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TILINGS OF THE PLANE
AND

THURSTON SEMI-NORM

JEAN-RENÉ CHAZOTTES, JEAN-MARC GAMBAUDO, AND FRANÇOIS GAUTERO

Abstract. We show that the problem of tiling the Euclidean plane with a
finite set of polygons (up to translation) boils down to prove the existence of

zeros of a non-negative convex function defined on a finite-dimensional simplex.
This function is a generalisation, in the framework of branched surfaces, of the

Thurston semi-norm originally defined for compact 3-manifolds.

1. Introduction

Consider a finite collection P � tp1, . . . , pnu, where for j � 1, . . . , n, pj is a
polygon in the Euclidean plane R2, indexed by j and with colored edges. These
decorated polygons are called prototiles. In the sequel a rational prototile (resp.
integral prototile) is a prototile whose vertices have rational (resp. integer) coordi-
nates. A tiling of R2 made with P is a collection ptiqi¥0 of polygons called tiles
indexed by a symbol kpiq in t1, . . . , nu, such that:

 the tiles cover the plane: Yi¥0ti � R
2;

 the tiles have disjoint interiors: intptiq X intptjq � H whenever i � j;
 whenever two distinct tiles intersect, they do it along a common edge and

the colors match;
 for each i ¥ 0, ti is a translated copy of pkpiq.

We denote by ΩP the set of all tilings made with P. Clearly this set may be empty.
When ΩP � H the group of translation acts on ΩP as follows:

ΩP �R2 Q pT, uq ÞÑ T � u P ΩP

where T �u � pti�uqi¥0 whenever T � ptiqi¥0. A tiling T P ΩP is periodic if there
exist two independent vectors u1 and u2 in R2 such that T � T � u1 � T � u2. R.
Berger [4] proved that the problem to know whether or not ΩP is empty (i.e. if one
can or cannot tile the plane with P) is not decidable. More precisely he showed
that there is no algorithm that takes as input any family of prototiles P and gives
as output in a finite time one of the following two results: P can tile the plane or
P cannot tile the plane. Berger also showed that this undecidability is strongly
related to the fact that there exist collections of prototiles P which tile the plane
(ΩP � H) but which cannot tile it periodically. Before we state our main result,
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we need some notations and definitions.

The Anderson-Putnam CW -complex associated with a collection P of prototiles
is the cell complex APP (see [1]) 1 made with 2-cells, 1-cells and 0-cells constructed
as follows. There is one 2-cell for each prototile and these 2-cells are glued along
their colored edges by translation [1]. An edge ek0 of pk0 is glued to an edge ek1 of
pk1 if and only if:

 they have the same color;
 there exists a vector vk0,k1 in R2 such that ek1 � ek0 � vk0,k1 .

For i � 1, 2, the vector space of linear combinations with real coefficients of the
oriented i-cells is denoted by CipAPP ,Rq, its elements are called i-chains and the
coefficients are called coordinates. For any chain c in CipAPP ,Rq, we denote by |c|
its `1-norm. By convention, for each i-chain c , �c is the chain which corresponds
to an inversion of the orientation. Notice that there is a natural orientation of
the 2-cells induced by the orientation of R2, but there is no natural orientation of
the 1-cells. Given an arbitrary orientation on each 1-cell of APP , the 2-cells that
contain this edge are split in two parts: the positive ones for which the orientation
on the edge coincides with the one induced by the orientation of the 2-cell and
the negative ones for which both orientations disagree. Notice that this splitting
is independent, up to reversing, on the arbitrary choice of the orientation of the
1-cells.

Figure 1. Local view of the Anderson-Putnam complex.

We define the linear boundary operator

B : C2pAPP ,Rq Ñ C1pAPP ,Rq

which assigns to any face the sum of the edges at its boundary, weighted with
a positive (resp. negative) sign if the induced orientation fits (resp. does not fit)
with the orientation chosen for these edges. The kernel of the operator B is the
vector space of 2-cycles which we denote H2pAPP ,Rq. It is well known that (up to
isomorphism) the vector space H2pAPP ,Rq is a topological invariant of APP that
coincides with the second singular homology group of the branched surface APP ,

