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Given a locally Lipschitz control system which is globally asymptotically controllable to the origin, we construct a control-Lyapunov function for the system which is Lipschitz on bounded sets and we deduce the existence of another one which is semiconcave (and so locally Lipschitz) outside the origin. The proof relies on value functions and nonsmooth calculus.

Introduction

This paper is concerned with the stabilization problem for a standard control system of the form ẋ(t) = f (x(t), u(t)). Lyapunov-like techniques have been successfully used in many problems in control theory, such as stabilizability, asymptotic controllability and stability. Stabilization by smooth feedback has been a subject of research by many authors. Among them, Artstein provided an important contribution (see [START_REF] Artstein | Stabilization with relaxed controls[END_REF]), proving that the control system admits a smooth Lyapunov function if and only if there is a stabilizing relaxed feedback. Moreover, if the system is affine in the control, it is further the case that there exists an ordinary stabilizing feedback continuous outside the origin. In general however such a feedback fails to exist, as pointed out by Sontag and Sussmann [START_REF] Sontag | Remarks on continuous feedback[END_REF] and by Brockett [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF] among others ( [START_REF] Ryan | On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback[END_REF], [START_REF] Clarke | Asymptotic stability and smooth Lyapunov functions[END_REF]). Consequently, the existence of a smooth Lyapunov function fails in general. This fact leads to the design of time-varying (see [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF], [START_REF] Coron | Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws[END_REF]) or discontinuous feedbacks. The construction of the latter (see [START_REF] Clarke | Asymptotic controllability implies feedback stabilization[END_REF]) has used the existence of a locally Lipschitz control-Lyapunov function whose decrease condition is stated in terms of Dini derivates or equivalently of proximal subgradients. The first result of this article is that, under certain mild assumptions on f (a local Lipschitz condition and bounded dynamics near the origin), for Globally Asymptotically Controllable systems, such control-Lyapunov functions always exist. This fact extends the well-known result of Sontag [START_REF] Sontag | A Lyapunov-like characterization of asymptotic controllability[END_REF] and brings an affirmative answer to a conjecture that has been attributed to Sontag and Sussmann. Furthermore, the main result shows that a semiconcave control-Lyapunov function outside the origin always exists under the same assumptions. The semiconcavity is an intermediate property between Lipschitz continuity and continuous differentiability. Semiconcave functions have been used for instance to obtain uniqueness results for weak solutions of Hamilton-Jacobi equations, see [START_REF] Kružkov | Generalized solutions of Hamilton-Jacobi equations of eikonal type I[END_REF], [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]. More recently, attention has been focused on the differential properties of such functions, see [START_REF] Alberti | On the singularities of convex functions[END_REF], [START_REF] Ambrosio | On the propagation of singularities of semi-convex functions[END_REF]. This semiconcavity will be exploited in forthcoming work to construct stabilizing feedbacks having certain regularity properties. Some works and general references related to this article include [START_REF] Bacciotti | Local Stabilizability of Nonlinear Control Systems[END_REF][START_REF] Bacciotti | Lyapunov and Lagrange stability: inverse theorems for discontinuous systems[END_REF][START_REF] Freeman | Robust Nonlinear Control Design. State-Space and Lyapunov Techniques[END_REF][START_REF] Hermes | Resonance, stabilizing feedback controls, and regularity of viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Rosier | Étude de quelques problèmes de stabilisation[END_REF].

Definitions and statements of the results

In this paper, we study systems of the general form

ẋ(t) = f (x(t), u(t)) (2.1)
where the state x(t) takes values in a Euclidian space X = R n , the control u(t) takes values in a given set U , and f satisfies the following hypotheses: Assumption 2.1. f is locally Lipschitz in x(uniformly in u). That is, for all x ∈ X, there exists V x a neighborhood of x and L x ≥ 0 such that

