
HAL Id: hal-00769001
https://hal.science/hal-00769001

Submitted on 27 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semiconcave control-Lyapunov functions and stabiliizing
feedbacks

Ludovic Rifford

To cite this version:
Ludovic Rifford. Semiconcave control-Lyapunov functions and stabiliizing feedbacks. SIAM Journal
on Control and Optimization, 2002, 41 (3), pp.659-681. �hal-00769001�

https://hal.science/hal-00769001
https://hal.archives-ouvertes.fr


SEMICONCAVE CONTROL-LYAPUNOV FUNCTIONS AND

STABILIZING FEEDBACKS∗

LUDOVIC RIFFORD†

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 41, No. 3, pp. 659–681

Abstract. We study the general problem of stabilization of globally asymptotically controllable
systems. We construct discontinuous feedback laws, and particularly we make it possible to choose
these continuous outside a small set (closed with measure zero) of discontinuity in the case of control
systems which are affine in the control; moreover this set of singularities is shown to be repulsive for
the Carathéodory solutions of the closed-loop system under an additional assumption.
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1. Introduction. In a previous paper [23] we considered the stabilization prob-
lem for standard control systems. In particular, we proved that if a control system is
globally asymptotically controllable, then one can associate to it a control-Lyapunov
function which is semiconcave outside the origin. The goal of this article is to show
the utility of the semiconcavity of such functions in the construction of stabilizing
feedbacks.

We consider a standard control system of the general form ẋ = f(x, u) which
is globally asymptotically controllable, our objective being to design a feedback law
u : R

n → U such that the origin of the closed-loop system ẋ = f(x, u(x)) is globally
asymptotically stable. Unfortunately, as pointed out by Sontag and Sussmann [28]
and by Brockett [7], a continuous stabilizing feedback fails to exist in general. In
addition to that, a smooth Lyapunov function may not exist either. As a matter of
fact, although smooth Lyapunov-like techniques have been successfully used in many
problems in control theory, it was shown by many authors (see Artstein [5] for the
affine case, and more recently Clarke, Ledyaev, and Stern [11] for the general case)
that there is no hope of obtaining a smooth Lyapunov function in the general case
of globally asymptotically controllable systems. (The existence of such a function is
indeed equivalent to that of a robust stabilizing feedback; see [17, 21].) These facts lead
us to consider nonsmooth control-Lyapunov functions and particularly semiconcave
control-Lyapunov functions; we proved the existence of such a function in our previous
article [23]. This article builds on this result to derive a useful and direct construction
of stabilizing feedbacks. In fact, the semiconcavity of the control-Lyapunov function
allows us to give an explicit formula for the design of the stabilizing feedbacks. More
particularly, this formula can be used in the context of control systems which are affine
in the control to extend Sontag’s formula [26] to the case of discontinuous feedback
laws. Furthermore, the main result of this paper asserts that when the control system
is affine in the control, we can design a feedback which is continuous on an open
dense set and which stabilizes the closed-loop system in the sense of Carathéodory
solutions. Surprisingly, we show that in this case, under an additional assumption on

∗Received by the editors July 14, 2000; accepted for publication (in revised form) February 1,
2002; published electronically July 24, 2002.

http://www.siam.org/journals/sicon/41-3/37534.html
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660 LUDOVIC RIFFORD

the control-Lyapunov function, all the trajectories of the closed-loop system remain
in the set of continuity for positive times; in other words, the set of singularities of the
stabilized system is repulsive, and hence the feedback law is continuous (even locally
Lipschitz) along the trajectories for t > 0.

Our paper is organized as follows: In section 2 we describe our main results. In
section 3 we present some basic facts about nonsmooth analysis, semiconcavity, and
discontinuous stabilizing feedbacks. In sections 4 and 5, we give the proofs of different
results. Finally, the main theorems are proved in sections 6 and 7.

Throughout this paper, R≥0 denotes the nonnegative reals, ‖ · ‖ a norm on R
n,

B the open ball B(0, 1) := {x : ‖x‖ < 1} in R
n, and B the closure of B.

2. Definitions and statements of the results.

2.1. General control systems. We study systems of the general form

ẋ(t) = f(x(t), u(t)),(2.1)

where the state x(t) takes values in a Euclidean space R
n, the control u(t) takes

values in a given compact metric space U , and f is locally Lipschitz in x uniformly
in u. We distinguish a special element “0” in U and assume that the state x = 0 is
an equilibrium point (i.e., f(0, 0) = 0). We are interested in globally asymptotically
controllable systems, which we proceed to define.

Definition 2.1. The system (2.1) is globally asymptotically controllable (GAC)
if there exists a nondecreasing function

θ̃ : R≥0 → R≥0

such that limr→0+ θ̃(r) = 0, with the property that, for each ξ ∈ R
n, there exist a

control u : R≥0 → U and a corresponding trajectory x(·) : R≥0 → R
n such that

x(0) = ξ,

x(t)→ 0 as t → ∞,

and

sup{‖x(t)‖ : 0 ≤ t < ∞} ≤ θ̃(|ξ|).

This definition of global asymptotic controllability is appropriate under the as-
sumption of compactness of the control set U . When this set is not compact, we
must add some conditions on the open-loop controls which stabilize the initial states;
we refer to the papers of Sontag and Sussmann [29, 30] for a generalization of this
definition to the general case on a noncompact control set.

Remark 2.2. This definition seems weaker than the one given initially in [23].
However, as explained by Sontag and Sussmann in [29, 30], a routine argument in-
volving continuity of trajectories with respect to initial states shows that our different
definitions are indeed equivalent.

Our objective is to design a feedback law u : R
n → U such that the origin of the

closed-loop system (2.1) is globally asymptotically stable; that is, such that the new
system

ẋ(t) = f(x(t), u(x(t)))(2.2)
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 661

is globally asymptotically stable. Our method relies on nonsmooth Lyapunov func-
tions, which we proceed to define; we refer to the next section for the definition of the
proximal subdifferential ∂PV (·).

Definition 2.3. A control-Lyapunov function for the system (2.1) is a contin-
uous function V : R

n → R which is positive definite (i.e., V (0) = 0 and V (x) > 0
for x 
= 0), proper (i.e., V (x) → ∞ when ‖x‖ → ∞), and such that there exists a
positive definite continuous function W : R

n −→ R with the property that, for each
x ∈ R

n \ {0}, we have

∀ζ ∈ ∂PV (x), min
u∈U

〈ζ, f(x, u)〉 ≤ −W (x).(2.3)

The present article is based on the following theorem, which is a refinement of a
result proved in [23]. The regularity of our control-Lyapunov function will be crucial
for the construction of discontinuous stabilizing feedbacks.

Theorem 2.4. If the system (2.1) is GAC, then there exists a control-Lyapunov
function V which is semiconcave on R

n \ {0} and such that

∀x ∈ R
n \ {0}, ∀ζ ∈ ∂PV (x), min

u∈U
〈ζ, f(x, u)〉 ≤ −V (x).(2.4)

This theorem differs from the one given in our previous article [23] in the decrease
condition (2.4). Here, we assert that we can take V as the function W of Definition
2.3. This special form of the infinitesimal decrease condition (2.4) will allow us to
obtain exponential decrease for V (x(t)) and will make it possible to give closed-form
estimates (in terms of V ) on the rate of stabilization.