1Actually the construction given by Anderson and Putnam is made in a particular case that
suppose that P tiles the plane. They get a cell complex which is smaller than the one we defined

here, however the basic ideas of both constructions are the same.
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see e.g. [19]. The canonical orientation of the faces allows us to characterize the
vector space H2pAPP ,Rq � C2pAPP ,Rq as follows. A 2-chain is a 2-cycle if and
only if for each edge e the sum of the coordinates of the positive faces containing e
is equal to the sum of the coordinates of the negative faces. This gives a set of m
linear equations with integer coefficients for n variables (where m is the dimension
of C1pAPP ,Rq and n the dimension of C2pAPP ,Rq). These equations are called
the switching rules. Let us say that a 2-cycle is non-negative if its coordinates
are greater than or equal to zero and denote by H�

2 pAPP ,Rq, the closed cone of
non-negative cycles, i.e. the closed cone of cycles with non-negative coordinates
and by S2pAPP ,Rq the simplex made of all non-negative cycles whose `1-norm is
1. Finally, let us say that a 2-cycle is integral (resp. rational) if its coordinates are
integers (resp. rational numbers).

When ΩP � H, i.e. when one can tile R2 with P, ΩP inherits a natural
metrizable topology. A metric δ defining this topology can be chosen as fol-
lows. Let Bεp0q stand for the open ball with radius ε centered at 0 in Rd and
BεrT s :� ttj P T : tj X B̄εp0q � Hu be the collection of tiles in T which in-
tersect B̄εp0q. Consider two tilings T and T 1 in ΩP and let A be the set of
ε in p0, 1q such that there exist u and u1 in Rd, with |u|, |u1| ¤ ε{2, so that
B1{εrT � us � B1{εrT

1 � u1s. Then

δpT, T 1q �

#
inf A if A � H

1 if not.

In words, T and T 1 are close if, up to a small translation, they agree exactly in a
large neighborhood of the origin. Equipped with such a metric, ΩP is a compact
metric space and R2 acts by translation in a continuous way. Let MpΩPq be the
set of finite translation-invariant measures on ΩP . It is non-empty because the
group R2 is amenable. The subset of translation-invariant probability measures is
denoted by ΘpΩPq. There exists a natural morphism:

Ev : MpΩPq Ñ C2pAPP ,Rq

µ ÞÑ Evpµq �
j�ņ

j�1

µpπ�1ppjqq

λppjq
pj

where λ stands for the Lebesgue measure in R2 and π : ΩP Ñ APP is the natural
projection which associates to each tiling the location of the origin of R2 in the
(translated copy of the) prototile it belongs to. The switching rules are related to
translation invariance:

Proposition 1.1. [3]

EvpMpΩPqq � H�
2 pAPP ,Rq and EvpΘpΩPqq � S2pAPP ,Rq.

It turns out that the previous inclusions may not be onto: one can find a set
of prototiles and non-negative coefficients associated with these prototiles satis-
fying the switching rules which are not the weights of some finite translation-
invariant measure (see [7]). Clearly the set EvpΘpΩPqq is a closed convex subset of
S2pAPP ,Rq, and the aim of this paper is to characterize this subset, that is to give
geometric conditions on the non-negative 2-cycles ensuring that they are images
of finite measures. We shall construct a non-negative continuous convex function
S2pAPP ,Rq Q c ÞÑ ~c~ P R which we call the asymptotic Thurston semi-norm.
Our main result is the following theorem:
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Theorem 1.1.
A collection of prototiles P tiles the plane if and only if H�

2 pAPP ,Rq � t0u and
the asymptotic Thurston semi-norm has a zero in S2pAPP ,Rq. In this case

c P EvpΘpΩPqq ðñ ~c~ � 0.

2. The asymptotic Thurston semi-norm

 The Thurston semi-norm: We start with a brief historical account on the
Thurston semi-norm, in order to shed some light on the ideas at the origin of
this work. If M is a closed (i.e. compact, without boundary) 3-manifold, any
closed surface F embedded in M defines an integer 2-cycle in C2pM ; Zq, and thus
a homology class rFs P H2pM ; Zq, the second homology group of M . Relying upon
this observation, W.P. Thurston introduced in [20] a semi-norm }�} : H2pM ; Zq Ñ N
defined by:

}u} � mint|χpFq|;rFs � uu,

where χp.q stands for the Euler characteristic2. This semi-norm vanishes on the
classes which can be represented by tori, and only on these classes. Thurston
(semi)-norm has been intensively studied, see for instance [12, 13, 8] among many
others. D. Gabai [9] (see also [14]) proved that this norm does not change if one
considers singular surfaces (i.e. just “mapped in” surfaces, instead of embedded
ones) in M . On another hand, U. Oertel in [13] used branched surfaces to describe
the unit-ball of this norm: non-negative integer solutions to the so-called “switch-
equations” define integer 2-cycles which in turn give surfaces embedded in the
3-manifold M , and carried by the branched surface W (non-negative real solutions
yield measured laminations). When W is the ambient space, i.e. is no more assumed
to be embedded in a 3-manifold, an integer 2-cycle of a branched surface W still
defines a surface mapped in W , and carried by W provided that the cycle is non-
negative. It is thus natural to try to extend the definition of the Thurston norm
when dealing with “abstract” branched surfaces. Unfortunately, it happens that
the multiplicativity fails in this setting. This leads us to adapt the definition by

considering an asymptotic version ~u~ � lim
nÑ�8

}nu}

n
(compare with [5]).

 The asymptotic Thurston semi-norm:
Consider a topological oriented surface F made with finitely many polygons of

the Euclidean plane t1, . . . , ts glued along their edges, full edge to full edge. We say
that F is carried by APP if there exists a continuous cellular map π : F Ñ APP

such that:
 for each i P t1, . . . su, there exists kpiq P t1, . . . , nu such that π is an isometry

between intptiq and intppkpiqq;
 π is a local embedding.

The orientation of F induces an orientation of each polygon ti in F which may fit
or not with the canonical orientation of the polygon pkpiq. We set

εi �

#
1 if the orientation is preserved
�1 if not

2We recall that the Euler characteristic of a surface is the sum of the Euler characteristics of
its connected components.
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and define for each j P t1, . . . , nu:

cj �
¸

i | kpiq�j

εi.

Clearly the vector cpFq �
j�ņ

j�1

cj � pj , is a cycle in H2pAPP ; Zq.

For each cycle c � 0 in H2pAPP ; Zq, we denote by ĉ the set of all compact
oriented surfaces F that are carried by the flat branched surface APP and whose
associated 2-cycles cF is equal to c.

Lemma 2.1. For any cycle c �
j�ņ

j�1

cj � pj � 0 in H2pAPP ; Zq , there exists a

surface F in ĉ made with exactly |cj | copies of pj, for each j � 1, . . . , n.

Proof. A proof of this lemma is already given in [10] for non-negative cycles, and
the same arguments work here. For each j P t1, . . . , nu consider |cj | copies of pj
with orientation given by the sign of cj . Let pk0 and pk1 be two distinct polygons

chosen in the collection of
j�ņ

j�1

|cj | polygons.

An edge ek0 of pk0 can be glued to an edge ek1 of pk1 if and only if:
 they have the same color;
 they are translated copies one of the other;
 their orientations (induced by the orientations of the polygons) are different.

If both polygons have the same orientation, the gluing is made by the translation
that maps ek0 to ek1 . If the two polygons have different orientations, the gluing is
made by post-composing the translation that maps ek0 to ek1 with the orthogonal
symmetry with axis ek1 . We perform this series of gluing as long as possible until
exhaustion of the polygons in the collection. We have thus built a compact oriented
(not necessarily connected) surface F such that cpFq � c. �

For any integral cycle c, define

}c} � �max
FPĉ

pχpFqq if c � 0

and }0} � 0.

Remark 2.2. For any integral cycle c:

}c} � 0 ðñ ĉ contains a torus.

For any integer m ¡ 0 and any pair of integral cycles c, c1, we have:

}mc} ¤ m}c} and }c� c1} ¤ }c} � }c1}.

It follows that for any integral cycle c, the limit of the sequence pp1{mq}mc}qm
exists. Hence we define:

~c~ � lim
mÑ�8

1
m
}mc}.

We observe that for each integer m ¡ 0, and each pair of integral cycles c, c1, we
have:

~mc~ � m~c~ and ~c� c1~ ¤ ~c~ � ~c1~.
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Thus, we can extend the definition of the asymptotic Thurston semi-norm ~ � ~ to
the cycles in H2pAPP ; Qq by setting:

~c~ �
1
m
~mc~

for all integer m such that mc is an integral cycle.