f (y , u) -f (y, u) ≤ L x y -y ∀y, y ∈ V x , ∀u ∈ U.
Assumption 2.2. f is bounded on the ball R B × U for all R > 0 (or equivalently, in view of the preceding assumption for some R > 0.) A special element "0" is distinguished in U , and the state x = 0 of X is an equilibrium point, i.e., f (0, 0) = 0 (No linear structure on U is used, however). The set of admissible controls is the set of measurable and locally essentially bounded functions u : R ≥0 -→ U . R ≥0 denotes nonnegative reals, B the open ball B(0, 1) := {x : x < 1} in X and B the closure of B. We now introduce our definitions and the main result. Definition 2.3. The system (2.1) is Globally Asymptotically Controllable (abbreviated GAC) if there exist a nonincreasing function M : R >0 -→ R >0 such that lim R↓0 M (R) = 0 and a function T : R >0 × R >0 -→ R ≥0 with the following property: For any 0 < r < R, for each ξ ≤ R, there exist a control u : R ≥0 -→ U and corresponding trajectory x(•) : R ≥0 -→ X such that 1) lim t→∞ x(t) = 0; 2) ∀t ≥ 0, x(t) ≤ M (R); 3) ∀t ≥ T (r, R), x(t) ≤ r. Remark 2.4. A routine argument involving continuity of trajectories with respect to initial states shows that the requirements of the above standard definition are equivalent to the following apparently weaker pair of conditions used in some references (see [START_REF] Sontag | Nonsmooth control-Lyapunov functions[END_REF], [START_REF] Sontag | General classes of control-Lyapunov functions[END_REF]):

1) For each ξ ∈ X there is a control u : R ≥0 -→ U that drives ξ asymptotically to 0; 2) for each ǫ > 0, there is a δ > 0 such that for each ξ ∈ X with ξ ≤ δ there is a control u : R ≥0 -→ U that drives ξ asymptotically to 0 and such that the corresponding trajectory x(•) satisfies x(t) ≤ ǫ for all t ≥ 0. Moreover, the authors of [START_REF] Sontag | Nonsmooth control-Lyapunov functions[END_REF], [START_REF] Sontag | General classes of control-Lyapunov functions[END_REF] add a condition on bounded controls; this one implies the assumption 2.2 by restriction on the system near the origin.

A function V : X -→ R ≥0 is positive definite if V (0) = 0 and V (x) > 0 for x = 0, and

proper if V (x) → ∞ as x → ∞.
IGD, , , Definition 2.5. A Lyapunov pair for the system (2.1) is a pair (V, W ) consisting of a continuous, positive definite, proper function V : X -→ R and a positive definite continuous function W : X -→ R, with the property that for each x ∈ X \ {0} we have

∀ζ ∈ ∂ P V (ξ), inf u∈U ζ, f (x, u) ≤ -W (x).
(2.2)

Here ∂ P V (x) refers to the proximal subdifferential of V at x (which may be empty): ζ belongs to ∂ P V (x) iff there exists σ and η > 0 such that

V (y) -V (x) + σ y -x 2 ≥ ζ, y -x ∀y ∈ x + ηB.
The condition (2.2) is in fact equivalent to another one often used in the definition of nonsmooth Lyapunov function (see [START_REF] Sontag | A Lyapunov-like characterization of asymptotic controllability[END_REF], [START_REF] Sontag | Nonsmooth control-Lyapunov functions[END_REF], [START_REF] Sontag | General classes of control-Lyapunov functions[END_REF]); this other notion is based on the notion of directional or Dini subderivate. The equivalence between these two conditions is a consequence of Subbotin's Theorem (see for example [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF], our principal source for the theory of nonsmooth analysis and [START_REF] Clarke | Feedback stabilization and Lyapunov functions[END_REF] for a discussion of the equivalence). We remark that there exists a complete calculus of proximal subdifferentials, one that extends all the theorems of the usual smooth calculus. Definition 2.6. A control-Lyapunov function (CLF) for the system (2.1) is a function V : X -→ R such that there exists a continuous positive definite W : X -→ R with the property that (V, W ) is a Lyapunov pair for (2.1).

We will say that V is a locally Lipschitz control-Lyapunov function if V is a control-Lyapunov function which is locally Lipschitz on X. We claim the following theorem. Theorem 2.7. Let (f, U ) be a control system as described above. Then under the assumptions 2.1 and 2.2, if the system is Globally Asymptotically Controllable, there exists a locally Lipschitz control-Lyapunov function. Remark 2.8. The converse is true and relatively easy if we suppose that f is continuous in u (we need this to obtain the existence of trajectories).

We now recall the definition of a semiconcave function [START_REF] Kružkov | Generalized solutions of Hamilton-Jacobi equations of eikonal type I[END_REF] in an open set Ω of X. Definition 2.9. Let u : Ω -→ R be a continuous function on Ω; it is said to be semiconcave on Ω if for any point x 0 ∈ Ω there exist ρ, C > 0 such that

u(x) + u(y) -2u x + y 2 ≤ C x -y 2 , (2.3) 
for all x, y ∈ x 0 + ρB.

