξr.II. −
(

(Ar
iI)

2 + (Ar
eI)

2
)

ξr.IE. − (Ar
iIA

r
iE +Ar

eIA
r
eE)

ξr.EI. − (Ar
iEA

r
iI +Ar

eEA
r
eI) ξr.EE. −

(

(Ar
iE)

2 + (Ar
eE)

2
)









V, (25)

where the vector V is given by V =t
(

Cm , Ceq

)

and the components of the second-order tensor
Ar by Ar

aα =< ea : εα >r= ea :< εα >r where

ea =

{
√

1/3 i if a = i,
√

2/3 ê if a = e,
and εα =

{

εi if α = I,
εê if α = E.

The second-order tensor Ar
aα defines the localization of the strain field in the space generated by

the orthonormal basis {ea, a ∈ {i, e}} and is not symmetric. The components of the fourth-order
tensor ξr read ξraαβb =

〈

(ea : εα)(εβ : eb)
〉r

= (ea ⊗ eb) ::< εα ⊗ εβ >r where a, b ∈ {i, e} and
α, β ∈ {I, E}. This tensor admits the following symmetry ξraαβb = ξrbβαa and characterizes the
second-order moments of strain fields induced by the two different loadings i and ê. The quantities
ξr.αβ. are defined by ξr.αβ. =

〈

(εα : εβ)
〉r
. The point in ξr.αβ. can be interpreted as an implicit

summation over the subscript a - i.e., ξr.αβ. =
∑

a

〈

(ea : εα)(εβ : ea)
〉r

- when the orthonormal basis

{ea, a ∈ {i, e}} = {ei, ee} is enlarged to {ei, ee, ef , eg} with ef = (er ⊗ er − eθ ⊗ eθ)/
√
2 and

eg = (er ⊗ ez + ez ⊗ er)/
√
2. The enlarged orthonormal basis spans the space of symmetrical

second-order tensor fields satisfying rotational invariance along ez. It is worth noting that Beq does
not appear in the expressions of J :: Cr

ε , E :: Cr
ε and I :: Cr

ε . Again these integrations can be
performed by the object-oriented operators of CAST3M.
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Lastly, the incremental work density ∆we in the thermoelastic LCC, from load increment ε̄ to ε̄+△ε̄
associated with the states (i) and (i+1), respectively, is evaluated numerically by means of Eq.
(16) where ε(i+1)(x) and σ(i)(x) are given by ε(i+1)(x) = (Cm)(i+1)ε

i
(i+1)(x) + (Ceq)(i+1)ε

ê
(i+1)(x)−

(Beq)(i+1)ê and σ(i)(x) = (Cm)(i)σ
i
(i)(x)+(Ceq)(i)σ

ê
(i)(x)− 2

3(Deq)(i)ê, respectively (see Eqs. (22) and

(A.4)). The incremental work density in the elastic LCC is deduced from that in the corresponding
thermoelastic LCC by substituting the terms Beq and τ req by 0.

4. Illustrative example using the classical affine linearization scheme: case of a porous

medium

To bear out the relevance of the proposed methodology in terms of prediction of the local field
statistics stemming from linearization methods we propose in this section to focus on the assessment
of a particular linearization method: the AFF-ANI scheme.
The predictions of the affine linearization for the local equivalent strain εeq(x), the parallel ε‖(x)−ε̄meq
and perpendicular ε⊥(x) strain field fluctuations normalized by the macroscopic equivalent strain
ε̄eq are compared with the ”exact” results derived from the numerical simulation of the periodic cell
with a pore volume fraction of 25% and a low work-hardening exponent m = 0.15 implying a high
nonlinearity for the matrix of the considered porous media subjected to a pure deviatoric extension.
At this point, it should be noted that numerical investigations carried out for different values of
ε̄eq and m have shown that the applied strain ε̄eq = 0.04 is representative of all range of possible
macroscopic strains for the nonlinear part of the composite behavior, even for low work-hardening
exponent. The maps illustrating the spatial distributions of the local considered fields for the exact
and AFF-ANI estimations are reported in Fig. 1. The probability density functions quantifying the
distributions of these fields in the matrix phase are plotted in the same figure. It is worth noting
the complementary between the maps and density functions to interpret the local field statistics.
In particular colormaps in the strain maps have been chosen to emphasize the spatial distributions
and may not be the same for the exact and AFF-ANI results. Distribution functions plotted on
the same graphs help to compare both field fluctuations. The evolutions of the equivalent average
strain ε̄meq, the measures of parallel δm‖ (ε) and perpendicular δm⊥ (ε) intraphase strain fluctuations