Now, using the concept of π-trajectories and of Euler trajectories which will be
defined in the next section, we give a general result on the existence of stabilizing
feedbacks; this result was announced in [25].

Theorem 2.5. Assume that the system (2.1) is GAC. Then there exists a
feedback u : R

n → U for which the system ẋ = f(x, u(x)) is globally asymptotically
stabilizable in the sense of π-trajectories and in the Euler sense.

Moreover, if we consider a control-Lyapunov function V for the given system,
then the stabilizing feedback can be designed as follows:

• We set u(0) = 0.
• For each x ∈ R

n \ {0}, we choose arbitrarily ζ ∈ ∂LV (x) and we set

u := u(x) ∈ U, where u(x) is any point in U such that 〈ζ, f(x, u)〉 ≤ −W (x).

Furthermore, if the control-Lyapunov function V is the one given by Theorem 2.4
(i.e., if W = V ), then we have

V (x(t)) ≤ e−tV (x0)(2.5)

for any Euler trajectory starting at x0 ∈ R
n.

The existence of a discontinuous feedback which is stabilizing in the sense of the
π-trajectories is not new; it appeared initially in the article of Clarke et al. [10]. We
refer also to Ancona and Bressan [4], who proved a slightly stronger result in the sense
that their feedback stabilizes the closed-loop system in the sense of Carathéodory;
their proof does not use nonsmooth control-Lyapunov functions. However, here the
consideration of a semiconcave control-Lyapunov function leads to a simple proof and
allows us to give an explicit formula for the design of the feedback. Moreover, we are
able to design some stabilizing feedbacks which are rather regular in the case of affine
systems.
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662 LUDOVIC RIFFORD

2.2. Affine control systems. Let us assume now that the control system is
affine in the control, that is,

f(x, u) = f0(x) +

m
∑

i=1

uifi(x) ∀(x, u) ∈ R
n × U,(2.6)

where the f0, . . . , fm are locally Lipschitz functions from R
n into R

n and where U is
a strictly convex and compact set of R

m.
Remark 2.6. Instead of assuming the control set U to be strictly convex, we

could make a weaker assumption of convexity. As a matter of fact, if the control
set is supposed to be convex, we can define a subset of it which is strictly convex
and for which the control system (2.6) keeps the same properties of controllability.
Consequently all our results hold in the case of a convex compact control set.

First of all, assuming the knowledge of a control-Lyapunov function, we are able
to give an explicit feedback law; it reduces to Sontag’s formula [26] in the smooth
case.

Theorem 2.7. Assume that V is a control-Lyapunov function for (2.6) and con-
sider any selection ζV (·) of ∂LV (·). Then the feedback control defined by

ui(x) := −φ

(

〈f0(x), ζV (x)〉,
m
∑

i=1

〈fi(x), ζV (x)〉
2

)

〈fi(x), ζV (x)〉,

where

φ(a, b) =

{

a+
√
a2+b2

b
if b 
= 0,

0 if b = 0,

(globally asymptotically) stabilizes the control system (2.6) in the sense of π-trajectories
and in the Euler sense.

Remark 2.8. The feedback given in Theorem 2.7 may not be with values in the
control set U . However, we can project the values u(x) on the unit ball B̄ to get a
stabilizing feedback which is locally bounded.

Furthermore, we can exploit the semiconcavity property more strongly to derive
some regularity properties on the feedback in the case of affine control systems. We
are going to obtain continuity of our discontinuous feedback outside a set of singularity
which will be proved small on account of semiconcavity.

Theorem 2.9. If the control affine system (2.6) is GAC, then there exists a
subset D ⊂ R

n which verifies the following properties:
(i) The set D is an open dense set.
(ii) The complement S of D has Hausdorff dimension no greater than n− 1.
(iii) There exists a feedback u : R

n → U which is continuous on D for which
the closed-loop system (2.6) is globally asymptotically stable in the sense of
Carathéodory; in particular, the Euler trajectories are solutions in the sense
of Carathéodory.

Remark 2.10. As in the paper of Artstein [5, Theorem 5.2], if the system verifies
the small-control property, then the feedback can be chosen to be continuous at the
origin. More precisely, if we assume that there exists a semiconcave control-Lyapunov
function such that for all ǫ > 0, there exists δ > 0 such that ‖x‖ ≤ δ implies the
existence of u ∈ U with ‖u‖ < ǫ and satisfying (2.4), then the feedback given by the
previous theorem can be taken to be continuous at the origin.
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 663

We recognize this time in Theorem 2.9 the result of Ancona and Bressan [4] in the
case of control affine systems. As in their case, it turns out from the proof that the
function t �→ f(x(t), u(x(t)) is left-continuous. Let us also remark that we get from
the upper bound on the Hausdorff dimension of S that this set has Lebesgue measure
zero. We refer to Morgan [19] for a survey of the notions of Hausdorff measure and
Hausdorff dimension.

Actually, if we consider a control-Lyapunov function given by Theorem 2.4 we
will see in the proof of Theorem 2.9 that the construction of the set D is based on the
function

ΨV (x) := min
u∈U

max
ζ∈∂V (x)

〈ζ, f(x, u)〉,(2.7)

where ∂V denotes the Clarke’s generalized gradient of V ; see section 3.1 for the
definition. This function is upper semicontinuous on R

n \ {0}; hence if we consider a
continuous function δ : R

n → R, the set

Dδ
V := {x ∈ R

n \ {0} : ΨV (x) < −δ(x)}

is open. In particular, if the control-Lyapunov function V satisfies an additional
assumption concerning the set Dδ

V and the function ΨV , then we can provide a sta-
bilizing feedback which is invariant with respect to Dδ

V . Let us state the result.
Theorem 2.11. Let there be given a GAC control system and a control-Lyapunov

function V as in Theorem 2.4. If there exists a continuous and positive definite func-
tion

δ : R
n → R

such that

∀x ∈ R
n \ {0}, δ(x) < V (x),(2.8)

and

∀x ∈ R
n \ {0}, ΨV (x) ≤ −δ(x) =⇒ x ∈ Dδ

V ,(2.9)

then we have the following:
(i) The set Dδ

V is an open dense set and Dδ
V ∪ {0} is path-connected.

(ii) The complement SV of Dδ
V has Hausdorff dimension no greater than n− 1.

(iii) There exists a feedback u : R
n → U which is smooth on Dδ

V for which the
closed-loop system (2.6) is globally asymptotically stable in the sense of Cara-
théodory. Moreover, for any Carathéodory solution x(·) of this system, we
have

x(t) ∈ Dδ
V ∀t > 0.(2.10)

In particular, the Euler trajectories are solutions in the sense of Carathéodory.
Remark 2.12. Let us note that if there exists a positive definite and continuous

function δ such that

∀x ∈ R
n, ΨV (x) < 0 =⇒ ΨV (x) ≤ −δ(x),

then the function δ
2 satisfies (2.8) and (2.9).

We stress that the property (2.10) implies the following facts: For each state
x0 ∈ R

n, for any Carathéodory solution of the closed-loop system starting at x0, the
following hold:
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664 LUDOVIC RIFFORD

• If x0 = 0, then x(t) = 0 for all t ≥ 0.
• If x0 ∈ Dδ

V , then x(t) ∈ Dδ
V ∪ {0} for all t ≥ 0; and consequently

ẋ(t) = f(x(t), u(x(t))) ∀t ≥ 0 such that (s.t.) x(t) 
= 0.

