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TILINGS OF THE PLANE:

THURSTON SEMI-NORM AND DECIDABILITY

JEAN-RENÉ CHAZOTTES, JEAN-MARC GAMBAUDO, AND FRANÇOIS GAUTERO

Abstract. We give a geometric interpretation of the undecidability of the
tiling problem in the plane. We show that this problem boils down to prove
the existence of zeros of a nonnegative convex function defined on a finite-
dimensional simplex and related to the Thurston semi-norm.

1. Introduction

Let us consider a finite collection P p1, . . . , pn , where for j 1, . . . , n,
pj is a polygon in the Euclidean plane R

2, indexed by j and with colored edges.
These decorated polygons are called prototiles. In the sequel a rational prototile
(resp. integral prototile) is a prototile whose vertices have rational (resp. integer)
coordinates. A tiling of R2 made with P is a collection ti i 0 of polygons called
tiles indexed by a symbol k i in 1, . . . , n , such that:

the tiles cover the plane: i 0ti R
2;

the tiles have disjoint interiors: int ti int tj whenever i j;
whenever two distinct tiles intersect, they do it along a common edge and
the colors match;
for each i 0, ti is a translated copy of pk i .

We denote by ΩP the set of all tilings made with P. Clearly this set may be
empty. When ΩP the group of translation acts on ΩP as follows:

ΩP R
2 T, u T u ΩP

where T u ti u i 0 whenever T ti i 0. A tiling T ΩP is periodic if there
exist two independent vectors u1 and u2 in R

2 such that T T u1 T u2. R.
Berger [4] proved that the problem to know whether or not ΩP is empty ( i.e if one
can or cannot tile the plane with P) is not decidable. More precisely he showed
that there is no algorithm that can take as input any family of prototiles P and
give as output in a finite time one of the following two results: P can tile the plane
or P cannot tile the plane. Berger also showed that this undecidability is strongly
related to the fact that there exist collections of prototiles P which tile the plane
(ΩP ) but not periodically.
The aim of this paper is to give a geometric interpretation of this unde-

cidability property.

Before we state our main result, we need some notations and definitions.
The Anderson-Putnam CW -complex associated with a collection P of prototiles is
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the cell complex APP (see [1]) 1 made with 2-cells, 1-cells and 0-cells constructed
as follows. There is one 2-cell for each prototile and these 2-cells are glued along
their colored edges by translation [1]. An edge ek0

of pk0
is glued to an edge ek1

of
pk1

if and only if :

they have the same color;
there exists a vector vk0,k1

in R
2 such that ek1

ek0
vk0,k1

.

For i 1, 2, the vector space of linear combinations with real coefficients of the
oriented i-cells is denoted by Ci APP ,R , its elements are called i-chains and the
coefficients are called coordinates. For any chain c in Ci APP ,R , we denote by c

its �1-norm. By convention, for each i-chain c , c is the chain which corresponds
to an inversion of the orientation. Notice that there is a natural orientation of
the 2-cells induced by the orientation of R2, but there is no natural orientation of
the 1-cells. Given an arbitrary orientation on each 1-cell of APP , the 2-cells that
contain this edge are split in two parts: the positive ones for which the orientation
on the edge coincides with the one induced by the orientation of the 2-cell and the
negative ones for which both orientations are different. Notice that this splitting
is independent, up to reversing, on the arbitrary choice of the orientation of the
1-cells.

Figure 1. Local view of the Anderson-Putnam complex.

We define the linear boundary operator

: C2 APP ,R C1 APP ,R

which assigns to any face the sum of the edges at its boundary, weighted with a
positive (resp. negative ) sign if the induced orientation fits (resp. does not fit)
with the orientation chosen for these edges. The kernel of the operator is the
vector space of 2-cycles which we denote H2 APP ,R . It is well known that (up to
an isomorphism) the vector space H2 APP ,R is a topological invariant of APP

that coincides with the second singular homology group of the branched surface
APP (see for example [13]). The canonical orientation of the faces allows us to
characterize the vector space H2 APP ,R C2 APP ,R as follows. A 2-chain is

1Actually the construction given by Anderson and Putnam is made in a particular case that
suppose that P tiles the plane. They get a cell complex which is smaller than the one we defined
here, however the basic ideas of both constructions are the same.
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a 2-cycle if and only if for each edge e the sum of the coordinates of the positive
faces containing e is equal to the sum of the coordinates of the negative faces. This
gives a set of m linear equations with integer coefficients for n variables (where
m is the dimension of C1 APP ,R and n the dimension of C2 APP ,R ). These
equations are called the switching rules. Let us say that a 2-cycle is nonnegative if
its coordinates are greater than or equal to zero and denote by H2 APP ,R , the
closed cone of nonnegative cycles, i.e the closed cone of cycles with nonnegative
coordinates and by S2 APP ,R the simplex made of all non negative cycles whose
sum of their coordinates is 1. Finally, let us say that a 2-cycle is integral (resp.
rational) if its coordinates are integers (resp. rational numbers).