(MISF) over the matrix for different work-hardening exponents m and pore volume fractions fp

are plotted in Fig. 2a and 2b, respectively, in order to study the effect of these parameters on the
accuracy of the affine homogenization model for power-law porous media. In the sequel, the exact
solution of the nonlinear composite is referred to as NL. Similar maps, probability density functions
and evolutions are reported in Fig. 3 and 4 for the stress field in the same porous medium.

These investigations demonstrate that the affine linearization scheme predicts well the zones of
strong localization of the local equivalent strain located both at the corners of the unit cell and
at the boundary of the pore. The distributions of the parallel and perpendicular fluctuations of
the AFF-ANI strain field are in satisfactory agreement with the exact (NL) solution. However,
these quantities are overestimated by this model at the localization regions, namely a conical
region tangent to the pore for the parallel strain fluctuations and the matrix/pore interface for the
perpendicular strain fluctuations.

The evolutions of the normalized matrix parallel and perpendicular MISFs with respect to the
work-hardening exponent show that the AFF-ANI scheme overestimates the strain fluctuations
especially for strong and moderate non-linearities (0 ≤ m ≤ 0.4). This is in agreement with the
fact that the AFF-ANI model overestimates the fluctuations of the strain field in zones of strong
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localization (Fig. 2). However, it is noted that for the same range of work-hardening exponents,
this model slightly underestimates the equivalent average strain in the matrix.
The evolutions of ε̄meq, δ

m
‖ (ε), δm⊥ (ε) and δmeq(ε) as functions of the pore volume fraction show similar

trends as those observed for strong and moderate nonlinearities. However, it is observed on Fig.
2b that the parallel MISF curves cross each others at fp ≃ 0.57 thus showing that the AFF-ANI
procedure fails to reproduce qualitatively their evolution near the percolation limit. This is prob-
ably due to the fact that the AFF-ANI approach does not incorporate the strain field fluctuations
which become significant near the percolation limit.
For the stress field statistics, it is noted that the AFF-ANI procedure significantly overestimates
the local equivalent stress in both the diffuse and localization regions in the matrix of the porous
medium. On the other hand, it generally underestimates the parallel stress field fluctuations in
both the diffuse area and the conical localization region. This result is confirmed by the probability
density function which is globally shifted towards the left, and exhibits a much shorter tail. More-
over, it can be observed that AFF-ANI provides reasonably good estimates for the perpendicular
stress fluctuations in the diffuse zone, with a slight overvaluation, while it overestimates this field
more significantly in the localization region situated at the boundary of the pore.

These tendencies observed for a particular choice of m and fp turn out to be rather general. Indeed
the results related to the evolution of the equivalent average stress with respect to the work-
hardening exponent show that AFF-ANI overestimates the reference equivalent average stress in
the matrix for any nonlinearity. For the Measures of the Intraphase StresS Fluctuations (MISSF)
over the matrix, it is also observed that AFF-ANI yields notably larger estimates than the reference
δm⊥ (σ) for high nonlinearities while it slightly underestimates the reference δm‖ (σ). Accordingly,

AFF-ANI overestimates δmeq(σ) for large nonlinearity. Note in addition that these trends hold for
any pore volume fraction and that the differences between the AFF-ANI estimates and the ”exact”
solution for δm⊥ (σ) and the variance of the stress field become important for fp ≥ 50% (i.e. near
the percolation threshold) as the AFF-ANI model fails to reproduce qualitatively the trend of the
reference evolutions for high range of pore volume fractions. At last, the AFF-ANI scheme provides
a fair estimation of the incremental work density which, as mentioned in section 3.1, presents the
advantage of combining the whole local tensorial stress and strain components without favoring
any direction.