• If x0 /∈ Dδ
V ∪ {0}, then x(t) ∈ Dδ

V ∪ {0} for all t > 0; and consequently

ẋ(t) = f(x(t), u(x(t))) ∀t > 0 s.t. x(t) 
= 0.

To summarize our results, we have shown that under the additional assumptions
(2.8) and (2.9), there exists a feedback which stabilizes our closed-loop system in the
sense of Carathéodory, and moreover its Carathéodory trajectories are solutions in
the classical sense for positive times whenever x(t) 
= 0. Let’s also emphasize that the
conclusions of Theorem 2.11 imply some topological properties for the set Dδ

V . As a
matter of fact, the set Dδ

V ∪ {0} is invariant with respect to a locally Lipschitz vector
field (since the functions f0, f1, . . . , fm are locally Lipschitz), which is asymptotically
stabilizing to the origin; therefore it is contractible.

We present in the two following sections two simple examples where the hypothe-
ses (2.8) and (2.9) of Theorem 2.11 are fulfilled.

2.3. One-dimensional systems. Let us assume that the control system is of
the form

ẋ = ug(x),(2.11)

where the control u belongs to the interval [a, b] and g is a locally Lipschitz vector
field on R

n. In this case, the condition (2.9) is always ensured. Let us consider a
semiconcave control-Lyapunov V for the system (2.11) and set

DV := {x ∈ R
n \ {0} : ΨV (x) < 0},

where

∀x ∈ Rn, ΨV (x) := min
u∈U

max
ζ∈∂V (x)

〈ζ, f(x, u)〉.

We have the following.
Lemma 2.13. For any x ∈ DV ,

ΨV (x) ≤ −V (x).

Proof. Let x ∈ DV . Thus ΨV (x) < 0, and there exists u ∈ [a, b] such that

∀ζ ∈ ∂V (x), u〈ζ, g(x)〉 < 0.(2.12)

Without loss of generality we treat the case where u > 0.
We know by assumption on V that for each ζ ∈ ∂LV (x), there exists u(ζ) ∈ [a, b]

such that

u(ζ)〈ζ, g(x)〉 ≤ −V (x).

Since ∂LV (x) ⊂ ∂V (x), we deduce immediately from (2.12) that u(ζ) > 0 and that
Ψ(x) ≤ −V (x).

From this lemma and Remark 2.12 we deduce that the conclusions of Theorem
2.11 apply in the case of one-dimensional systems. We add that we will clearly define
the shape of the set of singularities (i.e., SV the complement of DV ) in the forthcoming
paper [22].

Remark 2.14. Actually, it is not difficult to see that the system (2.11) is GAC
and locally stabilizable by a continuous feedback if and only if it is globally stabilizable
by a smooth feedback.
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 665

2.4. The nonholonomic integrator. The nonholonomic integrator control
system

ẋ1 = u1,
ẋ2 = u2,
ẋ3 = x1u2 − x2u1

(2.13)

appeared in [7] as an example of a nonlinear control system which does not satisfy
Brockett’s condition and cannot be stabilized with continuous feedback. It was shown
in [16] that the nonsmooth function

V = max

{

√

x2
1 + x2

2, |x3| −
√

x2
1 + x2

2

}

(2.14)

is a control-Lyapunov function for the nonholonomic integrator system (2.13). As
before,

ΨV (x) := min
u∈U

max
ζ∈∂V (x)

〈ζ, (u1, u2, x1u2 − x2u1)
t〉,

and we remark that ΨV (x) = 0 on the set

S :=
{

x ∈ R
n : x2

1 + x2
2 = 0

}

.

In addition, the function V is differentiable outside S, and thus by the results given
in [16] we get that for any x ∈ DV ,

ΨV (x) ≤ −
V (x)

√

4 + V (x)2
=: δ(x).

Theorem 2.11 and Remark 2.12 now imply the existence of a stabilizing feedback
satisfying the properties given in its statement.

2.5. A counterexample. We give in this section for every Euclidean space R
n

with n ≥ 2 an example of a control affine system which is GAC and which does not
verify the conditions (2.8) and (2.9) for any control-Lyapunov function V and any
continuous positive definite function δ, and for which the conclusions of Theorem
2.11 do not hold.

Let n ≥ 2 and x0 ∈ Rn \ 3B be fixed. There exists a locally Lipschitz vector field
on R

n such that

f0(x) =

{

−x if x ∈ B,
x− x0 if 1

4 ≤ ‖x− x0‖ ≤ 1
2 .

Let us also define two auxiliary functions g0 and g1. We set for any x ∈ R
n,

g0(x) := max{0, 1− dK1
(x)},

where dK1
(·) denotes the distance function corresponding to the set

K1 := B
⋃

(

x0 +
1

2
B

)

\

(

x0 +
1

4
B

)

.

Then we set for any x ∈ R
n, g1(x) := dK2

(x) with

K2 :=
1

2
B
⋃

A ⊂ K1,

D
ow

nl
oa

de
d 

12
/2

7/
12

 to
 1

47
.2

10
.1

10
.1

33
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



666 LUDOVIC RIFFORD

where A denotes the annulus A =
(

x0 +
7
16B

)

\
(

x0 +
5
16B

)

.
We now present the dynamics which will form our counterexample; we consider

the following control system:

ẋ = f(x, u) := g0(x)f0(x) + g1(x)u, (x, u) ∈ R
n ×B.(2.15)

Let us notice the following facts:

f(x, u) = f0(x) if (x, u) ∈ K2 ×B

and

f(x, u) = g1(x)u if (x, u) ∈
(

R
n \ (K1 +B)

)

×B.

It is straightforward to show that this affine control system is GAC; let us notice that
this is true since we are in a dimension greater than 2. Now, let us assume that there
exists an open dense set D of R

n which is invariant with respect to some smooth
(on D) stabilizing feedback k(·) and such that its complement S := (Rn \ {0}) \ D is
repulsive (see (2.10)).

First, since our dynamics reduce to f0 around the origin, we can assume that
0 ∈ D and hence that D is contractible. On the other hand, the control system (2.15)
coincides with the dynamical system ẋ = f0(x) on the interior of A. Consequently,
by repulsivity the set S cannot intersect int(A); hence we deduce that S meets the
ball x0 +

5
16B. (If the vector field f(·, k(·)) were continuous on this ball, it would

have an equilibrium on it by Brouwer’s theorem; as a matter of fact the ball would
be invariant under the dynamic ẋ = −f(x, k(x)).) In other words, there exists a
nonempty compact set K such that

K ⊂ x0 +
3

8
B ⊂ x0 +

7

16
B

and

K ∩ D 
= ∅.

This means that we can write our set D as follows:

D =

(

D
⋃

x0 +
7

16
B

)

\K.

In fact, we can see D as an open set minus a compact subset of itself. Such a set can’t
be contractible (we refer to algebraic topology for the proof of this result).

In particular, this shows by Theorem 2.11 that the control system defined above
does not possess a semiconcave (outside the origin) control-Lyapunov function V
(with, for instance, W = V ) and a continuous positive definite function verifying
(2.8) and (2.9).