Remark 2.3. For any cycle c P H2pAPP ; Qq, ~c~ � 0 does not imply that ĉ
contains a torus.

Lemma 2.4. There exists a constant CP ¡ 0 such that for any cycle in H2pAPP ,Qq,
we have

~c~ ¤ CP |c|.

Proof. Let c1 � mc be a cycle in H2pAPP ,Zq different from 0, that reads c1 �
j�ņ

j�1

cj � pj . Following Lemma 2.1, one can find a surface F in ĉ made with exactly

|cj | copies of pj , for each j � 1, . . . , n. Let spj
be the number of vertices of the

polygons in P and set sP � max
j�1,...,n

spj
. We clearly have:

|χpFq| ¤ sP|c
1|

whence }c1} ¤ sP|c|.

It follows that: ~c1~ ¤ sP|c|. �

Corollary 2.1. The asymptotic Thurston semi-norm ~ � ~ is Lipschitz continuous
on H2pAPP ; Qq.

It follows that the function c ÞÑ ~c~ can be extended to a non-negative continu-
ous function defined on H2pAPP ;Rq, and thus in particular on the whole simplex
S2pAPP ,Rq. We call it the asymptotic Thurston map. From the subadditivity of
the map c ÞÑ ~c~ we easily get:

Lemma 2.5. When restricted to S2pAPP ,Rq, the asymptotic Thurston map is a
bounded convex continuous non-negative map.

Corollary 2.2. When restricted to S2pAPP ,Rq, the set of zeros of the asymptotic
Thurston map is a (possibly empty) convex subset of the simplex S2pAPP ,Rq.

3. Wang tilings

We start with some basic definitions. Let W � tw1, . . . , wnu be a finite collection
of unit squares whose vertices have integer coordinates in R2, and with colored
edges. We say that W is a collection of Wang prototiles. A Wang tiling is a tiling
made with W such that abutting edges of adjacent tiles have the same color. In
1966, R. Berger [4] gave a first example of a set of Wang prototiles which can tile
the plane but cannot tile it periodically. This example was made with a collection
of 20426 Wang prototiles. Since then, similar examples with a smaller set of Wang
prototiles have been found. The state of the art is the example found by K. Culik
[6] (see also [11]) made with 13 Wang prototiles and shown in Figure 2.

Let us introduce two notions concerning Wang tilings that we will use in the
proof of the main theorem.
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Figure 2. A collection of Wang prototiles.

Forgetting colors:
For a given collection of Wang prototiles W � tw1, . . . , wnu, we consider the setxW � t pw1, . . . , pwnu, where, for j � 1, . . . , n, pwj is deduced from wj by forgetting the
colors on its sides and keeping its index j. It follows that APŴ is a collection of n
unit squares (indexed by j in t1, . . . , nu) glued respectively along their horizontal
edges and their vertical edges.

Remark 3.1. Ω
xW is non empty and periodic orbits are dense in pΩW . Whenever

ΩW is non empty, there is an isometric embedding of ΩW into Ω
xW which commutes

with translations.

Enforcing colors:
Consider a collection of Wang prototiles W � tw1, . . . , wnu and fix p ¡ 0. For each
j in t1, . . . , nu we consider the collection of tilings of the square r�p�1{2, p�1{2s2

made with translated copies of prototiles in W so that colors of common edges of
adjacent tiles coincide and such that the central tile which covers r�1{2,�1{2s2 is
a copy of wj . We denote by tT 1

wj ,p, . . . , T
lpwj ,W,pq
wj ,p u this collection of tilings.

For each tiling T lwj ,p of r�p� 1{2, p� 1{2s2 we consider the 4 following ‘colors’:

 UppT lwj ,pq which is the restriction of T lwj ,p to r�p� 1{2, p� 1{2s� r1{2, p�
1{2s,

 DownpT lwj ,pq which is the restriction of T lwj ,p to r�p� 1{2, p� 1{2s� r�p�
1{2,�1{2s,

 LeftpT lwj ,pq which is the restriction of T lwj ,p to r�p � 1{2,�1{2s � r�p �

1{2, p� 1{2s,
 RightpT lwj ,pq which is the restriction of T lwj ,p to r1{2, p�1{2s�r�p�1{2, p�

1{2s,
and associate the Wang prototile wj,l whose index is the pair pj, lq and whose edges
inherit the color:

 UppT lwj ,pq for the top edge;
 DownpT lwj ,pq for the bottom edge;
 LeftpT lwj ,pq for the left edge;
 and RightpT lwj ,pq for the right edge.