5. Specificities arising from the comparison of linearization scheme predictions at the

local level

As shown above for the particular case of the AFF-ANI scheme, it is possible to extend the proposed
methodology to all linearization schemes based on the conjecture that local fields and their statistics
up to second-order in the defined LCC constitute reasonable approximations for the corresponding
nonlinear quantities. Hence, by means of the proposed systematic methodology, the evaluation and
the comparison at the local scale of the various linearization procedures considered in this study
(SEC, VAR, AFF-ANI, AFF-ISOT and LS) were performed in an exhaustive way, thus allowing to
explore some common points and some specificities related to their performances or limits in terms
of assessing the local field fluctuations of porous media and reinforced composites under isochoric
extension. As there are numerous results relative to each of the considered linearization methods
[38], we report below only on the most salient features.
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Figure 1: Porous material under pure deviatoric extension (ε̄eq = 0.04): Maps (a, b) and probability densities (c)
of the equivalent strain εeq(x) (i), parallel δr‖(ε(x)) (ii) and perpendicular δr⊥(ε(x)) (iii) local measures of intraphase
strain fluctuations in the matrix (work-hardening parameter m = 0.15 and pore concentration fp = 0.25) of both
the nonlinear composite (a) and the LCC defined by the AFF-ANI (b) scheme. The results are normalized by the
equivalent macroscopic strain ε̄eq.
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Figure 2: Porous material under pure deviatoric extension (ε̄eq = 0.04): variation of the matrix ε̄meq strain average, of
the isotropic δmeq(ε), parallel δ

m

‖ (ε) and perpendicular δm⊥(ε) Measures of Intraphase Strain Fluctuations in the matrix
as functions of the work-hardening parameter m (volume pore fraction fp = 0.3) (a) and the pore concentration fp

(work-hardening parameter m = 0.2) (b). The results are normalized by the equivalent macroscopic strain ε̄eq. Solid
curves (without symbols) are relative to NL; curves with symbols are related to AFF-ANI.

5.1. Porous media

• Although the AFF-ANI scheme reproduces qualitatively well the probability densities of the
local fields in the matrix, it over-estimates the average of the stress over this phase (see Fig. 4)
and hence the global response of the porous media as shown on Fig. 6a in [39]. In contrast,
the LS procedure estimates well both the local fields (see Fig. 7b-i, 7b-ii, 8b-i, 8b-ii) and
the global response [39]. This improved performance is due to the additional term in the
polarization field, which does not significantly modify local strains but strongly shifts local
and global stresses.

• In the case of porous media submitted to isochoric extension (i.e. a purely deviatoric loading),
it is noted that linearization methods defining anisotropic phases for the LCC estimate the
heterogeneity of the local fields better than those leading to an isotropic LCC. Indeed, for the
local parallel stress fluctuations, isotropic linearizations (SEC, VAR and AFF-ISOT) predict
additional localization regions - the green zones on Fig. 7c-i, 7d-i and 7e-i at the corners of
the periodic cell - by comparison to the reference map. This explains why the probability
density functions provided by isotropic linearizations are flat in opposition to the reference
function and also the LS (Fig. 7b-ii) and AFF-ANI (Fig. 3c-ii) anisotropic linearization
schemes which all exhibit a main narrow peak and a long tail. Moreover, the isotropic models
highly underestimate the perpendicular stress fluctuations (see Fig. 8) at the diffuse zone in
the matrix and hence yield to distribution functions with a peak shifted to the left in contrast
to the ”exact” results and the anisotropic schemes.
The evolutions of the parallel δm‖ (σ) and perpendicular δm⊥ (σ) measures of the intraphase

stress fluctuations as functions of the parameters m and fp (Fig. 5 and 6) prove again the
relevance of anisotropic linearizations compared to isotropic ones. Indeed, the latter overes-
timate (resp. underestimate) the parallel (resp. perpendicular) measures of the intraphase
stress fluctuations for all tested values of porosity and nonlinearity exponent. Moreover,
we note some convergence problems of the fixed-point iterative scheme for the AFF-ISOT
approach.
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Figure 3: Porous material under pure deviatoric extension (ε̄eq = 0.04): Maps (a,b) and probability densities (c)
of the equivalent stress σeq(x) (i), parallel δr‖(σ(x)) (ii) and perpendicular δr⊥(σ(x)) (iii) local measures of stress
intraphase fluctuations in the matrix (work-hardening parameter m = 0.15 and pore concentration fp = 0.25) of both
the nonlinear composite (a) and the LCC defined by the AFF-ANI scheme (b). The results are normalized by σm