When ΩP , i.e when one can tile R
2 with P, ΩP inherits a natural

metrizable topology. A metric δ defining this topology can be chosen as fol-
lows. Let B� 0 stand for the open ball with radius � centered at 0 in R

d and
B� T : tj T : tj B̄� 0 be the collection of tiles in T that meet B̄� 0 .
Consider in ΩP two tilings T and T and let A denote the set of � in 0, 1 such that
there exists u and u in R

d, with u , u � 2, so that B1 � T u B1 � T u .
Then :

δ T, T
inf A if A
1 if not.

In words T and T are close if, up to a small translation, they agree exactly
in a large neighborhood of the origin. Equipped with such a metric, ΩP is a
compact metric space and the R

2 action by translation is continuous. Since the
group R

2 is amenable, it follows that the dynamical system ΩP ,R2 possesses
finite translation-invariant measures and we denote by M ΩP the set of finite
translation-invariant measures on ΩP and by Θ ΩP the subset of M ΩP made
of probability measures. There exists a natural morphism:

Ev : M ΩP C2 APP ,R

defined by:

Ev µ

i n

i 1

µ π 1 pi

λ pi
pi

where λ stands for the Lebesgue measure in R
2 and π : ΩP AP P is the

natural projection which associates to each tiling the location of the origin of R2 in
the (translated copy of the) prototile where it belongs. The switching rules reflect
the translation invariance and it comes easily that:

Proposition 1.1. [3]

Ev M ΩP H2 APP ,R and Ev Θ ΩP S2 APP ,R .

It turns out that the above inclusions may not be onto: one can find a set of pro-
totiles and non negative coefficients associated with these prototiles satisfying the
switching rules which are not the weights of some finite translation invariant mea-
sure (see [6]). Clearly the set Ev Θ ΩP is a closed convex subset of S2 APP ,R ,

and the aim of this paper is to characterize this subset, that is to say to give
geometric conditions on the non negative 2-cycles insuring that they are images
of finite measures. We will construct a non negative continuous convex function
S2 APP ,R c c R called the asymptotic Thurston semi-norm (see [14] for
a first description of this norm) and show the following theorem which is our main
result:
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Theorem 1.1.

A collection of prototiles P tiles the plane if and only if H2 APP ,R and
the asymptotic Thurston semi-norm has a zero in S2 APP ,R . In this case

c Ev Θ ΩP c 0.

2. The asymptotic Thurston semi-norm

For each non negative integral cycle c H2 APP ;R , we denote by c the
set of all compact oriented surfaces F that are covers of the flat branched surface
APP and whose associated 2-cycles cF is equal to c. In [7] it is proved that this
set is not empty and that these surfaces are naturally equipped with a translation
structure2. Associated with any non negative integral cycle, let us consider the
following quantity:

c max
F c

χ F ,

where χ . stands for the Euler characteristic3. For any integer n 0 and any pair
of non negative integral cycles, c and c , we have:

nc n c , and c c c c .

Remark 2.1. For any non negative integral cycle c:

c 0 c contains a torus.

It follows that for any non negative integral cycle c, the limit of the sequence
1 n n.c n exists. We define:

c lim
n

1

n
nc .

We observe that for each integer n 0, and each pair of non negative integer classes
c and c , we have:

nc n c , and c c c c .

Thus, we can extend the definition of the asymptotic Thurston semi-norm to
the rational cycles in P2 APP ;R , by setting :

c
1

n
nc ,

for all integer n such that n.c is an integral cycle.

Remark 2.2. c 0 does not imply that c contains a torus. Compare with
Remark 2.1.

Lemma 2.3. There exists a constant CP 0 such that for any rational cycle in
S2 APP ,R (resp. in H2 APP ,R ), we have:

c CP resp. c CP . c .

