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Singularities of Viscosity Solutions and
the Stabilization Problem in the Plane

LUDOVIC RIFFORD

ABSTRACT. We study the general problem of globally asymp-
totically controllable affine systems in the plane. As preliminaries
we present some results of independent interest. We study the
regularity of some sets related to semiconcave viscosity superso-
lutions of Hamilton-Jacobi-Bellman equations. Then we deduce
a construction of stabilizing feedbacks in the plane.

1. INTRODUCTION

This paper is concerned with the stabilization problem for a control system of the
form

(1.1) ẋ = f(x,α) = f0(x)+
m∑

i=1

αifi(x), α = (α1, . . . , αm) ∈ B̄m,

assuming that the maps f0, f1, . . . , fm are locally Lipschitz from R2 into R2. It
is well known that, even if every initial state can be steered to the origin by an
open-loop control α(t) (t ∈ [0,∞)), there may not exist a continuous feedback
control α = α(x) which locally stabilizes the system (1.1). To solve this prob-
lem, one can have recourse to discontinuous stabilizing feedbacks. In recent years,
two main approaches have been developed. The first relies on the construction
of a control-Lyapunov function [11], the second is based on “patching” together
suitable families of open loop controls [5]. In our previous papers [18] and [17],
basing on the first approach we showed the interest of considering semiconcave
control-Lyapunov functions and we derived very useful constructions of stabilizing
feedbacks. The purpose of this paper is to build upon this work in order to provide
specific results in the case of the stabilization problem in the plane. Considering a
semiconcave control-Lyapunov function V for the system (1.1) we study in detail
the nature of a certain set Σδ(V) which is included in the set of nondifferentiabil-
ity of V . We prove it to be the union of a Lipschitz submanifold of the plane of

1373
Indiana University Mathematics Journal c©, Vol. 52, No. 5 (2003)



1374 LUDOVIC RIFFORD

dimension one and of a discrete set of points (closed in R2 \ {0}). Then we use
this information to formulate the construction of a smooth stabilizing feedback
outside Σδ(V). Of course, this closed-loop feedback is not continuous. However,
we are able to indicate and to classify the types of singularities that appear. In this
way, we settle an open problem suggested by Bressan in [8].

Our paper is organized as follows: in Section 2 we develop some results about
the regularity of singular sets of semiconcave functions. In Section 3, we present
a possible classification of stabilizing feedbacks for globally asymptotically con-
trollable control systems in the plane and we detail what happens in the case of
one-dimensional control systems.

Throughout this paper, R denotes the set of real numbers, ‖ · ‖ a Euclidean
norm ofR2, B the open ball {x : ‖x‖ < 1} in R2, B̄ the closure of B and B(x, r) =
x + rB (resp. B̄(x, r) = x + r B̄) the ball (resp. the closed ball) centered at x and
with radius r . Finally, int(A) will denote the interior of a set A ⊂ Rn and co(A)
its convex hull.

2. SINGULARITIES OF VISCOSITY SOLUTIONS OF HJB EQUATIONS

The purpose of this section is to study the structure of the set of singularities of
a certain class of semiconcave functions in the plane. Namely, we will show that
if a semiconcave function is a supersolution of some Hamilton-Jacobi-Bellman
equation in R2, then a part of its singularities constitutes a C1-submanifold of
the Euclidean space. Our approach is to take into account the equation itself to
determine the structure of the singular set.

We study the functions u : Ω → R which are viscosity supersolutions of the
following Hamilton-Jacobi-Bellman equation:

(2.1) F(x,u,Du) = 0, x ∈ Ω,

where the Hamiltonian F : Ω × R × R2 → R is a continuous function (Ω is an
open set in R2) which is convex in the third variable. For the sake of brevity,
we do not recall the different notions of viscosity solutions, we refer to [6, 7, 13].
Moreover, since we will take a “subdifferential” point of view, we refer to the usual
references ([10, 12] and the viscosity bibliography) for the definitions of general-
ized gradients ∂u(x), proximal subdifferentials ∂Pu(x) (resp. superdifferentials
∂Pu(x)), and limiting gradients D∗u(x) (that we also denoted by ∂Lu(x) in
previous papers). In particular, the reader may consult our previous paper [17] for
such definitions. We proceed now to present briefly the notion of semiconcavity
and its fundamental properties that will be needed in the sequel. We shall say that
the function u : Ω → R is (locally) semiconcave on the open set Ω if for any point
x0 ∈ Ω there exist ρ, C > 0 such that

(2.2) tu(x)+ (1− t)u(y)−u(tx + (1− t)y) ≤ Ct(1− t)‖x −y‖2,

for all x, y ∈ x0 + ρB.



Singularities of Viscosity Solutions 1375

As it is easy to check, the property (2.2) amounts locally to the concavity of
x ֏ u(x) − C‖x‖2. Hence, a semiconcave function g can be seen locally as
the sum of a concave function and of a smooth function. This crucial point im-
plies immediately the following property, which implies also that the generalized
gradient of a semiconcave function equals the proximal and the viscosity superdif-
ferentials (see [6, 12]). For any x0 ∈ Ω, for any ζ ∈ ∂u(x0), we have

(2.3) u(y)−u(x0)− C‖y − x0‖
2 ≤ 〈ζ,y − x0〉 ∀y ∈ x0 + ρB,

where ρ and C are the constants given above.
In addition to that, the concavity of the function u(·)− C‖ · ‖2 implies also

the local monotonicity of the operator x ֏ −∂u(x) + 2Cx; it can be stated as
follows: For any x, y ∈ x0 + ρB we have

(2.4) ∀ζx ∈ ∂u(x), ∀ζy ∈ ∂u(y), 〈−ζy + ζx, y − x〉 ≥ −2C‖x −y‖2.

Now if we assume that the semiconcave function u is a supersolution of (2.1),
then we get that its limiting gradients satisfy:

(2.5) ∀x ∈ Ω, ∀ζ ∈ D∗u(x), F(x,u,ζ) ≥ 0.

We recall that the generalized gradient can be constructed from the limiting gra-
dients as follows:

(2.6) ∂u(x) = co(D∗u(x)).

Property (2.5) will force the set of singularities of u to be relatively benign. Many
works [2–4, 9] have been devoted to the study of the set of nondifferentiabil-
ity of semiconcave functions. Among them Alberti, Ambrosio and Cannarsa [3]
provided some upper bounds on the Hausdorff-dimension of singular sets of semi-
concave functions.

