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RANGE OF THE GRADIENT OF A SMOOTH BUMP

FUNCTION IN FINITE DIMENSIONS

LUDOVIC RIFFORD

(Communicated by Jonathan M. Borwein)

Abstract. This paper proves the semi-closedness of the range of the gradient
for sufficiently smooth bumps in the Euclidean space.

Let RN be the Euclidean space of dimension N . A bump on RN is a function
from RN into R with a bounded nonempty support. The aim of this short paper is
to partially answer an open question suggested by Borwein, Fabian, Kortezov and
Loewen in [1]. Let f : RN → R be a C1-smooth bump function; does f ′(RN ) equal
the closure of its interior? We are not able to provide an answer, but we can prove
the following result.

Theorem 0.1. Let f : R
N → R be a CN+1-smooth bump. Then f ′(RN ) is the

closure of its interior.

We do not know if the hypothesis on the regularity of the bump f is optimal in
our theorem when N ≥ 3. However, the result can be improved for N = 2; Gaspari
[3] proved by specific two-dimensional arguments that the conclusion holds if the
bump is only assumed to be C2-smooth on the plane. Again we cannot say if we
need the bump function to be C2 for N = 2. We proceed now to prove our theorem.

1. Proof of Theorem 0.1

For the sequel, we set F := f ′ = ∇f . Moreover, since the theorem is obvious for
N = 1 we will assume that N ≥ 2. The proof is based on a refinement of Sard’s
Theorem that can be found in Federer [2]. Let us denote by Bk, Ck (k ∈ {0, · · · , N})
the sets defined as follows:

Bk := {x ∈ R
N : rankDF (x) ≤ k},

Ck := {x ∈ R
N : rankDF (x) = k}.

Of course Ck ⊆ Bk and BN = RN . Theorem 3.4.3 in [2] says that if the function
F is CN -smooth, then for all k = 0, · · · , N − 1,

Hk+1 (F (Bk)) = Hk+1 (F (Ck)) = 0,(1.1)

where Hk+1 denotes the (k + 1)-dimensional Hausdorff measure.
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Fix x̄ in RN and let us prove that F (x̄) belongs to the closure of int(F (RN )).
Since it is well known that 0 ∈ int(F (RN )) (see Wang [6]), we can assume that
F (x̄) 6= 0. Our proof begins with the following lemma.

Lemma 1.1. There exists a neighbourhood V of F (x̄) relative to F (RN ) and an

integer k̄ ∈ {1, · · · , N} such that for any x ∈ F−1(V), rankDF (x) ≤ k̄ and there

exists a sequence (vn)n∈N in V which converges to F (x̄) such that

F−1(vn) ⊆ int(Ck̄).(1.2)

Proof. Let us fix V an open neighbourhood of F (x̄) relative to F (RN ) and denote
by k0 the max of the k’s in {0, 1, · · · , n} which satisfy V ∩ F (Ck) 6= ∅.

First of all we remark that k0 > 0. As a matter of fact, suppose that for any
k ≥ 1, V ∩ F (Ck) = ∅, that is, for any y in F−1(V ), rankDF (y) = 0. Since
F−1(V ) is open this implies that F is constant on F−1(V ) and hence that F (x̄)
is isolated in F (RN ). So, we get a contradiction by arc-connectedness of F (RN )
(and since F (x̄) 6= 0 and 0 ∈ F (Rn)). Consequently, we deduce that there ex-
ists y ∈ RN such that F (y) ∈ V and rankDF (y) = k0 > 0. Furthermore
for all z ∈ F−1(V ), rankDF (z) ≤ k0. Hence by lower semicontinuity of z 7→
rankDF (z), this implies that rankDF is constant in a neighbourhood of y (be-
cause {z : rankDF (z) ≥ k0} is open). Therefore, by the rank theorem (see Rudin
[4, Theorem 9.20]), V has the structure of a k0-dimensional manifold near F (y),
and hence Hk0(V ) > 0. Thus by (1.1), V \ F (Bk0−1) is nonempty. We conclude
that for any v in the latter set,

F (z) = v =⇒ rankDF (z) = k0;

in addition z has a neighbourhood on which rankDF ≤ k̄ by choice of k̄, and the
set where rankDF ≥ k̄ is open. Consequently such a v satisfies F−1(v) ⊆ int(Ck̄).
Repeating this argument with a decreasing sequence on neighbourhoods, we get a
decreasing sequence of k0-values in {1, · · · , n} which has to be stationary. Hence
the proof is easy to complete. �

We now claim the following lemma.