We shall deduce as a corollary of the preceding theorem the main result of this article. Theorem 2.10. Let (f, U ) be a control system as described above. Then under the assumptions 2.1 and 2.2, if the system is Globally Asymptotically Controllable, there exists a continuous control-Lyapunov function semiconcave on X \ {0}. Remark 2.11. The CLF is a viscosity supersolution of

sup u∈U {-f (x, u), DV } -W ≥ 0. IGD, , ,
We begin by giving some regularity results about certain value functions. Then we give the proof of Theorem 2.7. In the last section, we conclude with the proof of Theorem 2.10.

A Result on Value Functions in finite time

Throughout this section, we are given a multifunction F mapping X to the subsets of X, and we consider the differential inclusion . We need for this section two properties of F which turn out to be particulary important. Assumption 3.1. The multifunction F is locally Lipschitz with non-empty compact convex values. Assumption 3.2. For some positive constants K and M , and for all x ∈ X,

ẋ(t) ∈ F (x(t)) a.e.. ( 3 
v ∈ F (x) =⇒ v ≤ K x + M
(that is called the linear growth condition). Under these two conditions, for all x 0 ∈ X, there exists a trajectory of (3.1) defined on R ≥0 such that x(0) = x 0 , and for any trajectory with initial data x 0 we have the following estimate ∀t ≥ 0, x(t) ≤ x 0 e Kt + M te Kt .

(3.2)

This inequality is an easy consequence of Gronwall's Lemma (see [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]).

Let there be given a function L : X -→ R ≥0 and a compact set T of X satisfying Assumption 3.3. L is locally Lipschitz and for all x ∈ X, L(x) ≥ 1. Assumption 3.4. There exists δ > 0 such that ∀x ∈ T , δ B ⊂ F (x).

We proceed now to define a value function V (•) on X in terms of trajectories of F as follows:

V (x) := inf T 0 L(x(t))dt : x(0) = x, ẋ(t) ∈ F (x(t)) a.e. and x(T ) ∈ T .
(Note that T is a choice variable in this "free-time" problem.) We introduce the notation R := {x ∈ X : V (x) < +∞} , the letter R stands for reachable: the set of points where V is finite is the sets of points which can be driven to the target T in finite time. We have the following theorem. Theorem 3.5. Assume (3.1)- (3.4). Then

(i) R is open; (ii) V is locally Lipschitz in R; (iii) ∀x ∈ R \ T , ∀ζ ∈ ∂ P V (x), min v∈F (x) ζ, v ≤ -L(x). IGD, , ,
Proof. First, by the Lipschitz condition on F and (3.4), there exists 0 < r ≤ 1 such that ∀x ∈ T + r B, δ 2 B ⊂ F (x). Hence, each state x of T + r B can be driven to T by a trajectory of (3.1) in time 2 δ d(x, T ) (where d(x, T ) denotes min τ ∈T x -τ ). This proves that V is finite on T + r B, if we set m := max x∈T +r B L(x), we have

∀x ∈ T + r B, V (x) ≤ 2m δ d(x, T ). (3.3) Fix now x 0 / ∈ T such that V (x 0 ) < +∞.
By the definition of V , there exists a F -trajectory x 0 (•) and T > 0 such that x 0 (0) = x 0 , x 0 (T ) ∈ T and

T 0 L(x(s))ds ≤ V (x 0 ) + 1.
(3.4)

The estimate (3.2) gives

∀t ∈ [0, T ], x 0 (t) ≤ x 0 e KT + M T e KT . Let A := [ x 0 + M T ]e KT , let λ F the Lipschitz constant of F on the ball (A + 1) B. Fix y ∈ B(x 0 , re -λ F T ).
By the corollary 1 p121 of [START_REF] Aubin | Differential Inclusions[END_REF], there exists a F -trajectory y(•) such that y(0) = y and verifying ∀t ∈ [0, T ], y(t) -x 0 (t) ≤ e λ F T y -x 0 , and y(t

) ≤ A + 1. (3.5) 
Consequently, if we set λ L the Lipschitz constant of L on the ball (A + 1) B, we obtain

T 0 L(y(s))ds ≤ T 0 L(x 0 (s))ds + T 0 [L(y(s)) -L(x 0 (s))]ds ≤ V (x 0 ) + 1 + T 0 λ L y(s) -x 0 (s) ds ≤ V (x 0 ) + 1 + T λ L e λ F T y -x 0 ≤ V (x 0 ) + 1 + T λ L r.
On the other hand, d(y(T ), T ) ≤ y(T ) -x 0 (T ) ≤ e λ F T y -x 0 ≤ r; this implies by (3.3) that