2In particular it has a meaning to move vertically or horizontally from any point (except a
finite number) of the surface.

3We recall that the Euler characteristic of a surface is the sum of the Euler characteristics of
its connected component.
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Proof. Let us observe first that the extreme points of the simplex S2 APP ,R

belong to the boundary of the simplex

S a1, . . . , an R
n, with

i n

i 1

ai 1 and ai 0, i 1, . . . , n .

Let e1, . . . , ek be these extreme points (k n). Since each of these extreme points
is the unique solution of a system of linear equations with integer coefficients, their
coefficients are rational cycles. For j 1, . . . , k, let nj be the smallest integer
such that ēj njej is an integral cycle. Let L be the restriction to the positive
quadrant of the lattice in R

n generated by the cycles ē1, . . . , ēk, i.e the cycles that
read:

l

j k

j 1

kj ēj where kj is a non negative integer j 1, . . . , k.

and B be the finite set of non negative integral cycles that read:

b

j k

j 1

bjej with 0 bj nj , j 1, . . . , k.

Any non negative integral cycle c in S2 APP ,R reads:

c l b, where l L and b B.

We have

c l b

j k

j 1

kj ēj K1

where

K1 max
b B

b .

It follows that:

c

j k

j 1

kjnj ej K1 K2 l K1,

where

K2 max
j 1,...,k

ej .

Since l c we conclude that there exists a positive constant CP such that

c CP c ,

for any non negative integral cycle c in H2 APP ,R and thus for any rational cycle
in H2 APP ,R . �

Lemma 2.4. The asymptotic Thurston semi-norm is uniformly continuous
over the rational cycles in S2 APP ;R .

Proof. Let c and c be two rational cycles in S2 APP ;R . For any integer m

0 such that mc is an integral cycle, let n m be the unique integer such that
mc n m c is a non negative cycle and mc n m 1 c is not. This implies
that there exists a vector fi in the canonical basis of Rn such that:

n m c , fi mc , fi n m 1 c , fi ,
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where , stands for the usual scalar product in R
n. It follows that:

lim
m

n m

m

c , fi

c , fi
.

On the one hand, we have:

mc n m c mc n m c ,

and thus

m c n m c mc n m c .

Since n m m, we get

m c m c mc n m c CP mc n m c .

Dividing by m and letting m go to we get (using ( )):

c c CP

c , fi c c , fi c

c , fi
2CP

c c

c , fi
.

Since there exists a positive constant ρ such that for every vector in the canonical
basis of Rn and every cycle in S2 APP ,R , we have

0 ρ c , fi ,

we finally get

c c
2CP

ρ
c c .

On the other hand, by reversing the role of c and c we also get

c c
2CP

ρ
c c ,

and thus

c c
2CP

ρ
c c ,

which proves the uniform continuity of the Thurston semi-norm. �

It follows from the above lemma that the function c c can be extended to
a non negative continuous function defined on the whole simplex S2 APP ,R we
call it the asymptotic Thurston map. From the subadditivity of the map c c

we get easily:

Lemma 2.5. The asymptotic Thurston map is a bounded convex continuous non
negative map.

and

Corollary 2.1. The set of zeros of the asymptotic Thurston map is a (possibly
empty) convex subset of the simplex S2 APP ,R .
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3. Wang tilings

Let us first recall some basic definitions. A finite collection W w1, . . . , wn ,
where for j 1, . . . , n, wj is a unit square with sides parallel to the axes of R2

in the 2 dimensional Euclidean space R
2, indexed by j and with colored edges,

is called a collection of Wang prototiles. A Wang tiling is a tiling made with a
finite collection W of Wang prototiles such that two adjacent squares share a same
color on their adjacent edges. In 1966, R. Berger [4] gave a first example of a set of
Wang prototiles that can tile the plane but cannot tile it periodically. This example
was made with a collection of 20426 Wang prototiles. Since then, similar examples
with a smaller set of Wang prototiles have been found. The state of the art is the
example found by K. Culik [5] (see also [8]) made with 13 Wang prototiles and
shown on Figure 2. Let us introduce two notions concerning Wang tilings that will

!