We denote by Wp the collection of Wang prototiles wj,l when j runs from 1 to n
and l from 1 to lpwj ,W, pq.
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Remark 3.2. W tiles the plane if and only if, for each p ¡ 1,Wp (and thus APWp)
is well defined.

The importance of Wang tilings stems from the following result proved by L.
Sadun and R. Williams (which is in fact valid in any dimension).

Theorem 3.3. [17] For any finite collection of prototiles P which tiles the plane,
there exists a finite collection of Wang prototiles W such that the dynamical systems
pΩP ,R2q and pΩW ,R2q are orbit equivalent.

Actually the homeomorphism that realizes the orbit equivalence of Theorem 3.3
has some important rigidity properties that will be detailed in the next section.

4. Reduction to Wang tilings

Lemma 4.1. Theorem 1.1 is true if it is true for any finite collection of Wang
prototiles.

Proof. The proof splits in the proof of 3 claims.
Claim 1:
Theorem 1.1 is true if it is true for any finite collection of rational prototiles.
Proof of Claim 1: In order to prove this claim we need, as announced above, to go
deeper in the proof of Sadun and Williams of Theorem 3.3 in [17] and, for the sake
of convenience, we sketch the construction given therein in full details. Consider a
finite collection of prototiles P � tp1, . . . , pnu that tiles the plane. For any ε ¡ 0,
one can construct a finite collection of rational prototiles P 1 � tp11, . . . , p

1
nu such

that:
 Each p1i has the same number of edges as pi, and the p1i’s are ε-close to the
pi’s for the Haussdorff distance and the corresponding edges have the same
colors;

 The Anderson-Putnam complex APP1 is homeomorphic to APP .
This amounts to solve finitely many equations with integral coefficients and to use
the fact that for such systems of equations, rational solutions are dense in the set
of solutions. The one-to-one correspondence of the 2-cells of APP1 and APP yields
the natural identifications:

H�
2 pAPP1 ,Rq � H�

2 pAPP ,Rq and S2pAPP1 ,Rq � S2pAPP ,Rq.

On the one hand, the construction of the asymptotic Thurston norm on S2pAPP1 ,Rq
coincides with the similar construction on S2pAPP ,Rq. On the other hand, there
is a natural cone isomorphism I between ΘpΩP1q and ΘpΩPq which is defined by:

IpµqpAq �
i�ņ

i�1

µpπ�1ppiq XAqq �
λppiq

λpp1iq
,

for any mesurable set A in ΩP and any measure µ in ΘpΩPq. It follows easily that

EvpIpµqq � Evpµq, @µ P ΘpΩPq.

This proves Claim 1.
Let us illustrate the above construction on the classical example of Penrose tilings.
Consider the ‘thin’ and ‘fat’ triangles displayed in Figure 3 3. Together with their

3It is customary to use arrowheads to indicate adjacency rules. Each triangle can be represented
as a polyhedron by replacing the arrowheads by appropriate dents and bumps to fit the general
definition of tilings given above.
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rotation by multiples of 2π{10, they generate a set of prototiles P with 40 elements
which in turn, generates the Penrose dynamical system pΩP ,R2q.

Figure 3. The tiles of the Penrose tiling.

Figure 4 shows a patch in R2 tiled by Penrose prototiles.

Figure 4. A patch of a Penrose tiling.

Figure 5 shows now a patch tiled with rational prototiles.

Figure 5. A patch of the rational Penrose tiling.

Claim 2:
Theorem 1.1 is true for any finite collection of rational prototiles if it is true for
any finite collection of integral prototiles.
Proof of Claim 2: The next step in [17] is to transform a finite collection of rational
prototiles P 1 into a finite collection of integral prototiles. Using a homothety with
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an integral dilatation factor, one can transform the collection P 1 � tp11, . . . , p
1
nu in

a family of integer prototiles P2 � tp21, . . . , p
2
nu. Clearly both dynamical systems

pΩP1 ,R2q and ΩP2 ,R2q are orbit equivalent, the homeomorphism that realizes this
equivalence maps translation invariant measures onto translation invariant mea-
sures and the two Anderson-Putnam complex APP1 and APP2 are homothetic.
This proves Claim 2.