3. Complementary definitions.

3.1. Some facts in nonsmooth analysis. We recall briefly some notions of
nonsmooth analysis which are essential for this article. We first define ∂PV (x) as the
proximal subdifferential of V at x where the function V : R

n → R is assumed to be
locally Lipschitz: ζ belongs to ∂PV (x) if and only if there exists σ and η > 0 such
that

V (y)− V (x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ x+ ηB.(3.1)
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 667

We further state that this object can be empty at some points. Nevertheless it can
be proved that the proximal subdifferential is nonempty on a dense set of R

n. Such
a property leads us to define the limiting subdifferential and the generalized gradient
which will be nonempty at every point. For all x in R

n, the limiting subdifferential
of V at x is defined as follows:

∂LV (x) := {lim ζk : xk → x, ζk ∈ ∂PV (xk)} .(3.2)

Remark 3.1. Of course, by the construction of the limiting subdifferential and
by continuity of f(·, ·), the property (2.4) given in Definition 2.3 is equivalent to the
following one:

∀x ∈ R
n \ {0}, ∀ζ ∈ ∂LV (x), min

u∈U
〈ζ, f(x, u)〉 ≤ −W (x).(3.3)

Finally, we derive the generalized gradient of Clarke as follows:

∂V (x) := co ∂LV (x),(3.4)

where coA denotes the convex hull of the set A.
It is important to note that in our case of a locally Lipschitz function, the defini-

tion of the generalized gradient coincides with the following one based on Rademacher’s
theorem:

∂V (x) := co{lim∇V (xk) : xk → x, xk ∈ Df \N},(3.5)

where Df denotes the set of differentiability of f and N is any set of Lebesgue measure
zero in R

n.
Moreover, we stress that there exist complete calculi of proximal subdifferentials

and generalized gradients, ones that extend all theorems of the usual smooth calculus;
our principal references for this theory are the books of Clarke [8] and Clarke et al.
[12].

3.2. Results on semiconcave functions. We recall in this subsection some
basic properties of the semiconcave functions. Let us first recall this definition; we
assume in this section that Ω is a given open subset of R

n.
Definition 3.2. Let g : Ω −→ R be a continuous function on Ω; it is said to be

semiconcave on Ω if for any point x0 ∈ Ω there exist ρ,C > 0 such that

g(x) + g(y)− 2g

(

x+ y

2

)

≤ C‖x− y‖2(3.6)

for all x, y ∈ x0 + ρB.
The property (3.6) amounts to the concavity of x �→ g(x) − 2C‖x‖2, as is eas-

ily checked. Hence, a semiconcave function g can be seen locally as the sum of a
concave function and a smooth function. In particular, this implies that the semi-
concave functions are locally Lipschitz. We know different examples of semiconcave
functions. Concave functions are of course semiconcave. Another class of semiconcave
functions is that of C1 functions with locally Lipschitz gradient. We can in fact give a
characterization of the semiconcavity property of a function g by using the proximal
superdifferentials defined as follows:

∂P g(x) := −∂P g(x),(3.7)
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668 LUDOVIC RIFFORD

or, equivalently, ζ ∈ ∂P g(x) if and only if there exists σ and η > 0 such that

g(y)− g(x)− σ‖y − x‖2 ≤ 〈ζ, y − x〉 ∀y ∈ x+ ηB.(3.8)

This analytic definition enables us to give a characterization of semiconcavity; we
refer to [24] for the proof.

Proposition 3.3. A function g : Ω→ R is semiconcave if and only if σ and η of
(3.8) can be chosen uniform on the compact sets of Ω. Moreover, the superdifferential
and the generalized gradients coincide on Ω.

Remark 3.4. We can in fact relate the semiconcavity property of a given func-
tion to some geometric properties of its epigraph; we refer to [24] for such results.
Furthermore we can define the semiconcavity property in a more general setting such
that semiconcave functions keep the same behavior of concave functions; hence we
can relate their differentiability properties to the ones of concave functions (see, for
instance, [32]).

Since the semiconcave functions are locally Lipschitz, we get by Rademacher’s
theorem that they are differentiable almost everywhere. Actually, since they are
locally the sum of a semiconcave function and a smooth function, we can state posi-
tively by Alexandroff’s theorem (see [2, 14]) that the semiconcave functions are twice
differentiable almost everywhere.

A study has been devoted to the set of nondifferentiability of such functions.
Alberti, Ambrosio, and Cannarsa [1] were able to provide some upper bounds on the
dimension of singular sets of semiconcave functions.

Let g : Ω→ R be a semiconcave function. Define

Σk(g) := {x ∈ Ω : dim(∂g(x)) = k},

where k ∈ [0, n] is an integer. Clearly, Σ0(g) represents the set of differentiability of
u, and moreover

Ω =

n
⋃

k=0

Σk(g).(3.9)

We can evaluate the size of these sets.
Proposition 3.5. For any integer k ∈ [0, n], the set Σk(g) has Hausdorff di-

mension ≤ n− k.
We refer to [1] (see also [3]) for the proof and again to the book of Morgan [19]

for a serious survey of the Hausdorff dimension.
Finally, Alberti, Ambrosio, and Cannarsa made some useful links between the

Bouligand tangent cones of some subsets of the Σk(g)’s and the generalized gradients
of g. Let us define for any α > 0

Σk
α(f) :=

{

x ∈ Ω : ∃Bk
α ⊂ ∂f(x) with diam(Bk

α) = 2α
}

,

where Bk
α denotes a ball of dimension k with diameter α. For any set S ⊂ R

n, we
shall denote by S⊥ the set defined as follows:

S⊥ := {p ∈ R
n : q �→ 〈q, p〉 is constant on S}.

We have the following result.
Proposition 3.6. The sets Σk

α(g) are closed sets, and

TB
Σk

α(g)(x) ⊂ [∂f(x)]
⊥ ∀x ∈ Σk

α(f) \ Σ
k+1
α (f).

We again refer to the paper of Alberti, Ambrosio, and Cannarsa for the proof.
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 669

3.3. Discontinuous stabilizing feedbacks. As it has been explained before,
there do not exist robust stabilizing feedbacks in general. To overcome this difficulty,
we describe a concept of solution of the general Cauchy problem

ẋ = f(x, u(x)), x(0) = x0,(3.10)

where the feedback u : R
n → U is not assumed to be continuous. This concept

of solutions for differential equations with discontinuous right-hand side, inspired by
the theory of differential games, has been used in the fundamental article of Clarke
et al. [10] (see also [9]) to produce discontinuous stabilizing feedbacks; it provides an
alternative approach to those developed by Sussmann [31] and Coron [13] (see also
Pomet [20]).

Let π = {ti}i≥0 be a partition of [0,∞), by which we mean a countable, strictly
increasing sequence ti with t0 = 0 such that ti → ∞ as i → ∞. The diameter of π,
denoted diam(π), is defined as supi≥0(ti+1 − ti). Given an initial condition x0, the
π-trajectory x(·) corresponding to π is defined in a step-by-step fashion as follows.
Between t0 and t1, x(·) is a classical solution of the differential equation

ẋ(t) = f(x(t), u(x0)), x(0) = x0, t0 ≤ t ≤ t1.