V (y(T )) ≤ 2m δ d(y(T ), T ) ≤ 2mr δ .
Consequently, we have that for all y ∈ B(x 0 , re -λ F T ),

V (y) ≤ T 0 L(y(s))ds + 2mr δ (3.6) ≤ V (x 0 ) + 1 + T λ L r + 2mr δ =: c < +∞. (3.7)
We have shown that B(x 0 , re -λ F T ) ⊂ R which gives (i). Now, let x ∈ B(x 0 , re -λ F T ), then for each positive integer n, there exists a F -trajectory x n (•) and T n x ≥ 0 such that x n (0) = x, x n (T n x ) ∈ T and

T n x 0 L(x n (s))ds ≤ V (x) + 1 n .
IGD, , , (3.6). As before, the estimate (3.2) gives for each n

Thus L ≥ 1 implies T n x ≤ V (x) + 1 n ≤ c + 1 n by
∀t ∈ [0, T n x ], x n (t) ≤ x e KT n x + M T x e KT n x ≤ [ x + M (c + 1)]e K(c+1) ≤ [ x 0 + 1 + M (c + 1)]e K(c+1) .
So we find a uniform bound for ẋn (•) on the intervals [0, T n x ] ⊂ [0, V (x)+1]. Hence, the theorem of Arzela-Ascoli and the compactness of trajectories (see [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]) imply that there exists a trajectory x(•) with initial data x such that x(T x ) ∈ T and

V (x) = Tx 0 L(x(s))ds,
with T ≤ V (x). That means that the infimum is attained in the definition of V . We set A := [ x 0 + 1 + M (c + 1)]e K(c+1) , and λ F the Lipschitz constant of F on the ball (A + 1) B. We proceed to show that V is Lipschitz on the ball B(x 0 , r 2 e -λ F (c+1) ). Fix x, y in B(x 0 , r 2 e -λ F (c+1) ). Then there exists as above x(•) a F -trajectory and T x ≥ 0 such that x(0) = x, x(T x ) ∈ T and 

V (x) = Tx 0 L(x(s))ds.
≤ V (x) + T x λ L e λ F Tx y -x ≤ V (x) + cλ L e λ F c y -x Now, V (y(T x )) ≤ 2m δ d(y(T x ), T ) ≤ 2m δ e λ F c y -x . Hence, we conclude that V (y) ≤ V (x) + cλ L + 2m δ e λ F c y -x .
Thus, because all the constants in the preceding inequality are independent of x and y, we find

|V (y) -V (x)| ≤ (c + 1)λ L + 2m δ e λ F (c+1) y -x ,
which proves (ii). We now have to prove (iii). For that, consider x ∈ R \ T , and x(•) a trajectory of (3.1) for which the infimum of the definition of V (x) is attained. Let ζ belonging to ∂ P V (x), then there exists σ and η > 0 such that V (y) -V (x) + σ y -x 2 ≥ ζ, y -x ∀y ∈ x + ηB.

IGD, , ,

By optimality of the trajectory x(•), for all t ∈ [0, T ], V (x(t)) = T t L(x(s))ds. Then, for t sufficiently small,

T t L(x(s))ds - T 0 L(x(s))ds + σ x(t) -x 2 ≥ ζ, x(t) -x , which gives - 1 t t 0 L(x(s))ds + tσ x(t) -x t 2 ≥ ζ, x(t) -x t .
We find (iii) by passing to the limit: t ↓ 0.

Remark 3.6. In [START_REF] Clarke | Feedback stabilization and Lyapunov functions[END_REF], a result of this type is proven differently by an appeal to Hamiltonian necessary conditions. Remark 3.7. The conclusions of Theorem 3.5 remain true if we weaken the assumption 3.4 to the proximal condition

min v∈F (x) ζ, v ≤ -δ ζ forall x ∈ T where ζ ∈ N P T (x)
. (This result is a consequence of proximal criteria for attainability, see [START_REF] Clarke | Qualitative properties of trajectories of control systems: a survey[END_REF], [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF].) This kind of condition added to the smooth regularity of F is used in [START_REF] Cannarsa | Convexity properties of the minimum time function[END_REF] to obtain the semiconcavity of the minimum-time function. However, these results (on the Lipschitz property or on the semiconcavity property) do not hold if we omit the linear growth condition (3.2); see for example [7, Ex.1.3,p.238] Remark 3.8. The conclusion (iii) can be strengthened to equality. The value function V is the viscosity solution of a certain Hamilton-Jacobi equation (see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF], [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]).