Let u : Ω→ R be a semiconcave function on an open set of R2. We define for
any k ∈ {0,1,2}

Σk(u) := {x ∈ Ω | dim(∂u(x)) = k}.

Clearly, Σ0(u) represents the set of differentiability of u and, moreover,

(2.7) Ω = Σ0(u)∪ Σ1(u)∪ Σ2(u).

We will sometimes denote the singular set (i.e.,
⋃
k≥1 Σk(u)) by Σ(u), for the sake

of simplicity.
In the paper cited above, the authors prove the following result. (We refer to

[3, 4] for the proof and to the book of Morgan [16] for a serious survey of the
Hausdorff dimension.)
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Proposition 2.1. The set Σ2(u) is a discrete of points and the set Σ1(u) has
Hausdorff dimension ≤ 1.

We are going to elaborate this result when the function u is itself a viscosity
supersolution of (2.1). In order to do so, we set for any x ∈ Ω,

Ψ(x) := min
ζ∈∂u(x)

F(x,u(x), ζ).

Since the multivalued map x ֏ ∂u(x) is upper semicontinuous and F continu-
ous, the function Ψ is lower semicontinuous from Ω into R. Our first objective is
to study for any nonnegative continuous function δ : Ω → R the structure of the
set

Sδ(u) := {x ∈ Ω | Ψ(x) < −δ(x)} ⊂ Σ1(u)∪ Σ2(u).

We claim the following result.

Theorem 2.2. LetΩ be an open set ofR2 and u : Ω→ R be a semiconcave viscos-
ity supersolution of the Hamilton-Jacobi-Bellman equation (2.1). If δ is a nonnegative
continuous function on Ω, then whenever it is not empty the set

Σδ(u) := {Σ1(u)∩ Sδ(u)} \ {Σ2(u)}

is a C1-submanifold of Ω of dimension 1.

The proof of this result is principally based on the characterization of C1

submanifolds given by Tierno in [19] and [20]. Let us present his result.
Let X be a given subset of RN . A unit vector v ∈ RN is said to be tangent to

X at p if there exists a sequence of elements xk ∈ X converging to p, such that
xk ≠ p and (xk − p)/‖xk − p‖ → v. The set

TX(p) := {λv is tangent to X at p and λ ≥ 0}

is called the Bouligand tangent cone to X at p. Furthermore, a unit vector v ∈ RN

is said to be weakly tangent to X at x if there exist two sequences of elements
xk, yk ∈ Z, both converging to p, such that xk ≠ yk for every k ∈ N and
(xk −yk)/‖xk −yk‖ → v. The set

SX(x) := {λv | v is weakly tangent to X at x and λ ∈ R}

is called the paratingent cone of X at x. Tierno proved the following result.

Theorem 2.3. Let X ⊂ RN . The set X is a C1-submanifold of dimension p if
and only if it is locally compact and for any x ∈ X, TX(x) = SX(x) ≃ Rp.

We proceed now to prove Theorem 2.2.
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Proof of Theorem 2.2. We prove that Σδ(u) is a C1-submanifold of dimen-
sion 1 in Ω whenever it is not empty. Let x0 be fixed in Σδ(u); we shall prove that
the Bouligand tangent cone and the paratingent cone to Σδ(u) at x0 coincide.

First, since ∂u(x0) is one-dimensional, we can write it as the convex hull of
two elements α and β. Define ϕ : [0,1]→ R as follows:

ϕ(t) = F(x0, u(x0), tα+ (1− t)β).

Since Ψ(x0) < −δ(x0), there exists t0 ∈ (0,1) such that ϕ(t0) < −δ(x0). Fix
now q in ∂u(x0)⊥; we prove that q ∈ TΣδ(x0).

Applying Lemma 4.5 of [1] with q and p = t0α + (1 − t0)β, we get the
existence of a Locally Lipschitz arc x : [0, σ] → BR(x0) (where σ is a constant
depending only upon u), with x(0) = x0 and such that

lim
s→0

x(s)− x0

s
= q, and

p(s) := t0α+ (1− t0)β+
x(s)− x0

s
− q ∈ ∂u(x(s)), ∀s ∈ [0, σ].

Since F(x0, u(x0), t0α+(1−t0)β) < −δ(x0), the continuity properties of F and
δ ensure that for s small enough

F(x(s),u(x(s)), p(s)) < −δ(x(s)).

On the other hand, since u is a viscosity supersolution of (2.1), we have that

∀ζ ∈ D∗u(x), F(x,u(x), ζ) ≥ 0.

Hence we deduce that ∂u(x(s)) has at least dimension 1. Furthermore, since
x0 ∉ Σ2(u), we have that x(s) ∈ Σ1(u) for s small enough. This proves that
q ∈ TΣδ(u)(x0); consequently the Bouligand tangent cone of Σδ(u) contains
∂u(x0)⊥. Let us now show that its paratingent cone is included in ∂u(x0)⊥. Let
(xk)k and (yk)k be two sequences of Σδ(u) converging to x0. Since for all k,
Ψ(xk) < −δ(xk) and Ψ(yk) < −δ(yk) and since for the ends ζixk , i = 1, 2 of
the segment ∂u(xk) (respectively ∂u(yk)) we have F(xk, u(xk), ζixk) ≥ 0, i = 1,

2 (respectively F(yk, u(yk), ζiyk) ≥ 0, i = 1, 2), we get by continuity of F and by
its convexity in the third variable that the segment ∂u(xk) (respectively ∂u(yk))
contains a subsegment (which is not a singleton) Ixk (respectively Iyk) such that

lim
k→+∞

Ixk = lim
k→+∞

Iyk = [λ, µ] ⊂ [α,β]

for the Hausdorff topology on compact sets. Now considering the monotonicity
property of the operator x ֏ −∂u(x) + 2Cx, we get that for any k and for any
couple (ζxk , ζyk) in Ixk × Iyk

〈−ζyk + ζxk , yk − xk〉 ≥ −2C‖yk − xk‖2.
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Since the limit subsegment [λ, µ] is not a singleton, we conclude easily that the
paratingent cone to Σδ(u) at x0 is included in ∂u(x0)⊥. To summarize, we
proved that

∂u(x0)
⊥ ⊂ TΣδ(u)(x0) ⊂ SΣδ(u)(x0) ⊂ ∂u(x0)

⊥.