0 .
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Figure 4: Porous material under pure deviatoric extension (ε̄eq = 0.04): variation of the matrix σ̄m

eq stress average, of
the isotropic δmeq(σ), parallel δ

m

‖ (σ) and perpendicular δm⊥(σ) Measures of Intraphase StreS Fluctuations as functions of
the work-hardening parameter m (volume pore fraction fp = 0.3) (a) and the pore concentration fp (work-hardening
parameter m = 0.2) (b). The results are normalized by σm

0 . Solid curves (without symbols) are relative to NL; curves
with symbols are related to AFF-ANI. Probability density of the elementary work in the matrix (volume pore fraction
fp = 0.25 and work-hardening parameter m = 0.15) (c).

• Although it has been known for a long time that the VAR procedure provides better estimates
than SEC at the global level [7, 39, 42] as it incorporates the intraphase strain fluctuations
through a reference strain equal to the second-order moment of the strain, it is noted here
(Fig. 5 and 6) that both the VAR and SEC estimates for field fluctuations are almost
superimposed for porous media submitted to a purely deviatoric extension. Appendix D
provides an analytical proof of this result.

5.2. Rigidly reinforced composite

For the sake of brevity, only general features are reported here, without illustrations. More details
can be found in [38].

• All models show a good ability to reproduce qualitatively (but often not quantitatively)
the localization regions of the spacial distribution of the local fields, especially at the parti-
cle/matrix interface. Generally, the distribution functions only show one pronounced peak
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Figure 5: Porous material under isochoric extension: variation of the parallel δm‖ (σ) (a) and perpendicular δm⊥(σ)
(b) measures of intraphase stress fluctuations over the matrix as functions of the work-hardening parameter m for
different linearization schemes. The results are normalized by σm
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Figure 6: Porous material under isochoric extension: variation of the parallel δm‖ (σ) (a) and perpendicular δm⊥(σ)
(b) measures of intraphase stress fluctuations over the matrix as functions of the pore concentration fp for different
linearization schemes. The results are normalized by σm

0 . Matrix work-hardening parameter m = 0.15.

centered on the mean value of the estimated variable. Some times, they show a second less
pronounced peak associated to a mean value in some diffuse zone. Finally, they exhibit a tail
spread out towards the right demonstrating a strong localization of the studied variable in a
few number of finite elements constituting the matrix mesh and located in the localization
cone [38].

• Local strain fields resulting from linearization methods defining isotropic phases for the LCC
as SEC, VAR and AFF-ISOT are identical. A proof of this result is given in Appendix D.
Fig. 11a in [39] and Fig. 3.46 in [38] provide illustrations of this result.

• Similarly, the local strain fields resulting from tangent linearizations such as LS and AFF-ANI
are identical in the matrix. Appendix E provides an analytical proof of this result and again
illustrations can be found in [39] (see Fig. 11a) and [38] (Fig. 3.46).

• For the matrix, it is observed that the AFF-ISOT scheme highly underestimates local fluctu-
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Figure 7: Porous material under isochoric extension (work-hardening parameter m = 0.15 and pore concentration
fp = 0.25): maps and probability densities of the parallel local measures of intraphase stress fluctuations in the matrix
of both the nonlinear composite (a) and the LCCs defined by the anisotropic LS (b) and isotropic AFF-ISOT (c),
SEC (d) and VAR (e) approaches.
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Figure 8: Porous material under isochoric extension (work-hardening parameter m = 0.15 and pore concentration
fp = 0.25): maps and probability densities of the perpendicular local measures of stress intraphase fluctuations in the
matrix of both the nonlinear composite (a) and the LCCs defined by the anisotropic LS (b) and isotropic AFF-ISOT
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ations of the stress field in the perpendicular direction σ⊥(x) and the measures of the perpen-
dicular intraphase stress fluctuations σm

⊥ over the matrix (Fig. 3.35b and 3.45c in [38]). This
can be explained by the fact that this model is based on an empirical isotropic simplification
of the original version of this model as it substitutes the secant shear modulus µsct(ε̄

m
eq) by the

tangent one µtgt(ε̄
m
eq) in the perpendicular direction and that µtgt(ε̄

m
eq) << µsct(ε̄

m
eq). Accord-

ingly it does not rest on rigorous physical arguments. On the other hand, it is worth noting
that VAR scheme which also relies on an isotropic linearization, gives good estimates for the
evolutions of the measures of the perpendicular intraphase stress fluctuations in the matrix
as function of the work-hardening parameter m (again Fig. 3.45c in [38]) but overestimates
the parallel fluctuations (Fig. 3.45b in [38]).