Claim 3:
Theorem 1.1 is true for any finite collection of integral prototiles if it is true for
any finite collection of Wang prototiles.
Proof of Claim 3: One proceeds in 2 steps:

1 One replaces the straight edges of the prototiles in P2 with zig-zags, that
is with sequences of unit displacements in the coordinates directions. We
denote by xP � tpp1, . . . , ppnu the new collection of prototiles obtained this
way. Figure 6 shows how, in the particular case of the Penrose collection
of rational prototiles, the patch described in Figure 5 is transformed.

Figure 6. A patch of a square Penrose tiling.

2 It remains to put a label and appropriate colors on the edges of each square
in each prototile in xP to obtain a Wang tiling. The encoding is made in
such a way that each edge of a square which is in the interior of a prototile ofxP forces as neighbors only the square which is its neighbor in the prototile
and that any edge which meets the boundary of a prototile in xP has its
color given by the one of the prototile it belongs to. We denote by W the
finite collection of Wang prototiles obtained with this construction.

It follows that the dynamical systems pΩW ,R2q and pΩ
xP
,R2q are conjugate and

that both Anderson-Putnam complexes APW and AP
xP

are homeomorphic. This
allows us to identify:

H�
2 pAP xP ,Rq � H�

2 pAPW ,Rq and S2pAP xP ,Rq � S2pAPW ,Rq

and proves Claim 3. �
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5. Proof of Theorem 1.1

Thanks to Lemma 4.1, we only need to prove Theorem 1.1 for finite collections
of Wang prototiles W � tw1, . . . , wnu.

 Assume first that ΩW is non empty.
This implies that the set of translation-invariant probability measures ΘpΩWq is
non empty. Consider an ergodic measure µ P ΘpΩWq. From the Birkhoff Ergodic
Theorem, we know that for µ-almost every tiling T in ΩW and for every prototile
wj in W

lim
pÑ�8

1
p2p� 1q2

N pwj , pq � µpπ�1pwjqq

where N pwi, pq stands for the number of copies of wi that appear in T in the square
r�1{2� p, p� 1{2s2. Fix p ¡ 0 and consider the periodic tiling pTp in Ω

xW obtained
from T by repeating the pattern of T in r�1{2�p, p�1{2s2. More precisely for any
pq, rq in Z2, the tile of pTp centered at pq, rq corresponds to the same prototile as
the tile centered at pq� up2p� 1q, r� vp2p� 1qq where pu, vq is the pair of integers
chosen so that pq � up2p � 1q, r � vp2p � 1qq P r�1{2 � p, p � 1{2s2. Consider the
probability measure µ̂p which is equidistributed along the R2-orbit of the tiling pTp.
On the one hand, notice that Evpµ̂pq is a cycle in S2pAPxW ,Rq which is given by

Evpµ̂pq �
j�ņ

j�1

µ̂ppπ
�1pŵjqq pwj � 1

p2p� 1q2

j�ņ

j�1

N pwi, pq pwj .
It follows that lim

pÑ�8
Evpµ̂pq �

j�ņ

j�1

µpπ�1pwjqq pwj .
On the other hand, the natural inclusion ΩW � Ω

xW allows one to consider the

measure µ as a measure µ̂ in ΘpΩ
xWq and the cycle Evpµq �

j�ņ

j�1

µpπ�1pwjqqwj in

S2pAPW ,Rq can be identified (through the above inclusion) with the cycle Evpµ̂q �
j�ņ

j�1

µpπ�1pwjqq pwj in S2pAPxW ,Rq. Therefore

lim
pÑ�8

Evpµ̂pq � Evpµ̂q.

Since the R2-orbit of the tiling pTp is a 2-torus embedded in Ω
xW , it follows directly

that ~Evpµ̂pq~ � 0. The continuity of the Thurston semi-norm (Lemma 2.5) im-
plies that ~Evpµ̂q~ � 0 and thus ~Evpµq~ � 0. We conclude that H�

2 pAPW ,Rq �
t0u and the set of zeros of the asymptotic Thurston semi-norm on S2pAPW ,Rq is
non empty and contains EvpΘpΩWqq.
 Assume now H�

2 pAPW ,Rq � t0u and that the Thurston semi-norm has
a zero in S2pAPW ,Rq.
Let c P S2pAPW ,Rq be such that ~c~ � 0. The continuity of the Thurston semi-
norm and the density of rational cycles in S2pAPW ,Rq, imply that there exist a
sequence of cycles pc`q`¥0 in S2pAPW ,Qq such that lim

`Ñ�8
c` � c, a sequence of

integers pn`q`¥0 such that n`c` is a non-negative integral cycle, and a sequence of
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surfaces pF`q`¥0 such that for each ` ¥ 0:

F` P yn`c` and lim
`Ñ�8

|χpF`q|
n`

� 0.