In order to apply Tierno’s theorem it remains to show that our set Σδ(u) is
locally compact.

First of all, for any x̄ in Σδ(u) there exists a closed neighborhoodV of x̄ such
that

Σδ(u)∩V ⊂ Σ1(u)∩ Sδ(u).

On the other hand, since ∂u(x̄) has dimension one, we can write it as

∂u(x̄) = [ζ1, ζ2],

with ζ1 and ζ2 in D∗u(x̄). The convexity of F(x̄,u(x̄), ·) implies that the set

F−1(x̄,u(x̄), ·)([0,∞))∩ ∂u(x̄)

is the union of two disjoint segments I1 and I2 satisfying

ζ1 ∈ I1 and ζ2 ∈ I2.

In addition, Ψ(x̄) < −δ(x̄) implies that there exists ζ̄ ∈ ∂u(x̄) such that

F(x̄,u(x̄), ζ̄) < −δ(x̄),

and inequality (2.5) implies that D∗u(x̄) ⊂ I1 ∪ I2. Thus we can cut D∗u(x̄)
into two closed parts J1 := I1 ∩D∗u(x̄) and J2 := I2 ∩D∗u(x̄) such that

co(J1)∩ co(J2) = ∅.

Now from the continuity of F in the three variables and the continuity of the
function u, for any ε > 0, there exists a positive constant µ such that for any
ζ ∈ R2 with ‖ζ − ζ̄‖ < µ, for any x in x̄ + µB, we have

F(x,u(x), ζ) < Ψ(x̄)+ ε,(2.8)

and

δ(x̄)−
ε

2
< δ(x) < δ(x̄)+

ε

2
.(2.9)
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On the other hand, the upper semicontinuity of D∗(·) implies the existence of a
constant ρ ∈ (0, µ) such that for any x ∈ Ω with ‖x − x̄‖ < ρ we have

D∗u(x) ⊂ D∗u(x̄)+ µB.

Therefore if we consider x ∈ Σδ(u)∩V such that ‖x̄ − x‖ < ρ, then

(2.10) Ψ(x) ≤ Ψ(x̄)+ ε.

As a matter of fact, we know that D∗u(x) is included in the union of the sets
J1 + µB and J2 + µB and that Ψ(x) < −δ(x); this means that D∗u(x) inter-
sects both sets and consequently that d(ζ̄, ∂u(x)) < µ, which implies directly
Ψ(x) < Ψ(x̄) + ε. Hence applying the inequalities (2.10), (2.8) and (2.9) with
ε = (−Ψ(x̄)− δ(x̄))/2 > 0, we get that

(2.11) Σδ(u)∩V ∩ B(x̄, ρ) =

{
x ∈ V ∩ B(x̄, ρ) | Ψ(x) ≤ −δ(x)− ε

2

}
.

Since the function Ψ is lower semicontinuous, we conclude from (2.11) that the
set on the left in (2.11) is closed and hence that Σδ(u) is locally compact. The
proof is complete. ❐

Remark 2.4. We notice that if we set Σ̃δ(u) = Σ1(u)∩Sδ(u), then we have,
by the same arguments of the previous proof, that for any x ∈ Σ̃δ

TΣ̃δ(u)(x) = SΣ̃δ(u)(x) = ∂u(x)
⊥.

However, the set Σ̃δ(u) is not locally compact, so we cannot deduce that it is a
C1-submanifold of the plane.

Let us notice that the multivalued map x ֏ ∂u(x)⊥ is continuous on the
set Σδ(u). Furthermore, if we assume that the function u is a viscosity solution
of (2.1), then the multivalued map x ֏ D∗u(x) (and a fortiori x ֏ ∂u(x)) is
continuous on the set Σδ(u). Of course the result of Theorem 2.2 does not hold
in dimension n ≥ 2. Actually the presence of Σk(u) for k ≥ 3 complicates the
situation. Some precise analysis of the different parts of the sets Σk(u) (k ∈ [1, n])
can lead to interesting results. Here we just present a one such result; one can adapt
the preceding proof to obtain it.

Theorem 2.5. Let Ω be an open set of RN , let δ : RN → R be a nonnegative
continuous function and u : Ω → R be a semiconcave viscosity supersolution of the
Hamilton-Jacobi-Bellman equation (2.1). If the Hamiltonian F is assumed to be
continuous in the three variables and convex in p, and if moreover Σ(u) = Σk(u)
for some k ∈ [1, N], then whenever the set Σ(u) ∩ Sδ(u) is nonempty, it is a C1-
submanifold of Ω of dimension N − k.
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We can deduce as a corollary a general result concerning semiconcave viscosity
solutions.

Corollary 2.6. Let Ω be an open set of RN and u : Ω → R be a semiconcave
viscosity solution of the Hamilton-Jacobi-Bellman equation

F(x,u,Du) = 0, x ∈ Ω.

If the Hamiltonian F is assumed to be continuous in the three variables and strictly
convex in p, and if, moreover, Σ(u) = Σk(u) for some k ∈ [1, N], then whenever
the set Σ(u) is nonempty, it is a C1-submanifold of Ω of dimension N − k.

Our objective now is to detail the shape of the set Sδ(u). In order to complete
the result of Theorem 2.2 we need to introduce some new notations. Let us first
begin by two lemmas.

Lemma 2.7. Under the assumptions of Theorem 2.2, if x̄ ∈ Σ2(u), then

(2.12)
⋂

µ>0

∂u((x̄ + µB̄) \ {x̄}) ⊂ ∂∂u(x̄),

where ∂∂u(x̄) denotes the topological boundary of the set ∂u(x̄).

Proof. Let ζ be an element of the left part of (2.12). There exists a sequence
(xn)n converging to x̄ and a sequence (ζn)n converging to ζ such that for any
n, ζn ∈ ∂u(xn). Now considering the monotonicity property of the operator
−∂u(·)+ 2Cx (locally for some constant C), we get that for any ζ̄ ∈ ∂u(x̄),

〈
−ζn + ζ̄,

xn − x̄

‖xn − x̄‖

�
≥ −2C‖xn − x̄‖.