(Of course in general we do not have uniqueness of the solution, nor is there necessarily
even one solution.) We then set x1 := x(t1) and restart the system with control
value u(x1):

ẋ(t) = f(x(t), u(x1)), x(t1) = x1, t1 ≤ t ≤ t2,

and so on in this fashion. This resulting trajectory x is a physically meaningful one
that corresponds to a natural sampling procedure and piecewise constant controls;
this kind of solution, called a system sampling solution, is due to Krasovskii and
Subbotin (see [15]). We proceed now to give the definition of the global asymptotic
stabilization associated to this concept.

Definition 3.7. The system (2.1) is globally asymptotically stable in the sense of
π-trajectories if there exist a function M : R>0 −→ R>0 such that limR↓0 M(R) = 0
and two functions T, δ : R>0 × R>0 −→ R≥0 with the following property:

For any 0 < r < R, for any partition π with diam(π) ≤ δ(r,R), and for each
initial state x0 such that ‖x0‖ ≤ R, the corresponding π-trajectory x(·) is well-defined
and satisfies the following:

(1) for all t ≥ 0, ‖x(t)‖ ≤ M(R);
(2) for all t ≥ T (r,R), ‖x(t)‖ ≤ r.
Remark 3.8. This definition is equivalent to another one given by Sontag in

[27]. In that paper, it was required that there exist a function β ∈ KL so that the
following property held: For each 0 < ǫ < K, there exists a δ = δ(ǫ,K) > 0 such that,
for every sampling schedule π with diam(π) < δ, and for each initial state x0 with
‖x0‖ ≤ K, the corresponding π-trajectory x(·) of (2.1) is well-defined and satisfies

‖xπ(t)‖ ≤ max{β(K, t), ǫ} ∀t ≥ 0.

We can define from the concept of π-trajectories the notion of Euler trajecto-
ries. As presented in [25], we call an Euler solution of (2.2) any uniform limit of
π-trajectories of this system with diam(π) → 0. Moreover, we will say that the
closed-loop system (2.2) is globally asymptotically stable in the Euler sense (or that
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670 LUDOVIC RIFFORD

the feedback u stabilizes in the Euler sense) if the two properties given in Definition
2.1 are satisfied for any Euler solutions.

We also recall briefly for the convenience of the reader that a function x(·) :
[0,∞) → R

n is called a Carathéodory solution (or trajectory) of our closed-loop
system if it satisfies

ẋ(t) = f(x(t), u(x(t)) a.e. ∀t ≥ 0.

We will say in that case that the closed-loop system is stabilizing in the sense of
Carathéodory.

4. Proof of Theorem 2.4. We can invoke the main result of [23] to get a
control-Lyapunov function V0 which is semiconcave on R

n \{0}. We begin by showing
that there exists a smooth function γ : (0,∞)→ (0,∞) which satisfies

min
u∈U

〈ζ, f(x, u)〉 ≤ −γ(V0(x)) ∀x ∈ R
n \ {0}, ∀ζ ∈ ∂PV0(x).(4.1)

We use the method given by Clarke, Ledyaev, and Stern in [11]. We set for all v > 0,

γ(v) := min{W (x);x ∈ Γ(v)},

where

Γ(v) := {x ∈ R
n;V0(x) = v}.

It is not difficult to show that the multifunction Γ is locally Lipschitz, which implies
that the function γ is locally Lipschitz on (0,∞) and verifies (4.1). Moreover, we can
approximate γ by a smooth function γ̃ such that

0 < γ̃ ≤ γ.

Finally, without loss of generality we can suppose that γ is smooth and verifies (4.1).
Now, we set

Ψ(t) :=

∫ t

1

1

γ(s)
ds.(4.2)

This new function from (0,∞) into R is increasing, smooth, and verifies the three
following properties:

Ψ′(t) =
1

γ(t)
∀t > 0,(4.3)

lim sup
t↓0

Ψ(t) ≤ 0,(4.4)

and

lim inf
t→∞

Ψ(t) ≥ 0.(4.5)

We are now able to define a new control-Lyapunov function V1. We set

V1(x) :=

{

V0(x)e
cΨ(V0(x)) if x 
= 0,

0 if x = 0.
(4.6)
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 671

By (4.4) and (4.5) and the properties of V0, this new function is obviously proper,
continuous at the origin, and locally Lipschitz on R

n \{0}. We now want to make the
link between the proximal subdifferentials of V1 and the proximal subdifferentials of
V0; for that, we give the following lemma.

Lemma 4.1. Let there be given two functions f : Ω → R and F : R → R. If we
assume that f is positive and locally Lipschitz on the open set Ω and that F is a C2,
positive, and increasing (F ′ > 0) function, then for all x ∈ Ω,

∂P [fF (f)](x) = [F (f(x)) + f(x)F ′(f(x))]∂P f(x).

The same formula holds for the proximal superdifferential. Moreover, if the function
f is taken to be semiconcave, then the new function fF (f) is semiconcave as well.

Proof. Let us consider x ∈ R
n and ζ ∈ ∂P [fF (f)](x); then by (3.1), there exists

σ ≥ 0 such that

f(y)F (f(y))− f(x)F (f(x)) + σ‖y − x‖2 ≥ 〈ζ, y − x〉(4.7)

whenever y is in a neighborhood of x. The function X → XF (X) is C2, so we have by
Taylor’s formula that there exists a constant C such that for all Y in a neighborhood
of X,

Y F (Y )−XF (X) = F (X) +XF ′(X)(Y −X) +
C

2
‖Y −X‖2 + o(‖Y −X‖2).

We get for Y = f(y) and X = f(x) that f(y)F (f(y))− f(x)F (f(x)) is equal to

[F (f(x)) + f(x)F ′(f(x))][f(y)− f(x)] +
C

2
‖f(y)− f(x)‖2 + h,

where h = o(‖f(y)− f(x)‖2).
We set D := F (f(x)) + f(x)F ′(f(x)); by the assumptions on f and F , D > 0,

and so we can divide by D. On the other hand, f being locally Lipschitz, we deduce
that there exists a constant σ ≥ 0 such that

f(y)

D
−

f(x)

D
+ σ‖y − x‖2 ≤

〈

ζ

D
, y − x

〉

(4.8)

whenever y is in a neighborhood of x; and then by the characterization (3.1) we get

∂P f [F (f)](x) ⊂ [F (f(x)) + f(x)F ′(f(x))]∂P f(x).

This proves one inclusion; the other is left to the reader. Of course, for the case of
the proximal superdifferential, a similar proof is valid.

It remains to show the conservation of semiconcavity. If we assume that f is
semiconcave, then by using Proposition 3.3 and following the same proof as above,
we show that the different σ remain uniform on the compact sets of Ω.

We now turn back to the proof of Theorem 2.4; the lemma implies immediately
that for all x ∈ R

n \ {0} and all ζ ∈ ∂PV1(x) ⊂ ∂LV1(x),

min
u∈U

〈ζ, f(x, u)〉 ≤ −γ(V0(x))[e
Ψ(V0(x)) + cΨ′(V0(x))V0(x)e

Ψ(V0(x))]

≤ −V1(x)

[

γ(V0(x))

V0(x)
+ cγ(V0(x))ψ

′(V0(x))

]

≤ −V1(x)

[

γ(V0(x))

V0(x)
+ c

]

by (4.3)

≤ −cV1(x).
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672 LUDOVIC RIFFORD

On the other hand, as the initial function V0 was semiconcave on R
n \ {0}, we have

by Lemma 4.1 that the new function V1 is semiconcave; the proof of Theorem 2.4 is
complete.