Proof of Theorem 2.7

We suppose first that we have constructed a control-Lyapunov function V which is continuous on X and locally Lipschitz on X \ {0}. Thus, there exists another continuous positive definite function W : X -→ R ≥0 such that (V, W ) is a Lyapunov pair for (2.1). We proceed to show that we can deduce the existence of a new control-Lyapunov function which is locally Lipschitz on all the space X. We set for any 0

≤ a ≤ b S V (b) := {x; V (x) ≤ b} and S V [a, b] := {x; a ≤ V (x) ≤ b},
they are compact sets of X. We proceed to construct a sequence of functions on X which will converge uniformly to our desired locally Lipschitz control-Lyapunov function. First, we set V 0 (x) := max{V (x), 1}. This function is locally Lipschitz on X, proper, positive, constant on S V (1) and verifies

∀x / ∈ S V (1), ∀ζ ∈ ∂ P V 0 (x), inf u∈U ζ, f (x, u) ≤ -W (x).
By assumption, for all n ≥ 0, V is Lipschitz on we can choose this constant smaller than 1).

S V [ 1 2 n+1 , 1 2 n ], we note K( 1 2 n+1 , 1 2 
We define now a sequence inductively; suppose V n given, we set

V n+1 (x) :=      V n (x) si x / ∈ S V ( 1 2 n ) V n (x) + 1 K( 1 2 n+1 , 1 2 n ) [V (x) -1 2 n ] si x ∈ S V [ 1 2 n+1 , 1 2 n ] V n (x) - 1 2 n+1 K( 1 2 n+1 , 1 2 n ) si x ∈ S V ( 1 2 n+1 )
We have the following lemma. Lemma 4.1. For all n ≥ 1, V n is 1-Lipschitz on S V (1), proper, and constant on S V ( 1 2 n ). Moreover, V n satisfies the following properties:

∀x ∈ X, V n (x) ≥ 1 - n k=1 1 2 k K( 1 2 k , 1 2 k-1 )
, and

∀x ∈ S V ( 1 2 n-1 ) \ S V ( 1 2 n ), ∀ζ ∈ ∂ P V n (x), inf u∈U ζ, f (x, u) ≤ - W (x) K( 1 2 n , 1 2 n-1 ) . (4.1)
Proof. We're going to prove only the last assertion. The other ones are left to the reader, they are the consequence on an easy inductive proof.

Let n ≥ 1, x ∈ S V ( 1 2 n-1 ) \ S V ( 1 2 
n ), and ∀ζ ∈ ∂ P V n (x). We remark that for all y not in S V ( 1 2 n ), we have

V n (y) = min V n-1 (y), V n-1 (y) + V (y) -1 2 n-1 K( 1 2 n , 1 2 n-1 )
.

For x, the minimum is attained in the second term , so

ζ ∈ ∂ P V n-1 (x) + V(x) -1 2 n-1 K( 1 2 n , 1 2 n-1 ) = ∂ P V n-1 (x) + V(x) K( 1 2 n , 1 2 n-1 )
. (4.2)

First case: n > 1. We remark now that ∀y ∈ S V ( 1 2 n-2 ),

V n-1 (x) = max C n-2 + V (x) -1 2 n-2 K( 1 2 n-1 , 1 2 n-2 ) , C n-2 - 1 2 n-1 K( 1 2 n-1 , 1 2 n-2 )
, where C n-2 is the value of V n-2 on the set S V ( 1 2 n-2 ). We deduce by (4.2) that

ζ ∈ ∂ P max V (x) K( 1 2 n-1 , 1 2 n-2 ) + A, A + V (x) K( 1 2 n , 1 2 n-1 )
.

where

A = C n-2 - 1 2 n-2 K( 1 2 n-1 , 1 2 n-2 ) et A = C n-2 - 1 2 n-1 K( 1 2 n-1 , 1 2 n-2 )
. Hence, we obtain that ζ is in the set

∂ P max 1 K( 1 2 n-1 , 1 2 n-2 ) + 1 K( 1 2 n , 1 2 n-1 ) V (x) + A, V (x) K( 1 2 n , 1 2 n-1 ) + A .
Now, by the basic calculus on the proximal subgradients, we have