"

#

$

%

Figure 2. A collection of Wang prototiles.

be useful for the proof of our main theorem.
Forgetting colors:

For a given collection of Wang prototiles W w1, . . . , wn , we consider the set

Ŵ ŵ1, . . . , ŵn , where, for j 1, . . . , n, ŵj is deduced from wj by forgetting the

colors on its sides and keeping its index j. It follows that AP Ŵ is a collection of
n unit squares (indexed by j in 1, . . . , n ) glued respectively along their horizontal
edges and their vertical edges.

Remark 3.1. Ω Ŵ is not empty and periodic orbits are dense in Ω̂ W . Whenever

Ω W , Ω W Ω Ŵ .

Enforcing colors:

Consider a collection of Wang prototiles W w1, . . . , wn and fix p 0. For each
j in 1, . . . , n we consider the collection of tilings of the square p 1 2, p 1 2 2

made with translated copies of prototiles in W so that colors of common edges of
adjacent tiles coincide and the central tile that covers 1 2, 1 2 2 is a copy of

wj . We denote by T 1
wj ,p

, . . . , T l wi,W,p
wj ,p

this collection of tilings.

For each tiling T l
wj ,p

of p 1 2, p 1 2 2 we consider the 4 colors:

Up T l
wj ,p

which is the restriction of T l
wj ,p

to p 1 2, p 1 2 1 2, p

1 2 ;
Down T l

wj ,p
which is the restriction of T l

wj ,p
to p 1 2, p 1 2 p

1 2, 1 2 ;
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Left T l
wj ,p

which is the restriction of T l
wj ,p

to p 1 2, 1 2 p

1 2, p 1 2 ;
Right T l

wj ,p
which is the restriction of T l

wj ,p
to 1 2, p 1 2 p 1 2, p

1 2 .

and associate the Wang prototile wi,l whose index is the pair j, l and whose edges
inherit the color :

Up T l
wj ,p

for the top edge;

Down T l
wj ,p

for the bottom edge;

Left T l
wj ,p

for the left edge;

and Right T l
wj ,p

for the right edge.

We denote by W
p the collection of Wang prototiles wj,l when j runs from 1 to n

and l from 1 to l wi,W, p .

Remark 3.2. W tiles the plane if and only if , for each p 1, Wp (and thus
AP W

p ) is well defined.

The importance of Wang tilings stems from the following result proved by L.
Sadun and R. Williams (which is in fact valid in any dimension).

Theorem 3.3. [11] For any finite collection of prototiles P that tiles the plane,
there exists a finite collection of Wang prototiles W such that the dynamical systems
ΩP ,R2 and ΩW ,R2 are orbit equivalent.

Remark 3.4. Actually the homeomorphism that realizes the orbit equivalence of
Theorem 3.3 possesses some important rigidity properties that will be detailed in
the next section.

4. Reduction to Wang tilings

Lemma 4.1. Theorem 1.1 is true if it is true for any finite collection of Wang
prototiles.

Proof. The proof splits in the proof of 3 claims.
Claim 1:
Theorem 1.1 is true if it is true for any finite collection of rational prototiles.
Proof of Claim 1: In order to prove this claim we need, as announced in Remark
3.4, to go deeper in the proof of Sadun and Williams of Theorem 3.3 in [11] and,
for the sake of convenience, we sketch the construction given therein in full details.
Consider a finite collection of prototiles P p1, . . . , pn that tiles the plane.
For any � 0, one can construct a finite collection of rational prototiles P

p1, . . . , pn such that:

Each pi has the same number of edges as pi, and the pi’s are �-close to the
pi’s for the Haussdorff distance and the corresponding edges have the same
colors;
The Anderson-Putnam complex APP is homeomorphic to APP .

This amounts to solve finitely many equations with integral coefficients and to use
the fact that for such systems of equations, rational solutions are dense in the set
of solutions. The one-to-one correspondence of the 2-cells of APP and APP yields
the natural identifications:

H2 APP ,R2 H2 APP ,R2 and S2 APP ,R2 S2 APP ,R2 .
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On the one hand, the construction of the asymptotic Thurston norm on S2 APP ,R2

coincides with the similar construction on S2 APP ,R2 . On the other hand, there
is a natural cone isomorphism I between Θ ΩP and Θ ΩP which is defined by:

I µ A

i n

i 1

µ π 1 pi A
λ pi

λ pi
,

for any mesurable set A in ΩP and any measure µ in Θ ΩP . It follows easily that

Ev I µ Ev µ , µ Θ ΩP .