Lemma 1.2. The constant of Lemma 1.1 satisfies k̄ = N .

Proof. Let us remark that since F = f ′ = ∇f , the Jacobian of F at any point y in
RN is actually the Hessian of the function f . We argue by contradiction and so we
assume that k̄ < N .

By the previous remark, for any y ∈ RN , DF (y) is a symmetric matrix, the
nontrivial vector subspaces KerDF (y) and ImDF (y) are orthogonal, and DF (y)
induces an automorphism on ImDF (y). Let us fix n ∈ N. By Lemma 1.1 and
by the constant rank theorem (see for instance Spivak [5] page 65) we deduce that
Mn := {y : F (y) = vn} is a submanifold of RN of dimension N − k and at least
C2-smooth (since F is CN -smooth and N ≥ 2). Furthermore since f is a bump,
Mn is a compact submanifold.

Now since Mn is a C2 submanifold of R
N there exists an open tubular neigh-

bourhood U ⊂ V of Mn and a C2-smooth function r : U → Mn which is the
projection on the set Mn such that for any x ∈ U , x − r(x) ∈ Nr(x)Mn, where for
any p ∈ Mn, NpMn denotes the normal space of Mn at p. In addition, from the
properties of the constant k̄, by reducing U if necessary, we can assume that for
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any x ∈ U , rankDF (x) = k̄. We set the following function on the neighbourhood
U :

Φ : U → R
N ,

x 7→ DF (r(x))(x − r(x)).

We now need the following result.

Lemma 1.3. If Mn is a compact C2 submanifold of RN , then for all ξ in the unit

sphere SN−1, there exists p ∈ Mn such that ξ ∈ NpMn.

Proof. Consider for any l ∈ N, pl := projMn
(lξ), where projMn

(·) denotes the

projection map on the closed set Mn. Since the submanifold Mn is C2, the vector
lξ−pl

‖lξ−Pl‖
belongs to Npl

Mn. Moreover by compactness of Mn we can assume that

pl → p̄ when l tends to infinity. Now since the sequence (pl)l∈N is bounded, we

have that liml→∞
lξ−pl

‖lξ−pl‖
= ξ. By continuity of the normal bundle NMn, we easily

conclude that ξ ∈ Np̄Mn. �

Returning to the proof of Lemma 1.2, Lemma 1.3 immediately implies that for
all ξ ∈ S

N−1, there exists p ∈ Mn and v ∈ NpMn such that v = ξ. Furthermore
the map DF (p) is an automorphism on NpMn, hence there exists w ∈ NpMn such
that DF (p)(w) = v. We conclude that for any t small enough (s.t. p + tw ∈ U),
DF (p)(tw) = tξ and hence that Φ(p + tw) = tξ. Furthermore since Mn is compact
and since the map p 7→ [DF (p)|NpMn

]−1 is continuous on Mn, we deduce that ‖w‖
is bounded above. Hence by compactness on Mn, we get that for some t0 > 0 the
ball B(0, t0) is included in Φ(U); hence Φ(U) has a nonempty interior. Therefore
(since the function Φ is smooth enough) Sard’s Theorem gives us the existence of
regular values of Φ in RN . So there exists ȳ ∈ U such that rankDΦ(ȳ) = N .
Consequently there exists ρ > 0 such that the map Φ is one-to-one on W = B(ȳ, ρ)
(the ball centered at ȳ with radius ρ).