5. Proof of Theorems 2.5 and 2.7. We will treat only the case where the
control-Lyapunov function is that given by Theorem 2.4. The general case of a control-
Lyapunov function related to a function W is left to the reader.

Let V be the semiconcave Lyapunov function given by Theorem 2.4 and two
positive constants r < R. We set

MR := max{V (x) : ‖x‖ ≤ R} and M(R) := max{‖y‖ : V (y) ≤ MR}.

Obviously, the function M(·) is nondecreasing and verifies

lim
R↓0

M(R) = 0.

We also set two constants depending on r:

mr := min{V (x) : ‖x‖ ≥ r} and m r
2
:= min

{

V (x) : ‖x‖ ≥
r

2

}

;

we can say by definition that if V (x) ≤
m r

2

2 , then x ∈ r
2B. On the other hand,

the Proposition 3.3 allows us to consider σ := σ( r2 , R) and δ uniform on the set

A := {x :
m r

2

2 ≤ V (x) ≤ MR} ⊂ R
n \ {0}.

We get that for all x ∈ A, all y ∈ A, and all ζ ∈ ∂LV (x),

−V (y) + V (x) + σ‖y − x‖2 ≥ 〈−ζ, y − x〉.(5.1)

From now on, we denote by Mf the upper bound of f on RB × U , by Lf the
Lipschitz constant of f on the same set, by mV the minimum of V , and by LV the
Lipschitz constant of V on A. Let us consider a π-trajectory x(·) associated to a
partition π = {0 = t0 < t1 < · · · } and to nodes xi := x(ti) with x0 ∈ A. We pick ζ0
belonging to ∂LV (x0). For any t ∈ [t0, t1], we can compute by (5.1)

V (x(t))− V (x0) ≤ 〈ζ0, x(t)− x0〉+ σ‖x(t)− x0‖
2

≤

〈

ζ0,

∫ t

t0

f(x(s), u(x0))ds

〉

+ σ‖x(t)− x0‖
2

≤ 〈ζ0, (t− t0)f(x0, u(x0))〉 · · ·

+

〈

ζ0,

∫ t

t0

[f(x(s), u(x0))− f(x0, u(x0))]ds

〉

+ σ‖x(t)− x0‖
2

≤ −(t− t0)V (x0) + ‖ζ0‖Lf max
s∈[t0,t1]

‖x(s)− x0‖(t− t0) · · ·

+σ‖x(t)− x0‖
2

≤ −(t− t0)V (x0) + LV LfMf (t− t0)
2 + σM2

f (t− t0)
2

≤ (t− t0)
[

−mV + (LfLV Mf + σM2
f )(t− t0)

]

.

More generally, we have for all t ∈ [ti, ti+1],

V (x(t))− V (xi) ≤ −(t− ti)V (xi) + [LV LfMf + σM2
f ](t− ti)

2.(5.2)
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 673

We get that for any n and for all t ∈ [tn−1, tn],

V (x(t))− V (x0) ≤
n−2
∑

i=0

[−(ti+1 − ti)V (xi) + (LV LfMf + σM2
f )(ti+1 − ti)

2] · · ·

− (t− tn−1)V (tn−1) + (LfLV Mf + σM2
f )(t− tn−1)

2

≤ (t− t0)[−mV + (LfLV Mf + σM2
f )diam(π)].(5.3)

We deduce that if we set

δ(r,R) := min

{

mV

2(LfLV Mf + σM2
f )

,
mr −m r

2

2LV Mf

}

,

we obtain from (5.3) that for every π-trajectory x(·) starting at x0 and such that
diam(π) ≤ δ(r,R), we have

∀t ≥ 0, V (x(t))− V (x0) ≤ −
mV

2
(t− t0).(5.4)

That means that the π-trajectory remains in {x : V (x) ≤ V (x0)}, which is included

in M(R)B, and that for t ≥ T (r,R) :=
2MR−m r

2

mV
,

V (x(t)) ≤ V (x0)−
mV

2
t ≤

m r
2

2
;

that is, x(t) ∈ r
2B. There is a possible danger! The work done above is valid only

when we stay in the set A. But as δ(r,R) ≤
mr−m r

2

2LV Mf
, there exists a first step i0

for which
m r

2

2 ≤ V (xi0) ≤ mr

2 , and by the same computation as above, the set
{x : V (x) ≤ V (xi0)} is invariant, that is,

∀t ≥ ti0 , x(t) ∈ {x : V (x) ≤ V (xi0)} ⊂ rB.

This completes the proof for the case of π-trajectories.

We get from this proof (more especially from (5.2) and a convergence result of a
Riemann’s sums) that for any Euler trajectory of (2.2), we have that

V (x(t))− V (x(s)) ≤ −

∫ t

s

V (x(y))dy ∀0 ≤ s ≤ t.(5.5)

Gronwall’s lemma now brings a proof of the property (2.4).

We now make the proof of Theorem 2.7.

Proof. As in the statement of Theorem 2.5, the formula given above considers for
all x a limiting subgradient ζV (x) and a function u(·) satisfying

〈ζV (x), f(x, u(x))〉 ≤ −V (x) ∀x ∈ R
n \ {0}.

This construction agrees with the one given in the statement of Theorem 2.5; the
result follows.
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674 LUDOVIC RIFFORD

6. Proof of Theorem 2.9. Theorem 2.9 requires a more subtle proof; we will
need the following lemma and refer to the book of Clarke et al. [12] or to [24] for the
proof.

Lemma 6.1. Let f : R
n → R be a locally Lipschitz function and x ∈ R

n; if
∂P f(x) and ∂P f(x) are nonempty, then

∂P f(x) = ∂P f(x) = ∂f(x) = {∇f(x)}.

We know by Theorem 2.4 and Remark 3.1 that

∀x ∈ R
n \ {0}, max

ζ∈∂LV (x)
min
u∈U

〈ζ, f(x, u)〉 ≤ −V (x) < 0.(6.1)

We set the function Ψ : Rn −→ R as follows:

∀x ∈ R
n, Ψ(x) := min

u∈U
max

ζ∈∂V (x)
〈ζ, f(x, u)〉.

Lemma 6.2. The function Ψ is upper semicontinuous.
Proof. Since the function ζ �→ 〈ζ, f(x, u)〉 is upper continuous and the function f

is continuous, we deduce that the function

x �→ max
ζ∈∂V (x)

〈ζ, f(x, u)〉

is upper semicontinuous. To conclude, we know that a minimum of upper semicon-
tinuous functions is upper semicontinuous.

We define now the following sets:

D :=

{

x ∈ R
n \ {0} s.t. Ψ(x) < −

V (x)

2

}

and S = R
n \ D.

Lemma 6.3. The set D is an open dense set of R
n and

H− dimS ≤ n− 1.