ζ ∈ co 1 K( 1 2 n-1 , 1 2 n-2 ) + 1 K( 1 2 n+1 , 1 2 n ) ∂ P V (x), 1 K( 1 2 n , 1 2 n-1 ) ∂ P V (x). IGD, , ,
Then, there exists

ζ 1 et ζ 2 in ∂ P V (x) and t ∈ [0, 1] such that ζ = t 1 K( 1 2 n-1 , 1 2 n-2 ) + 1 K( 1 2 n , 1 2 n-1 ) ζ 1 + (1 -t) 1 K( 1 2 n , 1 2 n-1 ) ζ 2 . = t( 1 K( 1 2 n-1 , 1 2 n-2 ) + 1 K( 1 2 n , 1 2 n-1 ) ) + (1 -t) 1 K( 1 2 n , 1 2 n-1 ) ζ where ζ ∈ ∂ P V (x), because ∂ P V (x) is a convex set. Now, we invoke the decrease property of V , inf u∈U ζ, f (x, u) ≤ -W (x). Then inf u∈U ζ, f (x, u) ≤ - 1 K( 1 2 n , W (x) 2 n-1 )
, which gives the result. Second case: If n = 1, the proof is similar. Now, note that for each x = 0, the sequence (V n (x)) n≥0 is stationary, thus it converges. So, we can define

V(x) := lim n→∞ V n (x) -C.
where

C := 1-+∞ n=0 1 2 n+1 K( 1 2 n+1 , 1 2 n ) ∈ [0, 1]
(because the Lipschitz constants have been chosen smaller than 1). By the preceding lemma, V n is always positive and for x = 0,

V n (0) = 1 - n k=1 1 2 k K( 1 2 k , 1 2 k-1 ) → n→∞ 1 -C =: V(0).
We deduce that V(0) = 0 and then that V is positive definite. On the other hand, it is locally Lipschitz everywhere as a simple limit of Lipschitz functions (with the same constant in each compact set on X) and it verifies the decreasing property (2.2) with a continuous positive definite function W defined as follows:

W(x) := inf y∈X {w(y) + x -y }, forall x ∈ X;
where

w(x) :=      W (x) if x / ∈ S V (1) W (x) K( 1 2 n+1 , 1 2 n ) if x ∈ S V ( 1 2 n ) \ S V ( 1 2 n+1 ) 0 if x = 0.
The decrease property is an immediate consequence of (4.1).

To complete the proof of Theorem 2.7, we now have to prove the existence of a control-Lyapunov function which is continuous on X and locally Lipschitz outside the origin. We begin by defining a multifunction F , which is useful because uniformly bounded:

∀x ∈ X, F (x) := cl co f (x, u) 1 + f (x, u) ; u ∈ U . IGD, , ,
We study the differential inclusion ẋ(t) ∈ F (x(t)) a.e.

This dynamic has the same properties as the system (2.1). Proposition 4.2.

(i) F is locally Lipschitz and compact convex valued;

(ii) The system ẋ(t) ∈ F (x(t)) is GAC.

Proof. (i) We omit the proof.

(ii) Let x ∈ X with x ≤ R be given. By assumption, there is a trajectory x(•) of (2.1) on [0, ∞) which verifies the assumptions of Global Asymptotic Controllability (Definition 2.3). We set φ(t) := We deduce that if τ ≥ T (r, R)(1 + N R ), then τ ≥ φ(T (r, R) and consequently x(τ ) ≤ r.

The new differential inclusion ẋ ∈ F (x) is GAC with suitable constants M (R) and T (r, R)

:= T (r, R)(1 + N R ).
We shall use the notation M (•) and T ( 

constants M (R) ↓ 0 and Tβ (r, R) = T (r, R) max x∈M (R) B {β(x) -1 }. IGD, , ,
We remark that for x ≥ 2M (1), we have

Γ 0 (x) ≤ [1 + T ( 1 2 , 1) M (1) ] -1 .
Then the time used for a Γ 0 trajectory with initial condition α to reach the ball 2M (1) B is greater than [1 +

T ( 1 2 ,1) 
M (1) ]M (1). Hence, V 0 (α) ≥ M (1) + T ( 12 , 1) > m 0 . Consequently, S 0 ⊂ 3M (1) B. (c) This last assertion is a consequence of Lemma 4.6.