Furthermore, if ζ does not belong to the boundary of ∂u(x̄), then there exists a
positive constant ρ such that ζ + ρB̄ ⊂ ∂u(x̄). Hence applying the inequality
above with ζ̄ = ζ − ρv, where v denotes some cluster point of the sequence
(xn− x̄)/‖xn− x̄‖)n, gives −ρ‖v‖2 ≥ 0. We deduce that the inclusion is true. ❐

Let x̄ ∈ Σ2(u); the topological boundary ∂∂u(x̄) of the generalized gradient
∂u(x̄) is a closed path. We can look at the gradients ζ ∈ ∂∂u(x̄) such that

F(x̄,u(x̄), ζ) < −δ(x̄);

let us denote by ∂δ∂u(x̄) the set of these gradients. We have the following lemma.

Lemma 2.8. Under the assumptions of Theorem 2.2, if x̄ ∈ Σ2(u), then the set
∂δ∂u(x̄) has a finite number of connected components, each of which is a segment.
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Proof. If the set is empty, the lemma is vacuous. So let us assume that
∂δ∂u(x̄) is nonempty. Since this set is convex and compact, the Krein-Milman
Theorem asserts that it is the convex hull of its extreme points. Moreover, since
the function u is a supersolution of (2.1), any extreme point ζ̄ of ∂u(x̄) satisfies

F(x̄,u(x̄), ζ̄) ≥ 0.

The convexity of the map p ֏ F(x̄,u(x̄), p) implies immediatly that each con-
nected component of ∂δ∂u(x̄) is a segment with length bounded below by a
positive constant µ. Now if we consider a disc D containing ∂u(x̄) such that its
center belongs to int(∂u(x̄)), then by the projection of ∂δ∂u(x̄) on the bound-
ary of this disc (i.e., a circle), we deduce the existence of a polygon with vertices
on the circle and with edges of length greater than some µ′ > 0. We deduce that
the number of components of ∂δ∂u(x̄) is finite. ❐

We can now partition the set Σ2(u) as follows:

Σ2(u) =
⋃

k∈N∗

Σ2
δ,k(u),

where Σ2
δ,k(u) := {x ∈ Σ2(u) | ∂δ∂u(x) has k connected components}.

Proposition 2.9. Let Ω be an open set of R2 and u : Ω → R be a semicon-
cave viscosity supersolution of the Hamilton-Jacobi-Bellman equation (2.1). If δ is a
nonnegative continuous function on Ω, then whenever it is not empty, the set

Eδ(u) := {Σ1(u)∪ Σ2
δ,2(u)} ∩ Sδ(u)

is a Lipschitz submanifold of Ω of dimension 1.

Proof. We have to prove that for any x̄ inEδ(u) there exists a neighbourhood
V of x̄ in Ω such that Eδ(u)∩V can be viewed as the image of the line (−1,1)×
{0} (in R2) by a bilipschitz homeomorphism from B2 into V . Let us consider
x̄ ∈ Eδ(u); different cases appear.

(a) x̄ ∈ Σδ(u). Then we know by Theorem 2.2 that there exists a neighbour-
hood V of x̄ such that V ∩ Sδ(u) is a C1 submanifold of dimension 1. Since
x̄ ∉ Σ2(u), it can be separated from Σ2(u). Hence reducing if necessary the
neighbourhood V , we have that Sδ(u) and Eδ(u) coincide in this set. We have
the desired conclusion for x̄.

(b) x̄ ∈ Σ2
δ,2(u). Then for any connected component Ki (i = 1, 2) of

∂δ∂u(x̄), there exists a unique qi ∈ R2 satisfying

∃pi ∈ Ki, ∀p ∈ ∂u(x̄), 〈qi, p − pi〉 ≥ 0.
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Therefore, as in the proof of Theorem 2.2, we can refer to Lemma 4.5 of [1]
to associate with any connected component Ki a unique Lipschitz arc xi(·) :
[0, σ] → x̄ + rB (where σ and r are some positive constants sufficiently small),
with x(0) = x̄ and such that

lim
s→0

x(s)− x̄

s
= qi, and

pi(s) := pi +
x(s)− x̄

s
− qi ∈ ∂u(xi(s)), ∀s ∈ [0, σ].

We claim that there exists V , a neighbourhood of x̄ in Ω, such that

Eδ(u)∩V = X1 ∪X2,

where the set X1 (resp. X2) denotes the graph of the arc x1(·) (resp. x2(·))
on a small interval [0, τ] with τ > 0. Let us prove this claim; we argue by
contradiction.

Let us assume that there exists a sequence (yk)k (in Ω), converging to x̄, such
that

∀k, yk ∈ Eδ(u) \ {X1 ∪X2}.

By Lemma 2.7, if we consider a sequence (ζk)k∈N of gradients in ∂u(yk) such
that F(yk, u(yk), ζk) < −δ(yk), then any cluster point of this sequence belongs
to K1 ∪ K2. Hence considering a subsequence of (ζk)k∈N we can assume that
lim supk→∞ ∂u(yk) ⊂ K1. Furthermore, we remark that any cluster “point” of
(∂u(yk))k∈N for the Haussdorf topology is an interval with ends α and β (in K1)
satisfying

(2.13) F(x̄,u(x̄),α) ≤ −δ(x̄), F(x̄,u(x̄), β) ≤ −δ(x̄).

For any k ∈ N, we can set Pk := projX(yk) the projection of yk on the set X :=
X1∪X2. Since yk does not belong to X, we have that vk = (yk−Pk)/‖yk−Pk‖ is
well-defined. Let us denote by v a cluster point of (vk)k∈N (we assume henceforth
that vk → v). First of all, if there exists a subsequence (yℓ)ℓ (with ℓ → ∞) such
that for any ℓ, Pℓ = x̄, then we deduce by the semiconcavity of u that there exists
a subsegment [α,β] of K1 (with α ≠ β) satisfying that

∀ζ ∈ ∂u(x̄), ∀ζ′ ∈ [α,β], 〈ζ − ζ′, v〉 ≥ 0.

On the other hand, by construction of Pk, we have

〈v,q1〉 ≤ 0 and 〈v,q2〉 ≤ 0.

The three inequalities and (2.13) lead to a contradiction (we let the reader prove
this fact).
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Consequently, we can assume that the projection Pk is always on the arc X1 \

{x̄}. Using the property of the projection and the semiconcavity of u, we get the
existence of a subsegment [α,β] (with α ≠ β) of K1 such that ∀ζ, ζ′

〈v,q1〉 = 0 and 〈ζ − ζ′, v〉 ≥ 0.