Proof. Since the multivalued mapping x �→ ∂V (x) has a closed graph, the set
D is obviously open. On the other hand, by the density theorem [12, Theorem 3.1],
the proximal subdifferential ∂PV (x) is nonempty on a dense set. Consequently, by
the semiconcavity of V , both proximal sub- and superdifferentials are nonempty on
this set; it implies that (by Lemma 6.1) ∂PV (x) = ∂LV (x) = {∇V (x)} on a dense
subset of R

n. So, we conclude that the min-max and the max-min of (6.1) and of the
definition of the set D coincide on an open dense set of Rn; that means that D contains
this set. Consequently D is an open dense set of R

n. Moreover, the complement S of
D is included in ∪k=1,...,nS

k(V ); therefore we get the upper bound on the Hausdorff
dimension of S by Proposition 3.5 given in section 3.2.

We define the following multifunction on D:

∀x ∈ D, G(x) :=

{

u ∈ U : ∀ζ ∈ ∂V (x), 〈ζ, f(x, u)〉 ≤ −
V (x)

2

}

.

Lemma 6.4. The multifunction G has nonempty closed convex values and is lower
semicontinuous on D.

Proof. Since the system is affine in the control, the multifunction G has nonempty
closed convex values. We show now that G is lower semicontinuous on D (we refer to
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 675

[6] for a task about semicontinuity of multivalued functions). We then have to prove
that for any sequence (xn)n of points in D converging to x ∈ D, and for any z ∈ G(x),
there exists a sequence (zn)n of points in G(xn) with limit z.

Let (xn)n be a sequence in D converging to x ∈ D, and let y = f(x, u0) in G(x).
We set, for all n,

zn := f(xn, u0).

From now on, we denote byM1 the Lipschitz constant of V , byM2 the upper bound of
f(·, u0), and byM3 the Lipschitz constant of f(·, u0) in a neighborhood of x containing
all the xn (without loss of generality we can assume this condition), and on the other
hand we denote by β(A,B) the Hausdorff distance between the sets A and B (see
[6]). Two cases appear.

1. maxζ∈∂V (x)〈ζ, y〉 < −V (x)
2 .

We fix n and we choose ζn ∈ ∂V (xn); so we have

〈ζn, zn〉 = 〈ζ, zn〉+ 〈ζn − ζ, zn〉 (where ζ := proj∂V (x)(ζn))

≤ 〈ζ, y〉+M1‖zn − y‖+M2β(∂V (xn), ∂V (x))

< −
V (x)

2
+M1‖zn − y‖+M2β(∂V (xn), ∂V (x))

< −
V (xn)

2
+

M3

2
‖xn − x‖+M3‖xn − x‖+M2β(∂V (xn), ∂V (x)).

Hence, for n sufficiently high, zn ∈ G(xn), and the sequence (zn)n converges
to y = f(x, u0) by continuity of f .

2. maxζ∈∂V (x)〈ζ, y〉 = −V (x)
2 .

We know by assumption that since x ∈ D there exists u1 ∈ U such that

∀ζ ∈ ∂V (x), 〈ζ, f(x, u1)〉 < −
V (x)

2
.

Consequently, we can express y = f(x, u0) as a limit of

yp = tpy + (1− tp)f(x, u1)

(when tp ↑ 1) such that maxζ∈∂V (x)〈ζ, yp〉 < −V (x)
2 . On the other hand, by

the first case each yp is the limit of some sequence (z
n
p )n; we conclude by a

diagonal process.
We conclude that G is a lower semicontinuous multifunction on the set D.

Returning to the proof of our theorem, we can apply the well-known selection
theorem of Michael [18, 6] to deduce the existence of a continuous selection u of G
on D.

Let us now set E as the set defined by

E :=

{

x ∈ R
n \ {0} s.t. Ψ(x) = −

V (x)

2

}

.

Lemma 6.5. For each x in E, there exists a unique f(x, u) ∈ U such that

max
ζ∈∂CV (x)

〈ζ, f(x, u)〉 = −
V (x)

2
.
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676 LUDOVIC RIFFORD

Proof. This is due to the assumption of strict convexity on the set of control U . If
f0(x) 
= 0 we leave it to the reader to prove that, modifying the dynamics if necessary,
the lemma holds.

We are now able to complete the construction of our feedback u(·). We set for each
x ∈ E , u(x) := u, where u is the u of Lemma 6.5. Moreover, for each x ∈ S \ E \ {0},
we set u(x) := u, where u verifies

∃ζ ∈ ∂LV (x), 〈ζ, f(x, u)〉 ≤ −V (x).

We have defined our feedback on all the space (of course, we set u(0) = 0). Let us
now prove the rest of the theorem. Consider the closed-loop system

ẋ = f0(x) +

m
∑

i=1

ui(x)fi(x)(6.2)

and show that it is globally asymptotically stable with respect to the Carathéodory
solutions. Let us first show that the property (2.10) holds for Euler trajectories.

Lemma 6.6. For any Euler trajectory x(·) of (6.2), we have

Ψ(x(t)) ≤ −
V (x(t))

2
∀t > 0 s.t. x(t) 
= 0.(6.3)

Moreover

ẋ(t) = f(x(t), u(x(t))) a.e. t > 0.(6.4)

Proof. Let us consider x0 ∈ R
n \ {0} and x(·) is an Euler trajectory of (6.2) with

x(0) = x0. Obviously, if x0 = 0, then since f(0, u(0)) = 0 all the Euler solutions of
(6.2) starting at x0 = 0 will stay at the origin; then the property (6.4) holds. Let us
now assume that x0 
= 0.

Let t0 be fixed in (0,∞); there exists σ > 0 such that for any ζ ∈ ∂PV (x(t0)), we
have that

−V (y) + V (x(t0)) + σ‖y − x(t0)‖
2 ≥ 〈−ζ, y − x(t0)〉

whenever y is in a neighborhood of x(t0). We deduce that for some s < t0 and close
to t0, we have

V (x(t0))− V (x(s)) + σ‖x(s)− x(t0)‖
2 ≥ 〈ζ, x(t0)− x(s)〉.

This implies

〈ζ, x(t0)− x(s)〉 ≤ V (x(t0))− V (x(s)) + σ‖x(s)− x(t0)‖
2(6.5)

≤ −

∫ t0

s

V (x(y))

2
dy + σ‖x(s)− x(t0)‖

2 by (5.5).

Now, by convexity of f(x(t), U) (since f is affine in the control) there exists a sequence
(sn)n and u0 in U such that

lim
n→∞

x(t0)− x(sn)

t0 − sn
= f(x(t0), u0).(6.6)
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 677

Consequently, passing to the limit for the sequence (sn)n, we obtain

〈ζ, f(x(t0), u0)〉 ≤ −
V (x(t0))

2
.

We can repeat this argument for all ζ ∈ ∂PV (x(t0)), that is,

∀ζ ∈ ∂PV (x(t0)), 〈ζ, f(x(t0), u0)〉 ≤ −
V (x(t0))

2
.

Since ∂PV (x(t0) = ∂V (x(t0)), that means that

Ψ(x(t0)) ≤ −
V (x(t0))

2
.

Hence, we deduce that for any t > 0, (6.3) is satisfied and

x(t) ∈ D ∪ E .

Two cases appear. If x(t) ∈ D, then by continuity of u(·) in a neighborhood of x(t),
we have ẋ(t) = f(x(t)), u(x(t)).