Second step

We now define a value function with a decrease property which holds closer to the origin. We set

Γ 1 (x) :=            1 + ( x -M ( 1 2 )) T ( 1 4 , 1 2 ) M ( 1 2 ) 2 -1 F (x) for x ≥ M ( 1 2 ) F (x) for 1 2 ≤ x ≤ M ( 1 2 ) F (x) + 8[ 1 2 -x ] B for 1 4 ≤ x ≤ 1 2 F (x) + 2 B for x ≤ 1 4
We have immediatly the following result. Lemma 4.8. Γ 1 is compact convex valued and the system ẋ(t) ∈ Γ 1 (x(t)) is GAC (with possible constants M 1 (R) = M (R) ↓ 0 and T1 (r, R)).

We need an auxiliary function with the local Lipschitz property. We define for all x ∈ X: B 0 (x) := max{V 0 (y) : y ≤ x + M (1)}.

As before, the new multifunction leads to a value function R 1 associated to the set A 1 := 1 4 B. We set for all x in X:

R 1 (x) := inf T 0 L 1 (x(t))dt : x(0) = x, ẋ ∈ Γ 1 (x) a.e. and x(T ) ∈ τ 1 where L 1 (x) := 1 + max{0, x -3M (1)} B 0 (x) ρ 1 M (1) 2 and ρ 1 := m 0 /2 m 0 1 + (3M (1) -M ( 1 2 )) T ( 1 4 , 1 2 ) M ( 1 2 ) 2 + T1 ( 1 4 , 1) ≤ 1. 
The theorem 3.5 gives the following lemma. Lemma 4.9.

(a) R 1 is locally Lipschitz on X; (b) ∀ x ≥ 1 2 , ∀ζ ∈ ∂ P R 1 (x), min v∈F (x) ζ, v ≤ -L 1 (x).
Proof. L 1 and Γ 1 being locally Lipschitz and the system associated to Γ 1 GAC, R 1 is finite everywhere and the theorem 3.5 proves the assertions.

As in the first step, we're going to evaluate the size of a certain level set given by R 1 . We set m R 1 := max{R 1 (y) : y ∈ 1 2 B} and S R 1 (m R 1 ) = {x : R 1 (x) ≤ m R 1 }. IGD, , , second one. In this case, x / ∈ S 0 and ζ ∈ ∂ P ( Ṽ0 + m 0 )(x) = ∂ P Ṽ0 (x). We conclude by Lemma 4.7 (c). (f) This is an easy consequence of the Lemma 4.11(b).

Third Step

We finish the construction of the sequence (V n ) n≥0 by induction on n. Assume (V k , A k , L k , R k , Γ k ) have been already defined for 1 ≤ k ≤ n with the following properties.

1) As before, we can define a new function V n+1 . We proceed as follows; for all x ∈ X, we set Γ n+1 (x) :=

1 2 k B ⊂ S k ⊂ 3M ( 1 2 k ) B; 2) For x ≥ 5M ( 1 2 k-1 ), V k (x) = V k-1 (x); 3) For 1 2 k ≤ x ≤ 5M ( 1 2 k-1 ), ∀ζ ∈ ∂ P V k (x
           1 + ( x -M ( 1 2 n+1 )) T ( 1 2 n+2 , 1 2 n+1 ) M ( 1 2 n+1 ) 2 -1 F (x) if x ≥ M ( 1 2 n+1 ) F (x) if x ∈ [ 1 2 n+1 , M ( 1 2 n+1 )] F (x) + 2 n+3 [ 1 2 n+1 -x ] B if x ∈ [ 1 2 n+2 , 1 2 n+1 ] F (x) + 2 B if x ≤ 1 2 n+2
We need as before an auxiliary function with the local Lipschitz property.

We define for all x ∈ X:

B n (x) := max{V n (y) : y ≤ x + M ( 1 2 n )}. From this multifunction, we define a value function associated to the set T n+1 := 1 2 n+2 B. We set for any x ∈ X, R n+1 (x) := inf where L n+1 (x) := 1 + max{0, x -3M ( 1 2 n )} Bn(x)

ρ n+1 M ( 1 2 n ) 2 with ρ n+1 := ρ n m n /2 m n 1 + (3M ( 1 2 n ) -M ( 1 2 n+1 )) T ( 1 2 n+2 , 1 2 n+1 ) M ( 1 2 n+1 ) 2 + Tn+1 ( 1 2 n+2 , 1 2 n ) ≤ ρ n .
The differential inclusion ẋ ∈ Γ n+1 (x)) is GAC, we denote by Tn+1 (•, •) its new constant (we saw that we can choose Mn+1 = M ). On the other hand, we set m R n+1 := max{R n+1 (y) : y ∈ 1 2 n+1 B}, and S R n+1 (m R n+1 ) := {x : R n+1 (x) ≤ m R n+1 }.
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. 1 )