Fix now p ¡ 0 and, for each ` big enough, consider the surface (with boundary)
F`,p which is made of all the Wang tiles of F` that are at the center of the square
r�1{2 � p, p � 1{2s2 immersed in F`. These are the tiles at a distance larger than
p from a singular point, i.e. the tiles which cannot be connected to a singularity
with a path contained in less than p Wang tiles. We observe that the number of
Wang tiles which are at distance 0 of a singularity is smaller than 4 |χpFl,pq|. On
the other hand, for any p ¡ 0, tiles which are at distance p from a singularity must
share an edge or a vertex with tiles which are at a distance smaller than p� 1 from
the singularity and conversely, each tile which is at distance p�1 from a singularity
is in contact with at most eight tiles which are at distance p from this singularity.
It follows that the number of Wang tiles which are at a distance smaller than p
from a singularity is smaller than Kppq |χpF`,pq|, where Kppq � 4p1�� � ��8pq. Let
c`,p be the chain associated to F`,p in C2pAPW ,Rq.

We have: |c`,p � n`c`| ¤ Kppq |χpF`,pq|

and thus lim
`Ñ�8

c`,p
|c`,p|

� c.

Clearly Wp is non empty since, when ` is big enough, F`,p is non empty. From
the very construction of F`,p we get that the chain c`,p is the image of a 2-
chain cppq`,p in C2pAPWp ,Rq through the canonical projection πppq : C2pAPWp ,Rq Ñ

C2pAPW ,Rq. Let cppq be an accumulation point in C2pAPWp ,Rq of the sequence

of normalized chains

�
c
ppq
`,p

|c
ppq
`,p |

�
`¡0

. We easily check that

|Bc
ppq
`,p | ¤ Kppq |χpF`,pq|

which implies that cppq is a non-negative 2-cycle inH�
2 pAPWp ,Rq and that πppcppqq �

c. It follows that
c P πppqpH�

2 pAPWp ,Rqq, @p ¡ 0.
Since it is well known (see [3] or [2]) that

ΘpΩWq �
£
p¡0

H�
2 pAPWp ,Rq

we deduce that W tiles the plane and that the zeros of the Thurston semi-norm on
S2pAPW ,Rq are contained in ΘpΩWq.

This ends the proof of our main Theorem.

6. Discussion and examples

Let us examine the different situations that may occur according to the family
W of Wang prototiles we consider. One extreme situation is when W does not tile
the plane, in this case either H�

2 pAPW ,Rq � t0u or H�
2 pAPW ,Rq � t0u and the

Thurston semi-norm remains strictly positive in S2pAPW ,Rq. The other extreme
situation is when the colors of the edges are forgotten. In this situation, periodic
orbits are dense in ΩW , EvpΘpΩWqq is the whole simplex S2pAPW ,Rq and the
Thurston semi-norm vanishes on the whole simplex.
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Let us now concentrate on the case when H�
2 pAPW ,Rq � H and the (convex) set

of zeros of the asymptotic Thurston semi-norm (which coincides with EvpΘpΩWqq)
is non empty. Different cases may occur:

 EvpΘpΩWqq is reduced to a single cycle c.
– If c is not rational, then W cannot tile the plane periodically. This is

exactly the situation we studied earlier for the Penrose tiling.
– If c is rational,

� either }c} � 0 which means that W can tile the plane periodi-
cally;

� or }c} � 0 and W cannot tile the plane periodically: this is
exactly what happens for the Robinson set of Wang prototiles
[15].

 EvpΘpΩWqq is not reduced to a single cycle. In this case we are left with a
series of questions, for instance:

– Question 1: Can we find W such that rational cycles are not dense
in EvpΘpΩWqq?

– Question 2: When does EvpΘpΩWqq contain a ball in S2pAPW ,Rq?
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