Otherwise, x(t) ∈ E . In this case, Lemma 6.5 asserts that the set of limits of the
form (6.6) is a singleton. Thus, we deduce that the function x(·) is left-derivable on
(0,∞) with derivate f(x(t), u(x(t))).

Now, since the trajectory x(·) is locally Lipschitz on [0,∞), Rademacher’s theorem
asserts that it is derivable almost everywhere. Then we conclude that this derivate
coincides with f(x(t), u(x(t))) almost everywhere; consequently, the Euler trajectories
are solutions in the sense of Carathéodory.

Consider now the case of solutions in the sense of Carathéodory. Let x0 
= 0 and
let x(·) be a Carathéodory solution of (6.2) starting at x0. Hence, we have a set N of
measure zero on [0,∞) such that

ẋ(t) = f(x(t), u(x(t))) ∀t ∈ [0,∞) \N.(6.7)

We have by the mean value inequality (see [12, Exercise 2.7(d), p. 122]) that for any
0 ≤ t < t′, there exists zt,t′ ∈ [x(t), x(t′)] and ζt,t′ ∈ ∂LV (zt,t′) such that

V (x(t′))− V (x(t)) ≤ 〈ζt,t′ , x(t
′)− x(t)〉.(6.8)

Now by setting the function θ : R≥0 → R, θ(t) := V (x(t)), it means that for any
t, t′ ≥ 0

θ(t′)− θ(t) ≤ 〈ζt,t′ , x(t
′)− x(t)〉.(6.9)

Since the function f is locally bounded, the function θ is locally Lipschitz and hence
by Rademacher’s theorem differentiable outside a set of measure zero N ′. Therefore,
for all t ∈ [0,∞) \N ∪N ′, we obtain by passing to the limit in (6.9)

θ′(t) ≤ 〈ζ, ẋ(t)〉 = 〈ζ, f(x(t), u(x(t)))〉,

where ζ ∈ ∂LV (x(t)).
Lemma 6.7. The Carathéodory trajectory x(·) does not belong to S \ E almost

everywhere:

x(t) /∈ S \ E a.e. t ≥ 0.
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678 LUDOVIC RIFFORD

The proof is based on the properties on the sets Sk(V ) given in section 3.2 and
is postponed to the end of this section.

By Lemma 6.7 there exists a third set N0 of measure zero such that

x(t) ∈ D ∀t ∈ [0,∞) \N0.

Thus we get by construction of u that for all t ∈ [0,∞) \N ∪N ′ ∪N0,

θ′(t) ≤ −
V (x(t))

2
.

Therefore, we deduce by the characterization given in section 3.1 that for any t ≥ 0

∂θ(t) ⊂

(

−∞,−
V (x(t))

2

]

.

We deduce that the function t �→ θ(t)+
∫ t

0
V (x(s))

2 ds is nonincreasing, and consequently

∀0 ≤ s ≤ t, V (x(t))− V (x(s)) ≤ −

∫ t

s

V (x(y))

2
dy.(6.10)

Now if we fix t0 > 0, and if we take ζ ∈ ∂PV (x(t0)), we get by (6.5) and (6.10) that

〈ζ, x(t0)− x(s)〉 ≤ −

∫ t0

s

V (x(y))

2
dy + σ‖x(s)− x(t0)‖

2.

Then we deduce as in the case of Euler trajectory that for all t > 0,

x(t) ∈ D ∪ E .

Now, Gronwall’s lemma easily gives

∀t > 0, V (x(t)) ≤ e−
t
2 v(x0)

for any Euler trajectory and any Carathéodory trajectory starting at x0. We get that
the closed-loop system (6.2) is globally asymptotically stable.

It remains to prove Lemma 6.7.
Proof. Assume that the conclusion is false. Then there would exist a subset H of

[0,∞) of positive measure such that x(·) is differentiable in H and

x(t) ∈ S \ E ∀t ∈ H.

On the other hand by (3.9), we can write

S \ E =
n
⋃

k=1

Σk(V ) ∩ S \ E

=

n
⋃

k=1

⋃

p∈{1,2,...}
Σk

1
p

(V ) ∩ S \ E .

Thus there exists a couple (k, p) for which

x(t) ∈ Σk
1
p

(V ) ∩ S \ E ⊂ Σk
1
p

(V )
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SEMICONCAVITY AND DISCONTINUOUS FEEDBACKS 679

on a set of positive measure H ′ ⊂ H. This implies that there exists a t0 ∈ H ′ such
that

ẋ(t0) = f(x(t0), u(x(t0))) ∈ TB
Σk

1
p

(V )(x(t0)).

Hence we deduce by Proposition 3.6 that

∀ζ ∈ ∂V (x), 〈ζ, f(x(t0), u(x(t0)))〉 = −V (x(t0)).

This last inequality implies that x(t0) ∈ D; we get a contradiction.

7. Proof of Theorem 2.11. Let us recall that

Dδ
V := {x ∈ R

n \ {0} : ΨV (x) < −δ(x)} .(7.1)

Since the function ΨV is upper semicontinuous, the set Dδ
V is open, and since δ < V

on R
n \ {0}, by the same proof as before (see proof of Theorem 2.9) it is dense.

Furthermore, by hypothesis (2.9), it is straightforward to show that there exists a
continuous positive definite function ǫ : R

n → R such that

∀x ∈ Dδ
V , δ(x) + ǫ(x) < V (x)

and

∀x ∈ Dδ
V , ΨV (x) ≤ −δ(x)− ǫ(x).

This implies, by the same proof as for Theorem 2.9 (replacing the term V (x)
2 by

δ(x) + ǫ(x)), that Dδ
V is open dense and that there exists a continuous function

u : Dδ
V → U

such that for any x ∈ Dδ
V ,

∀ζ ∈ ∂V (x), 〈ζ, f(x, u(x))〉 ≤ −δ(x)− ǫ(x).

Now, we claim that there exists a function

u : Dδ
V → U,

which is smooth and such that

∀x ∈ Dδ
V , ‖u(x)− u(x)‖ ≤

ǫ(x)

KV (x)
∑m

i=1 Mi

,

where KV (x) denotes the Lipschitz constant of the function V on the ball B(x, ‖x‖2 )

and where the Mi’s are the upper bounds of the functions fi’s on the ball 2‖x‖B.
Such a function brings that for any x ∈ Dδ

V and for any ζ ∈ ∂V (x),

〈

ζ, f0(x) +

m
∑

i=1

ui(x)fi(x)

〉

≤ −δ(x)− ǫ(x) + ‖ζ‖‖u(x)− u(x)‖
m
∑

i=1

‖fi(x)‖

≤ −δ(x)− ǫ(x) +KV (x)

m
∑

i=1

Mi‖u(x)− u(x)‖

≤ −δ(x).
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680 LUDOVIC RIFFORD

Finally, considering a Carathéodory solution x(·) of

ẋ = f0(x) +

m
∑

i=1

ui(x)fi(x),

starting at x0 ∈ R
n we get that for any t0 > 0 such that x(t0) 
= 0,

ΨV (x(t0)) ≤ −δ(x(t0)).

This means by (2.9) that the trajectory x(·) stays in Dδ
V for positive times. Theorem

2.11 is proved.
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