Again we get a contradiction.

(c) If x̄ ∈ Σ1(u) ∩ Σ2(u), then the situation is the same as in the pre-
vious case. We can construct two Lipschitz arcs around x̄ and conclude by
Remark 2.4. ❐

We are now able to detail the shape of the set Sδ(u).

Theorem 2.10. Let Ω be an open set of R2 and u : Ω → R be a semicon-
cave viscosity supersolution of the Hamilton-Jacobi-Bellman equation (2.1). If δ is a
nonnegative continuous function on Ω, then

Sδ(u) = Eδ(u)∪
[ ⋃

k≥3

Σ2
δ,k(u)

]
.

Moreover, the closure of Eδ(u) is a locally finite union of Lipschitz ∂-submanifolds
(i.e., manifolds with boundary) of Ω of dimension 1 and the set

⋃
k≥3 Σ2

δ,k(u) is a
closed discrete set of points.

The proof is left to the reader.

Remark 2.11. We notice that, like in the case of the elements of Σ2
δ,2(u) (see

the proof of Proposition 2.9), when x̄ belongs to some Σ2
δ,k(u) for some k ≥ 3,

any segment Ki can be associated with a Lipschitz arc xi(·) such that

lim
s→0

xi(s)− x̄

s
= qi,

with
〈qi, p − pi〉 ≥ 0, ∀p ∈ ∂u(x̄),

and where pi is some point of Ki.

3. THE STABILIZATION PROBLEM IN THE PLANE

3.1. The general statement. Let us assume now that the control system is
affine in the control, that is

(3.1) f(x,α) = f0(x)+
m∑

i=1

αifi(x), ∀(x,α) ∈ R2 × B̄m,
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where the f0, . . . , fm are locally Lipschitz functions from R2 into R2 and where
B̄m is the closed unit ball of Rm. Our study is concerned particularly with those
systems which are globally asymptotically controllable at the origin (we refer for
instance to our previous papers for the definition). We proved in [18] that such
systems always admit a semiconcave control-Lyapunov function. Then we ex-
ploited this fact to produce in [17] a nice discontinuous stabilizing feedback. Let
us recall briefly the course to be followed to get such a feedback from the exis-
tence of a semiconcave control-Lyapunov function. In order to be complete, let us
before recall the definition of a control-Lyapunov function for the system (3.1).

Definition 3.1. A control-Lyapunov function (clf ) for the system (3.1) is a
continuous function V : R2 → R which is positive definite (i.e., V(0) = 0 and
V(x) > 0 for x ≠ 0), proper (i.e., V(x) → ∞ when ‖x‖ → ∞), and which is a
viscosity supersolution of

(3.2) F(x,V(x),DV(x)) = 0,

with F(x,u,p) := −u+maxα∈A{−〈f(x,α),p〉}.

Let us assume from now on that the system (3.1) is globally asymptotically
controllable. By the main result proved in our paper [18] there exists a control-
Lyapunov function V : R2 → R which is semiconcave on R2 \ {0}. Hence we are
able to define as in [17] the following function

(3.3) ΨV (x) := min
α∈A

max
ζ∈∂V(x)

〈ζ, f (x,α)〉.

This function is upper semicontinuous on Ω := R2 \ {0}; moreover, we let the
reader show that

(3.4) ∀x ∈ Ω, Ψ(x)+ ΨV (x) = −V(x),

where the function Ψ is the one associated with the Hamiltonian F in the previ-
ous section. Hence still using our notations, we obtain that for any nonnegative
continuous function δ : Ω→ R, we have

Sδ(V) = {x ∈ Ω | ΨV (x) > δ(x)− V(x)}.

We will construct a feedback on the open set D := R2 \ [Sδ(V)∪ {0}]. We omit
the proof of the following proposition. A similar result is given in [17]; note that
this proof is only based on Michael’s theorem (see [15]).

Proposition 3.2. Let E be an open dense set of R2 and G : E → 2Bm be a
multivalued map. If for any x in E, G(x) is nonempty and defined as follows

G(x) = {α ∈ Bm | max
ζ∈∂V(x)

〈f(x,α), ζ〉 ≤ −λ(x)},
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where λ : E → R is a lower semicontinuous function satisfying

λ(x) ∈ (0,−ΨV (x)), ∀x ∈ E,

then there exists a continuous selection α : E → Bm such that

(3.5) ∀x ∈ E, max
ζ∈∂V(x)

〈f(x,α(x)), ζ〉 ≤ −λ(x).

From this result, following the proof of Theorem 4 in [17], we can apply
Proposition 3.2 with λ := V/2 (that is, δ := V/2) and E := {x ∈ R2 \ {0} |
ΨV (x) < −V(x)/2}. We get the following result.

Theorem 3.3. Under the assumptions of Proposition 3.2, there exists a feedback
α : R2 → Bm, which is continuous on D, for which the closed-loop system

(3.6) ẋ(t) = f(x(t),α(x(t)))

is globally asymptotically stable in the sense of Carathéodory. Moreover, we have

(3.7) ΨV (x(t)) ≤ −λ(x(t)), ∀t > 0,

along the Carathéodory trajectories of (3.6).

Of course, we encourage the reader to have a look at [17] for a good compre-
hension of this result.

3.2. One-dimensional control systems without drift. Let us assume that
the control system is of the form

(3.8) ẋ = αg(x),

where the control α belongs to the interval [a, b] and g is a C2 vector field on the
plane. Let there be given a one-dimensional system which is globally asymptoti-
cally controllable; our aim is to make precise the nature of a stabilizing feedback.
We saw in [17] that such a feedback exists and that, in addition, it is repulsive for
some closed set S. Here we will prove that the repulsive set S can be taken to be
a C1 submanifold of the state space of codimension 1. Since this result holds for
any dimension, we will assume in the sequel that g is indeed C2 from Rn into Rn.

If the control α = 0 does not belong to the interval [a, b], then the globally
asymptotically controllable system (3.8) is obviously globally stabilizable by a con-
stant feedback (we let the reader prove this claim). Consequently, without loss of
generality, we can assume that [a, b] = [−1,1]. We have the following result.