This proves Claim 1.
Let us illustrate the above construction on the classical example of Penrose tilings.
Consider the ‘thin’ and ‘fat’ triangles displayed in Figure 3 4. Together with their
rotation by multiples of 2π 10, they generate a set of prototiles P with 40 elements
which in turn, generates the Penrose dynamical system ΩP ,R2 .

Figure 3. The tiles of the Penrose tiling.

Figure 4 shows a patch in R
2 tiled by Penrose prototiles.

Figure 4. A patch of a Penrose tiling.

Figure 5 shows now the same patch (up to homeomorphism) tiled with rational
prototiles.

Claim 2:
Theorem 1.1 is true for any finite collection of rational prototiles if it is true for
any finite collection of integral prototiles.
Proof of Claim 2: The next step in [11] is to transform a finite collection of rational
prototiles P into a finite collection of integral prototiles. Using an homothety with

4It is customary to use arrowheads to indicate adjacency rules. Each triangle can be represented
as a polyhedron by replacing the arrowheads by appropriate dents and bumps to fit the general
definition of tilings given above.
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Figure 5. A patch of the rational Penrose tiling.

an integral dilatation factor, one can transform the collection P p1, . . . , pn in
a family of integer prototiles P p1, . . . , pn . Clearly both dynamical systems
ΩP ,R2 and ΩP ,R2 are orbit equivalent, the homeomorphism that realizes this
equivalence maps translation invariant measures onto translation invariant mea-
sures and the two Anderson-Putnam complex APP and APP are homothetic.
This proves Claim 2.

Claim 3:
Theorem 1.1 is true for any finite collection of integral prototiles if it is true for
any finite collection of Wang prototiles.
Proof of Claim 3: One proceeds in 2 steps:

1 One replaces the straight edges of the prototiles in P with zig-zags, that
is with sequences of unit displacements in the coordinates directions. We

denote by P p̂1, . . . , p̂n the new collection of prototiles obtained this
way. Figure 6 shows how, in the particular case of the Penrose collection
of rational prototiles, the patch described in Figure 5 is transformed.

Figure 6. A patch of a square Penrose tiling.
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2 It remains to put a label and appropriate colors on the edges of each square

in each prototile in P to obtain a Wang tiling. The encoding is made in
such a way that each edge of a square which is in the interior of a prototile of

P forces as neighbors only the square which is its neighbor in the prototile

and that any edge which meets the boundary of a prototile in P has its
color given by the one of the prototile it belongs to. We denote by W the
finite collection of Wang prototiles obtained with this construction.

It follows that the dynamical systems ΩW ,R2 and Ω
P
,R2 are conjugate and

that both Anderson-Putnam complexes APW and AP
P

are homeomorphic. This
allows us to identify:

H2 AP
P
,R2 H2 APW ,R2 and S2 AP

P
,R2 S2 APW ,R2 .

and proves Claim 3. �

5. Proof of Theorem 1.1

Thanks to Lemma 4.1 we are reduced to prove Theorem 1.1 in the particular
case of a finite collection of Wang prototiles W w1, . . . , wn .

Assume first that ΩW .

This implies that the set of translation-invariant probability measures Θ ΩW .
Consider an ergodic measure µ Θ ΩW . From the Birkhoff Ergodic Theorem, we
know that for µ-almost every tiling T in ΩW and for every prototile wi in W:

lim
p

1

2p 1
2
N wi, p µ π 1 wi ,

where N wi, p stands for the number of copies of wi that appear in T in the square

1 2 p, p 1 2 2. Fix p 0 and consider the periodic tiling Tp in Ω
W

obtained

from T by repeating the pattern of T in 1 2 p, p 1 2 2. More precisely for

any q, r in Z
2, the tile of Tp centered at q, r corresponds to the same prototile

as the tile centered at q m 2p 1 , r n 2p 1 where m,n are chosen so
that q m 2p 1 , r n 2p 1 1 2 p, p 1 2 2. Consider the probability

measure µ̂p which is equidistributed along the R
2-orbit of the tiling Tp .

On the one hand, notice that Ev µ̂p is a cycle in S2 AP
W
,R which is given by:

Ev µ̂p

i n

i 1

µ̂p π 1 ŵi wi

1

2p 1 2

i n

i 1

N wi, p wi.

It follows that:

lim
p

Ev µ̂p

i n

i 1

µ π 1 wi wi.