For any l ∈ N∗, we set yl := r(ȳ) + 1
l
(ȳ − r(ȳ)). The constant rank theorem

implies that for any l the set Vl := {y ∈ U : F (y) = F (yl)} is a submanifold of U
of dimension N − k̄. (Of course Vl might be noncompact in U , i.e. Vl not included
in U .) On the other hand, by Lipschitz continuity of DF (·) and since N − k̄ > 0,
there exists a neighbourhood Y of the segment [ȳ, r(ȳ)] in co{W ∪ r(W)} and a
Lipschitz continuous map X : Y → RN such that for any x ∈ Y,

X(x) ∈ kerDF (x) and ‖X(x)‖ = 1.

If we denote by θX(y, τ) the local flow of the vector field X on Y, we get that for
any τ small enough, θX(yl, τ) ∈ Vl. On the other hand, Gronwall’s Lemma easily
yields the following (we omit the proof):

Lemma 1.4. There exist two positive constants K, µ such that for any l ∈ N∗ and

for any τ ≤ µ, we have

θX(yl, τ) ∈ co
{

B
(

ȳ,
ρ

2

)

∪ r
(

B
(

ȳ,
ρ

2

))}

,(1.3)

‖θX(yl, τ) − r(θX(yl, τ))‖

‖yl − r(yl)‖
∈ [e−Kτ , eKτ ].(1.4)
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We now conclude the proof of Lemma 1.2. We set for any l ∈ N \ {0}, zl :=
θX(yl, µ). First remark that if µ is small enough, then we have (recall that ‖X‖ = 1)

〈X(θX(yl, s)), X(yl)〉 ≥
1

2

=⇒ 〈

∫ µ

0

X(θX(yl, s))ds, X(yl)〉 ≥
µ

2

=⇒ ‖zl − yl‖ ≥
µ

2
.(1.5)

By considering a converging subsequence of (zl)l∈N∗ if necessary we can compute

lim
l→∞

F (yl) − F (r(yl))

‖zl − r(zl)‖
= lim

l→∞

F (zl) − F (r(zl))

‖zl − r(zl)‖

= lim
l→∞

DF (r(zl))

(

zl − r(zl)

‖zl − r(zl)‖

)

= DF (z̄)(ζ̄),

where liml→∞ zl = z̄ = r(z̄) ∈ Mn and liml→∞
zl−r(zl)

‖zl−r(zl)‖
= ζ̄ ∈ Nz̄Mn. We deduce

that

DF (r(ȳ))(ȳ − r(ȳ)) = lim
l→∞

l (F (yl) − F (r(yl)))

= lim
l→∞

l‖zl − r(zl)‖
F (yl) − F (r(yl))

‖zl − r(zl)‖

= c‖ȳ − r(ȳ)‖DF (z̄)(ζ̄)

= DF (z̄)(c‖ȳ − r(ȳ)‖ζ̄),

with c = liml→∞
‖zl−r(zl)‖
‖yl−r(yl)‖

.

The computations prove that Φ(ȳ) = Φ(z̄ + c‖ȳ− r(ȳ)‖ζ̄). Furthermore by (1.3)
and (1.5), z̄ belongs to r(W) and ‖z̄ − r(ȳ)‖ > 0. Consequently since Φ is injective
on W , it remains to prove that z̄ + c‖ȳ − r(ȳ)‖ζ̄ is in W to get a contradiction. By
(1.4) taking µ smaller if necessary, we get the result of Lemma 1.2. �

The proof of Theorem 0.1 is now easy. Since k̄ = N , for any n ∈ N the different
values vn of Lemma 1.1 belong to the interior of f ′(RN ) and moreover the sequence
(vn)n∈N converges to F (x̄). This proves the theorem.
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Institut Girard Desargues, Université Claude Bernard Lyon I, 69622 Villeurbanne,

France

E-mail address: rifford@igd.univ-lyon1.fr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2002c:58012
http://www.ams.org/mathscinet-getitem?mr=41:1976
http://www.ams.org/mathscinet-getitem?mr=29:3587
http://www.ams.org/mathscinet-getitem?mr=82g:53003a

	1. Proof of Theorem ??
	References