6. Conclusion and perspectives

In this work, we have developed a methodology for a systematic and accurate evaluation of the
ability of a large class of nonlinear homogenization schemes to characterize local field fluctuations
up to second order. In order to illustrate the relevance of this methodology, the local solution
resulting from the special case of the AFF-ANI model was treated in an exhaustive way and was
compared with the reference local solution. Further, field statistics in a rigidly reinforced composite
and a porous material were also evaluated exhaustively for all models. However, due the significant
number of results, only main features of the comparative analysis are reported in this paper.
Though the conclusions resulting from this comparative analysis are not general since they depend
on the type of material - here reinforced composite or porous material - on the type of the loading
- axially symmetric loading without spherical part - and of the microstructure, the methodology
is rather general and could be applied to other situations. For a porous material, it is shown that
LS and AFF-ANI schemes are the models providing the best estimates for the local fields. Other
above-mentioned conclusions are specific to the case of a reinforced composite.
The proposed evaluation is limited by the fact that the stress and strain fields used to evaluate
the effective behaviour have to correspond to those inside the LCC which is not always the case as
for instance with the second-order methods. For this reason, the second-order procedures, which
are known to provide the best estimates of both the effective behavior and the statistics of the
local fields in most available results, e.g. [16, 17, 18, 38], have not been evaluated at the local
scale in this work. However the presented methodology can be partially extended (at least for
the first and second-order moments of the local fields) to homogenization schemes not satisfying
the aforementioned conditions by adding appropriate corrective terms to the first and second-order
moment of the local fields as given by Idiart et al. [15, 17, 18].
Accordingly, new insight about the efficiency of the nonlinear homogenization techniques can be
expected by applying this methodology to other more sophisticated and more recent models such
as for the third variant of the second-order method and to other types of periodic materials with
a unit cell composed of a larger number of inclusions and/or submitted to other types of loadings.
Corresponding analysis are left for further investigations.
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Appendix A. Expressions of the stress field statistics

Appendix A.1. Definitions

Similarly to the strain fluctuations, the parallel δr‖(σ(x)), perpendicular δr⊥(σ(x)) and isotropic

δreq(σ(x)) local fluctuations of the stress fields are defined by

δr‖(σ(x)) =

√

3

2
E :: Cr

σ(x), δr⊥(σ(x)) = σ⊥(x) =

√

3

2
F :: Cr

σ(x),

δreq(σ(x)) =

√

3

2
K :: Cr

σ(x) =

√

(

δr‖(σ(x))
)2

+
(

δr⊥(σ(x))
)2
,

(A.1)

where Cr
σ(x) = (σ(x)− σ̄r)⊗ (σ(x)− σ̄r) is the local stress covariance. Likewise, the parallel δr‖(σ),

perpendicular δr⊥(σ) and isotropic δreq(σ) Measures of StresS Fluctuations (MISSF) over the phase
r are defined by

δr‖(σ) =

√

3

2
E :: Cr

σ, δr⊥(σ) =

√

3

2
F :: Cr

σ,

δreq(σ) =
√

3
2K :: Cr

σ =
√

(δr‖(σ))
2 + (δr⊥(σ))

2,
with Cr

σ =< Cr
σ(.) >

r . (A.2)

Appendix A.2. Specializations to field statistics in elastic and thermoelastic LCCs

Substituting the thermoelastic strain field by its expression (22) in the constitutive law (11) provides
the stress field in the thermoelastic LCC

σ(x) = Cmσi(x) + Ceqσ
ê(x) + 2

3τ
r
eq ê−Beq(L

r : ê), (A.3)

where σi(x) = Lr : εi(x) and σê(x) = Lr : εê(x) are the local stresses induced by the macroscopic
strains ε̄ = i and ê, respectively, inside each phase r of the elastic LCC of moduli Lr. Furthermore,
for all the linearization schemes considered in this paper, the elastic moduli can be written as
Lr = 3krJ + 2λrE + 2µrF since Er = E and F r = F due to rotational invariance of the problem
(see section 3.3). Therefore Eq. (A.3) can be rewritten as