Theorem 3.4. If the system (3.8) is C2, globally asymptotically controllable and
not continuously stabilizable, then there exists a C1-submanifold (without boundary)
M of Rn \ {0} of codimension one and a stabilizing feedback α : Rn → [−1,1] with
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α(0) = 0 and α(x) = +1 or −1 elsewhere such that the feedback α is continuous
outside M ∪ {0}. The feedback α(·) is stabilizing in the sense of Carathéodory and
moreover,

x(t) ∉M, ∀t > 0.

In particular, the feedback is constant along the stabilizing trajectories for positive
times.

Proof. We have to pass through an exact viscosity solution of some Hamilton-

Bellman-Jacobi equation. Up to set Ṽ := V 3 we can assume that V : Rn → R is a
semiconcave (outside the origin) viscosity supersolution of

(3.9) −3V(x)+H(x,DV(x)) = 0, x ≠ 0.

Equivalently, for any x ≠ 0, for any ζ ∈ ∂LV(x),

min
α∈[−1,1]

〈αg(x), ζ〉 ≤ −3V(x).

Furthermore, we know by Theorem 2 of [17] that, for any x0 ∈ R
n, there exists a

trajectory of (3.8) with x(0) = x0 such that V(x(t)) ≤ V(x(0))e−3t . Therefore
there exists a smooth (C∞) positive definite function W : Rn → R satisfying

(3.10) W(x(t)) ≤ W(x(0))e−2t ,

for any x0 ∈ R
n and any trajectory x(·) of (3.8) with x(0) = x0. We define the

following value function

(3.11) v(x) := inf
α∈A

J(x,α),

where the cost to minimize is

J(x,α) :=
∫ +∞

0
etW(xα(t))dt,

where xα(·) denotes the trajectory of (3.8) which corresponds to the control α
and with x(0) = x0. Let us remark that by (3.10) the function v is well-defined;
by classical arguments, it is a viscosity solution of

(3.12) −v(x)+H(x,Dv(x)) = 0, x ≠ 0.

Moreover, since the dynamics g and the function W are sufficiently smooth (at
least C2), it can be shown that v is in fact semiconcave on RN \ {0} (we refer to
[6] or [14] for similar results).

We stress an outstanding property of the minimization problem associated
with the value function v. Since our dynamics are one-dimensional, the reader
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will be able to prove that the control α remains constant almost everywhere (in t)
along the minimizing trajectories of our minimization problem (of course some
minimizing trajectories exist by (3.10)). Hence we deduce that we can see v as
follows: v(x) = min{v+(x), v−(x)}, where the functions v+ and v− are defined
by

v+(x) :=
∫∞

0
etV(x1(t))dt, and

v−(x) :=
∫∞

0
etV(x−1(t))dt;

the reader has probably understood that x1(·) (resp. x−1(·)) refers to a trajectory
corresponding to the control α ≡ 1 (resp. α ≡ −1).

These functions are C1 where they are finite. We deduce that for any x ∈ Rn,

∂v(x) ⊂ co(∇v+(x),∇v−(x)).

Thus Σ(u) = Σ1(u). Applying Theorem 2.5 of the second section, we get that
Σ1(u) is a C1 submanifold of dimension n − 1. We conclude by Section 2.3 of
[17]. ❐

Remark 3.5. Theorem 3.4 holds in the case of a locally Lipschitz one di-
mensional control system. The proof is the same, although the function v is no
longer semiconcave. Actually v is locally Lipschitz, so we get the existence of a
submanifold of codimension 1 which is not C1 but only locally Lipschitz.

Remark 3.6. In fact, by classical techniques, we can regularize the submani-
fold M into a closed smooth submanifold of R2 \ {0}.

3.3. Toward a possible classification. We return now to the general sta-
bilization problem in the plane. We consider the affine control system (3.1)
and the results that we developed in Section 3.1. In particular we have the
control-Lyapunov function V verifying (3.2) and Theorem 3.3 gives us a stabi-
lizing feedback α satisfying the conclusions of this result with λ = V(x)/2 and
E = R2 \(Sδ(V)∪{0}). We stress that the inequality (3.7) is satisfied along all the
Carathéodory trajectories of the dynamical system (3.6). Let us classify the sin-
gularities in the manner conjectured by Bressan in [8]. Different types of points
appear. (For the sake of simplicity we set A := Bm.)

• Let us consider x̄ ∈ Σ2(V)∩ Sδ(V) isolated in Sδ(V). Since x̄ is isolated in
Sδ(V), there exists a neighbourhood V (let us say a little ball centered at x̄) of x̄
such that

(3.13) ∀x ∈ V \ {x̄}, ΨV (x) ≤ δ(x)− V(x).

If ΨV (x̄) < 0, by setting inV a continuous function δ̃ satisfying δ̃(x̄) = ΨV (x̄)+
V(x̄) ≥ 0 and δ̃(x) ≥ max{0,ΨV (x)+ V(x)} for x ≠ x̄, we get that x̄ ∉ Sδ̃(u)
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and consequently this singularity can be eliminated. So without loss of generality,
we can assume that ΨV (x̄) ≥ 0 and that (3.13) is satisfied, i.e., for any x in
V \ {x̄}, ∀ζ ∈ ∂V(x),

〈ζ, f (x,α(x))〉 ≤ δ(x)− V(x) < 0,

which implies

(3.14) ∀x ∈ V \ {x̄}, ‖f(x,α(x))‖ ≥
V(x)− δ(x)

LV
,

where LV denotes the Lipschitz constant of the function V in V . Furthermore,
let us remark that, by the technique of regularization used in Theorem 5 of [17],
we can also assume that the vector field f(x,α(x)) is smooth in the neighbour-
hood V . We can now make precise the nature of the singularity x̄; we claim the
following lemma.

Lemma 3.7. The convex compact set f(x̄,A) has dimension two, and 0 ∈

int(f (x,A)).

Proof. We argue by contradiction. Let us assume that dim(f (x̄, U)) = 1.
This implies that it can be written as the convex hull of two vectors v1 and

v2, i.e., f(x̄,A) = [v1, v2]. Hence by continuity of the function f and by
(3.14), the vector field f(x,α(x)) takes values in two disjoint neighbourhoods
of [v1, v2] ∩ {v : ‖v‖ ≥ (V(x) − δ(x))/LV }. If the vector field takes values
only in one of these two neighbourhoods on V , then this implies that ΨV (x̄) ≤
δ(x) − V(x)! So both sets are attained which is impossible by continuity of the
flow of f(x,α(x)) (recall that we assumed it to be smooth). Consequently we
deduce that 0 can be separated from the convex set [v1, v2]; hence there exists
a ∈ R2 \ {0} and a positive constant µ such that

∀v ∈ [v1, v2], 〈v,a〉 ≥ µ.