On the other hand, the natural inclusion ΩW Ω
W

allows us to see the mea-

sure µ as a measure µ̂ in Θ Ω
W

and the cycle Ev µ

i n

i 1

µ π 1 wi wi in

S2 APW ,R can be identified (through the above inclusion) with the cycle Ev µ̂
i n

i 1

µ π 1 wi wi in S2 AP
W
,R . Thus:

lim
p

Ev µ̂p Ev µ̂ .
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Since the R2-orbit of the tiling Wp is a 2-torus embedded in Ω
W
, it follows directly

that Ev µ̂p 0. The continuity of the Thurston semi-norm (Lemma 2.4) im-
plies that Ev µ̂ 0 and thus Ev µ 0. We conclude that H2 APW ,R

and the set of zeros of the asymptotic Thurston semi-norm on S2 APW ,R is
not empty and contains Ev Θ ΩW .

Assume now H2 APW ,R 0 and that the Thurston semi-norm has a

zero in S2 APW ,R .

Let c S2 APW ,R be such that c 0. The continuity of the Thurston semi-
norm and the density of rational cycles in S2 APW ,R , implies that for each se-
quence of rational cycles cl l 0 in S2 APW ,R such that lim

l
cl c, there exists

a sequence of integers nl l 0 such that nlcl is an integral cycle and a sequence of
surfaces Fl l 0 such that for each l 0:

Fl cl and lim
l

χ Fl

nl

0.

Fix now p 0 and, for each l big enough, consider the surface (with boundary)
Fl,p which is made of all the Wang tiles of Fl that are at the center of the square

1 2 p, p 1 2 2 embedded in Fl (that is to say, these tiles which are at a
distance larger than p from a singular point). Let cl,p be the chain associated to
Fl,p in C2 APW ,R . There exists a constant K 0 such that, for l big enough,

cl,p nlcl K χ Fl p2

and thus

lim
l

cl,p

cl,p
c.

Clearly W p is not empty since when l is big enough, Fl,p is not empty. From the

very construction of Fl,p we get that the chain cl,p is the image of a 2-chain cl,p
p

in C2 AP W
p ,R through the canonical projection π p : C2 AP W

p ,R

C2 AP W ,R . Let c p be an accumulation point C2 AP W
p ,R of the sequence

of normalized chains
c

p

l,p

c
p

l,p l 0

. We easily check that

cn,l
p K χ Fl p2,

which implies that c p is a non negative 2-cycle in H2 CW W
p ,R and that

πp c p c. It follows that

c π p H2 AP W
p,R , p 0.

Since it is well known (see [3] or [2]) that

Θ ΩW

p 0

H2 AP W
p,R

we deduce that W tiles the plane and that that zeros of the Thurston semi-norm
on S2 APW ,R are contained in Θ ΩW .

This ends the proof of our main Theorem.
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6. Discussion and examples

Let us examine the different situations that may occur according to the family W

of Wang prototiles we consider. One extreme situation is when W does not tile the
plane, in this case either H2 APω,R or H2 APω,R and the Thurston
semi-norm remains strictly positive in this cone. The other extreme situation is
when the colors of the edges are forgotten. In this situation, the periodic orbits
are dense in ΩW , Ev Θ ΩW is the whole simplex S2 APW ,R and the Thurston
semi-norm vanishes on the whole simplex.
Let us concentrate now on the case when H2 APW ,R and the (convex) set
of zeros of the asymptotic Thurston semi-norm (which coincides with Ev Θ ΩW )
is not empty. Different cases may occur:

Ev Θ ΩW is reduced to a single cycle c.
– If c is not rational, then W cannot tile the plane periodically. This is

exactly the situation we studied earlier for the Penrose tiling.
– If c is rational,

either c 0 which means that W can tile the plane periodi-
cally;
or c 0 and W cannot tile the plane periodically: this is
exactly what happens for the Robinson set of Wang prototiles
[9].

Ev Θ ΩW is not reduced to a single cycle. In this case we are left with a
series of questions, for instance:

– Question 1: Can we find W such that rational cycles are not dense
in Ev Θ ΩW ?

– Question 2: When does Ev Θ ΩW contain a ball in S2 APW ,R ?
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J.-M. Gambaudo: INLN, Université de Nice Sophia Antipolis- CNRS, 1361 route des

lucioles, 06560 Valbonne, France.

E-mail address: gambaudo@unice.fr

F. Gautero: Laboratoire j.-A. Dieudonné, Université de Nice - Sophia Antipolis-
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