σ(x) = Cmσi(x) + Ceqσ
ê(x)− 2

3Deq ê, (A.4)

where Deq = 3λrBeq − τ req, Cm = ε̄m, Ceq = ε̄eq +Beq and B is defined by (10a).
Similarly to the strain statistics, Eq.(A.4) will allow to assess the stress statistics (first-order mo-
ment and measures of intraphase stress fluctuations) in the elastic (Ceq = ε̄eq, Deq = 0) and ther-
moelastic LCCs. Straightforward calculation to derive the quantities J :: Cr

σ, E :: Cr
σ and I :: Cr

σ

useful to compute the MISSF in the thermoelastic LCC leads to the same formulae (23, 24, 25)
obtained for the strains. However, for the stress statistics, the second-order Ar and fourth-order ξr

tensors used in Eqs. (23), (24) and (25) are now defined by

Ar
aα =< ea : σα >r,

ξraαβb =
〈

(ea : σα)(σβ : eb)
〉r

,
where σα(x) =

{

σi(x) if α = I,
σê(x) if α = E.

(A.5)

The orthonormal basis {ea} has been given in section 3.3.2. Note that Deq does not appear in the
expression of J :: Cr

σ, E :: Cr
σ and I :: Cr

σ .
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Appendix B. Construction of a probability density function from a limited number

of samples

Probability density functions of local quantities as those considered in this work (incremental work
density, von Mises equivalent strain or stress, local measures of intraphase field fluctuations) have
to be constructed from a limited number of samples with corresponding statistical weights. In
practice, these values are the averages vi of the considered quantity over each finite element i of the
mesh of the unit cell, and the weights wi are the volumes of the elements. Here i varies from 1 to
N , the number of elements, which is usually small. A standard way to construct a density function
is to differentiate the cumulative distribution function, which is easily obtained by ordering the
series into vi(j), j ∈ [1, N ], vi(j+1) > vi(j) and summing the corresponding weights divided by the
total weight. But such a procedure may generate a very noisy distribution function, because of
the discrete nature of the data and the limited number of samples. An alternative way consists
in constructing an histogram with a fixed class width. This width has to be chosen sufficiently
large in order again to avoid to generate noisy results for values at low density, at the price of
a loss of accuracy in areas with a high density. Probability density functions presented in this
paper have been obtained with an original procedure, able to preserve a good description of the
function near values where the function is high and smoothing it sufficiently in areas with a limited
number of samples. It consists in considering M classes of variable width, delimited by values vI(J),
J ∈ [1,M ], with VI(1) = vi(1), VI(M) = vi(N). The classes are required to be as narrow as possible
and such that either (vI(J+1) − vI(J)) > x(vI(M) − vI(1)) or (wI(J+1) − wI(J) > y((wI(M) − wI(1))
for each class J , where x and y denote percentages, set in our case, after adjustments, to 4 % and
7 %, respectively.

Appendix C. Walpole decomposition for transversely isotropic fourth-order tensors

Any transversely isotropic fourth-order tensor C can be written in the form of equation (18) where
the fourth-order tensors EL, JT , F

0, tF 0, KT and KL, introduced by Walpole [44], are defined by

EL = e3 ⊗ e3 ⊗ e3 ⊗ e3, JT =
1

2
iT ⊗ iT , F 0 =

1√
2
iT ⊗ e3 ⊗ e3,

KT = IT − JT , KL = K −KT −KE ,
(C.1)

where KE = 1
6(2e3 ⊗ e3 − iT ) ⊗ (2e3 ⊗ e3 − iT ). IT and iT are the fourth-order and second-order

transversely identity, as defined by

IT = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2 +
1

2
(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e2 + e2 ⊗ e1),

iT = i− e3 ⊗ e3 = e1 ⊗ e1 + e2 ⊗ e2.
(C.2)

Appendix D. Local strain field for isotropic linearizations

For a two-phase rigidly reinforced composite or a porous material both with an incompressible
matrix subjected to kinematic displacement boundary conditions, the local, stress σ and strain ε
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in the matrix of an isotropic LCC are solution of the following set of equations















































u kinematically admissible with prescribed displacement boundary conditions,
ε = 1

2(∇u+t ∇u),
tr(ε) = 0,

σ =

{

−p(x)i+ 2µmK : ε,
−p(x)i+ 2µmK : ε+ τm,

isotropic secant linearizations (SEC and VAR),
isotropic tangent linearizations (AFF-ISOT),

div(σ) = 0,
{

u = 0,
or σ.n(x) = 0,

at the matrix/particle interface for a rigidly reinforced composite,
at the boundary of the pore for a porous material.