Thus by (3.7), the circle {x ∈ V : ‖x− x̄‖ = ρ} (with ρ sufficiently small) is sent
by the flow of f(x,α(x)) into a closed path which is trivial in R2 \ {x̄}. Since
the circle that we consider is not contractible in R2 \ {x̄}, we get a contradiction
by continuity of the flow. Finally, we deduce that f(x̄,U)) has dimension 2. Let
us now prove the second part of the lemma.

Again we argue by contradiction. If 0 ∉ int(f (x̄,A)), then there exists a
vector a ∈ R2 of norm 1 such that 0 ∉ (a + f(x̄,A)). Hence by (3.14) there
exists a constant µ such that

∀x ∈ V , 〈f(x,α(x)), a〉 ≥ µ.

We conclude as before. ❐
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Finally, we conclude that f(x̄,A) is a two-dimensional compact convex set.
In addition, we can regularize the field in a neighbourhood of x̄ in order to obtain
a field of the form f(x,α(x)) = β(x − x̄), where β is some positive constant
corresponding to the size of f(x̄,A) (see Figure 3.1).

FIGURE 3.1. Repulsive point

• x̄ ∈ Eδ(V). In this case the set Eδ(V) can be seen locally as the image of
the segment (−1,1) of the real line by a bilipschitz map. We claim the following
lemma.

Lemma 3.8. There exists a neighbourhoodV of x̄ and a positive constant ρ such
that for any x ∈ V , for any s ∈ projEδ(V)(x),

(3.15) 〈x − s, f (x,α(x))〉 ≥ ρ‖x − s‖.

Proof. By (2.11), there exists a neighbourhood V (a ball centered at x̄) of x̄
such that

Σδ(V) = {x ∈ V | Ψ(x) ≤ −δ(x)− ε},
where ε is some positive constant. Hence by modifying the feedback α in V
(using Proposition 3.2) we can assume that

ΨV (x) ≥ −V(x)+ δ(x)+ ε if x ∈ Σδ(V)∩V ,(3.16)

max
ζ∈∂V(x)

〈ζ, f (x,α(x))〉 ≤ −V(x)+ δ(x) if x ∈ V \ Σδ(V).(3.17)

On the other hand, since the set Σδ(V) ∩ V is a C1 submanifold of the neigh-
bourhood V and since TBΣδ(V) = ∂V(x)

⊥ (we refer to Theorem 2.2), we have that
for any s ∈ Σδ(V),

(3.18) NCΣδ(V)(s) = N
C
Eδ(V)

(s) = {t(ζ1(s)− ζ2(s)), t ∈ R},

where ∂V(s) = [ζ1(s), ζ2(s)]. In fact, by Remark 2.4, we conclude also that for

any s ∈ Σ̃δ(V),

(3.19) ∀s ∈ Σ̃δ(V), NCEδ(V)(s) = {t(ζ1(s)− ζ2(s)), t ∈ R}.
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Since Eδ(V)∩D is a Lipschitz submanifold of dimension 1, it divides the ball V
into two open connected components U1 and U2. Furthermore, by convexity of
the Hamiltonian F and since V is a viscosity supersolution of (3.2), we get that
if x ∈ U1, then ∂V(x) is included in some J1 which is a neighbourhood of a
connected component of F(x̄, V(x̄), ·)−1([0,+∞)) and if x ∈ U2, then ∂V(x)
is included in the other component J2. We conclude that if the ball V is chosen
small enough, then for any x in U1 such that s = projEδ(V) ∈ Σ1(V) we have

〈ζ1(s), f (x,α(x))〉 ≤ δ(x)− V(x)+
ε

4
, and

〈ζ2(s), f (x,α(x))〉 ≥ δ(x)− V(x)+
3ε
4
.

Hence we compute for x ∈ U1 such that s := projEδ(V)(x) ∈ Σ
1(V)

〈f(x,α(x)), x − s〉

= 〈f(x,α(x)), t(ζ2(s)− ζ1(s))〉 (t ≥ 0, since x ∈ U1)

= −t〈f(x,α(x)), ζ1(s)〉 + t〈f(x,α(x)), ζ2(s)〉

≥ −t

(
δ(x)− V(x)+

ε

4

)
+ t

(
δ(x)− V(x)+

3ε
4

)

≥
ε

2

[
‖x − s‖

‖ζ2(s)− ζ1(s)‖

]
.

≥
ε

2 diam(∂V(s))
‖x − s‖.

Now let us consider x in U1 such that s := projEδ(V)(x) belongs to Σ2
δ,2(V).

Since x is in U1, we have that x − s ∈ NP
U2

(s). On the other hand, since U2 is

epi-Lipschitz, we get by classical nonsmooth calculus (we refer to the book [12]
for any nonsmooth notion) that

NP
U2

(s) ⊂ NC
U2

(s) = co{ lim
sk→s

ζ(sk) | ζ(sk) ∈ N
C

U2

(sk) and sk ∈ Σδ(V)}.

This implies obviously that

NC
U2

(s) =
{
t1(ζ

′
1 − ζ1)+ t2(ζ

′
2 − ζ2) | t1 ≥ 0, t2 ≥ 0

}
,

where ζ1 and ζ′1 (resp. ζ2 and ζ′2) are in K1 (resp. in K2) and such that

〈ζ1, f (x,α(x))〉 ≤ δ(x)− V(x)+
ε

4
, and

〈ζ′1, f (x,α(x))〉 ≥ δ(x)− V(x)+
3ε
4
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(resp. replace ζ1 and ζ′1 by ζ2 and ζ′2). We conclude as before and so we prove
our lemma. ❐

FIGURE 3.2. Around Eδ(V)

In fact, following the previous proof, we get that for any x̄ ∈ Eδ(V), there
exists a neighbourhoodV and two controlsα1 and α2 in A such that, if we denote
by U1 and U2 the two connected components of V \ Eδ(V), we have

∀x ∈ U1, ∀ζ ∈ ∂V(x), 〈ζ, f (x,α1)〉 ≤ δ(x)− V(x)+ µ,

and
∀x ∈ U2, ∀ζ ∈ ∂V(x), 〈ζ, f (x,α2)〉 ≤ δ(x)− V(x)+ µ,

where µ is some positive constant. By (3.15), we deduce that there exists ρ > 0
such that for any y in V ∩Eδ(V) = S, for any ζ ∈ NCS (y), there exists i = 1, 2
satisfying

〈ζ, f (x,αi)〉 ≥ ρ‖ζ‖.

We are in the situation of Figure 3.2. We remark that, if we paste together all the
αi’s which depend upon the x̄’s (using a smooth partition of unity), we regularize
our feedback α(·) into a smooth feedback. This remark will enable us later to
obtain a stabilizing feedback which will be smooth in our dense open set D.

• x̄ ∈
⋃
k≥3 Σ2

δ,k(V). As in the first case, we prove the following lemma.

Lemma 3.9. The convex compact set f(x̄,A) has dimension two.

Proof. By definition, ∂δ∂V(x̄) has at least three components K1, K2, K3.
Moreover, on any Ki we have

max
ζ∈Ki

min
α∈A

〈ζ, f (x,α)〉 > δ(x)− V(x) = −
V(x)

2
.
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FIGURE 3.3. Repulsive multiple point

On the other hand, for the ends ζ1
i and ζ2

i of the segment Ki we have

min
α∈A

〈ζ1
i , f (x,α)〉 ≤ −V(x).

Since ∂V(x̄) has at least three extreme points (corresponding to the ends of the
Ki’s), we deduce that for any of them we can associate a velocity f(x̄,α), that is
at least three distinct velocities. Hence f(x̄,A) has dimension two. ❐

We explain what happens when x̄ belongs to Σ2
δ,3(V). In that case from

Remark 2.11, each component Ki can be associated with a Lipschitz arc xi(·). On
the other hand, we know by Lemma 3.8 that if we are in some sufficiently small
neighbourhood of some xi(t) (t > 0) then (3.15) holds. Hence we assert that
there exists a continuous and even a smooth feedback α on some ball V centered
at x̄ (minus Sδ(V)) satisfying that for any x ∈ V , for any s ∈ proj

Sδ(V)
(x),

(3.20) 〈x − s, f (x,α(x))〉 ≥ ρ‖x − s‖.

In view of the second case, we are in the situation of figure 3.3.

Remark 3.10. In the case of control system with scalar control:

ẋ = f0(x)+α1f1(x),

the set of velocities is always a segment, hence it has dimension 1. In this case, it
appears that repulsive multiple points cannot arise.
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• x̄ ∈ ∂Eδ(V). From the proof of Theorem 2.10 we know that the Clarke
tangent cone to Eδ(V) at x̄ is a semiline which satisfies

TC
Eδ(V)

(x̄) ⊂ K⊥,

where K = ∂V(x̄) if x̄ ∈ Σ1(V) and K = K1 if x̄ ∈ Σ2(V) (with the same
notations as in the proof of Theorem 2.10). Therefore since 0 ∉ ∂V(x̄) (because
x̄ ∈ ∂Eδ(V)) two cases will appear. Before explaining what happens, let us prove
this result. for any ζ ∈ D∗V(x̄),

Lemma 3.11. There exists ᾱ ∈ A such that

(3.21) 0 ≠ f(x̄, ᾱ) ∈ K⊥− ,

where K⊥− := {p ∈ K⊥ | 〈ζ,p〉 ≤ 0, ∀ζ ∈ K}.

Proof. We treat the case where x̄ ∈ Σ1(V) and K = ∂V(x̄); the other case
x̄ ∈ Σ2(V) is left to the reader. Since x̄ is on the boundary of Eδ(V), we have
ΨV (x̄) = δ(x̄)− V(x̄). Hence we get the existence of α0 ∈ A such that

∀ζ ∈ ∂V(x̄, 〈ζ, f (x̄,α0)〉 < 0.

On the other hand, there exists α ∈ A such that 〈ζ, f (x̄,α)〉 ≤ −V(x̄), for any
ζ ∈ D∗V(x̄). Since ∂V(x̄) is a segment, we can apply this property with both
ends ζ1, ζ2 of the segment. That is, there exist two controls α1 and α2 in A such
that

〈ζ1, f (x̄,α1)〉 ≤ −V(x̄) and 〈ζ2, f (x̄,α2)〉 ≤ −V(x̄).

Actually we want to prove that K⊥− \ {0} and f(x̄,A) have a nonempty intersec-
tion. But if 〈ζ1 − ζ2, f (x̄,α1)〉 ≥ 0, this implies that

〈ζ2, f (x̄,α1)〉 ≤ 〈ζ1, f (x̄,α1)〉 ≤ −V(x).

Thus we get that ΨV (x̄) ≤ −V(x̄)! This is impossible. Doing the same remark for
α2 we conclude that the convex set co{f(x̄,α1), f (x̄,α2), f (x̄,α0)} contains a
control ᾱ in A satisfying (3.21). ❐

Let us present the two cases.

(a) TC
Eδ(V)

(x̄) = K⊥− . By Lemma 3.11 there exists a neighbourhood V of x̄ and

a feedback α(·) : V → A which is smooth on V \ Sδ(V) and such that α(·)
is continuous at x̄ with α(x̄) = ᾱ. We are in the situation of an incoming
cutedge (see Figure 3.4). In particular the feedback α(·) can be taken such
that there is only one trajectory starting from a point of V \ Sδ(V) which
attains the singular set Sδ(V).
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FIGURE 3.4. Incoming cutedge

(b) TC
Eδ(V)

(x̄) = −K⊥− . By Lemma 3.11 there exists a neighbourhood V of x̄ and

a feedback α(·) : V → A which is smooth on V \ Sδ(V) and such that α(·)
is continuous at x̄ with α(x̄) = ᾱ. We are in the situation of an outgoing
cutedge (see Figure 3.5). In this case the singular set is repulsive.

FIGURE 3.5. Outgoing cutedge

In conclusion, considering a feedback α(·) given by Theorem 3.2 with λ =
V/2 (≡ δ = −V/2), we proved that up to regularizing α(·) we can assume that it
is smooth on the open dense setD and that it can be extended continuously to the
singularities of type “incoming cutedge”. Hence we obtain a stabilizing feedback
which displays only five types of singularities in R2 \ {0}.
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