(D.1)
Theorem. For two-phase rigidly reinforced incompressible composites with constant shear modulus
µm and polarization tensor τm in the matrix, the strain field solution to problem (D.1) associated
to isotropic secant or tangent linearization schemes does not depend on µm and τm. For porous
materials with incompressible matrix, the same result holds true for isotropic secant linearization
schemes only.
Accordingly, for two-phase rigidly reinforced incompressible composites (resp. porous materials
with incompressible matrix), the isotropic linearization formulations SEC, VAR and AFF-ISOT
(resp. SEC and VAR) lead to the same strain fields under a macroscopic strain ε̄.

Proof. Let us first consider the case of isotropic secant linearization procedures for both two-phase
rigidly reinforced incompressible composites and porous materials with incompressible matrix. For
such a constitutive behavior, the LCC, which only depends on one scalar µm, will be referred to as
LCC(µm) in the following. Let us denote (u(x), ε(x), σ(x), p(x)) the solution of the local problem
(D.1) associated with LCC(µm). Obviously, ∀ α > 0, (u(x), ε(x), ασ(x), αp(x)) is the solution of
the local problem associated with LCC(αµm). Therefore, ε(x) does not depend on µm.

Let us now consider the case of isotropic tangent linearizations for two-phase rigidly reinforced
incompressible composites only. The corresponding LCC depends on two quantities µm and τm

and is denoted LCC(µm, τm). Let (u(x), ε(x), σ(x), p(x)) be the solution of the local problem
(D.1) associated with LCC(µm, τm). Since τm is constant in the matrix, one has div(τm) = 0,
so that (u(x), ε(x), σ(x), p(x)) is also solution of the problem LCC(µm, 0), the kinematic field of
which does not depend on µm as seen above. Note that this proof associated with isotropic tangent
linearizations can not be extended to porous materials because the BC σ.n(x) = 0 at the border
of the pore is no longer satisfied. Note also that this property does neither hold for a compressible
matrix, as the local strain depends in such a case on the ratio µm/km, i.e. on the Poisson’s ratio,
of the matrix.

Appendix E. Strain local field for tangent linearizations in rigidly reinforced compos-

ites

For tangent linearization methods defining anisotropic thermoelastic LCC as the AFF-ANI and
LS approaches, the local stress and strain fields in a two-phase rigidly reinforced incompressible

25



composite subjected to kinematic boundary conditions are solution to the following set of equations







































u kinematically admissible with prescribed boundary displacement conditions,
u = 0 at the matrix/particle interface,

ε =
1

2
(∇u+t ∇u),

tr(ε) = 0,

σ = −p(x)i+ 2µm
sct(F +

µm
tgt

µm
sct

E) : ε+ τm,

div(σ) = 0.

(E.1)

For reasons exactly similar to those exhibited in Appendix D, the local strain solution to problem

(E.1) only depends on the ratio
µm
tgt

µm
sct

. Since the AFF-ANI and LS procedures consider the same

reference strain ε̄m = ε̄/(1− fp), the ratio
µm
tgt

µm
sct

is also the same for both procedures. Accordingly,

the local strain fields solutions to problem (E.1) associated with the LCC derived from either the
LS or the AFF-ANI approach are equal.
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fragile-ductile d’aciers nucléaires, Ph.D. thesis (2002) Ecole Polytechnique

[3] N. Bilger, F. Auslender, M. Bornert, J.-C. Michel, H. Moulinec, P. Suquet, A. Zaoui, Effect of a
non uniform distribution of voids on the plastic response of voided materials: a computational
and statistical analysis, Int. J. Solids Struct. 42 (2005) 517-538

[4] M. Bobeth, G. Diener, Field fluctuations in multicomponent mixtures, J. Mech. Phys. Solids
34 (1986) 1-17.
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[16] M.I. Idiart, H. Moulinec, P. Ponte Castañeda, P. Suquet, Macroscopic behavior and field
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