 1 A solution x(•) of (3.1) on the interval [a, b] is taken to mean an absolutely continuous function x : [a, b] -→ X which, together with ẋ, satisfies (3.1); such an arc will be called a F -trajectory on the interval [a, b]

By [ 4 ,

 4 Cor.1,p.121], there exists a F -trajectory y(•) such that y(0) = y and verifying ∀t ∈ [0, T x ], y(t) -x(t) ≤ e λ F Tx y -x , and y(t) ≤ A + 1. Consequently, if we set as before λ L the Lipschitz constant of L on the ball (A + 1) B, we obtain Tx 0 L(y(s))ds ≤ Tx 0 L(x(s))ds + Tx 0 λ L y(s) -x(s) ds

t 0 [ 1 = t 0 [ 1

 0101 + ẋ(s) ]ds and we define a function x on [0, ∞] by x(τ ) := x(t), where t = t(τ ) is determined in [0, ∞] by τ + ẋ(s) ]ds (this change of variables or time scale is known as the Erdmann Transform.) Then dx dτ = ẋ(t) 1 + ẋ(t) ∈ Γ(F x(τ )) a.e., so that x is a F -trajectory. But by construction, for all τ ≥ 0, x(τ ) ≤ M (R) and if τ ≥ φ(T (r, R)) then x(τ ) ≤ r. The trajectory x(•) remains in the ball M (R) B, so if N R denotes the maximum of f (x, u) for x ∈ M (R) B and u ∈ U (finite by the assumption 2.2), we have ∀t ≥ 0, φ(t) ≤ t(1 + N R ).

  ), min v∈F (x) ζ, v ≤ -ρ k ; 4) L k = 1 on the ball 3M ( 1 2 k-1 ) B; 5) ∀x ∈ R N , V k (x) = 0 ⇐⇒ x ∈ 1 2 k+1 B; 6) ∀k ∈ [1, n], m k ≤ m k-1 2 , and ρ k ≤ ρ k-1 ≤ 1 =: ρ 0 .With the following definitions:m k := max{V k (x); x ≤ 1 2 k },andS k := {x; V k (x) ≤ m k }, where ρ k are some positive constants.

T 0 L

 0 n+1 (x(t))dt : x(0) = x, ẋ ∈ Γ n+1 (x) and x(T ) ∈ T n+1

  •, •) for the constant of global asymptotic stability of F . Remark 4.3. We have in fact by a similar proof the following property. Proposition 4.4. Let β : X -→ R >0 locally Lipschitz. Then the differential inclusion

ẋ(t) ∈ β(x(t))F (x(t)) a.e. is locally Lipschitz with convex compact values and is GAC with appropriate

Acknowledgments. I would like to thank Professor Francis Clarke for his comments and his suggestions.

First Step:

We proceed to define a first multifunction Γ 0 as follows:

By construction (and by the proposition 4.4), we have immediately the following lemma. Lemma 4.5. Γ 0 is compact convex valued, locally Lipschitz, uniformly bounded (by 1) and the differential inclusion ẋ ∈ Γ 0 (x(t)) is GAC.

On the other hand, B ⊂ Γ 0 (x) for all x in 1 2 B. Hence, the theorem 3.5 can be applied with T = T 0 := 1 2 B and L = L 0 := 1. So we define the value function V 0 (x) := inf{T : x(0) = x, ẋ(t) ∈ F (x(t))a.e. and x(T ) ∈ 1 2 B}, for all x ∈ X. Lemma 4.6. V 0 est locally Lipschitz on X, positive, proper and for all x / ∈ B,

Proof. This is an easy corollary of the theorem 3.5.

We set m 0 := max{V 0 (x); x ≤ 1} and S 0 := {x; V 0 (x) ≤ m 0 }. We define a new function Ṽ0 as follows: Ṽ0 (x) := max{0, V 0 (x) -m 0 }. The first inclusion is given by the definition of Ṽ0 . However, the second one is less easy. Since the system ẋ ∈ F (x)) is GAC, for all x ∈ B there exists a F -trajectory x(•) such that [START_REF] Alberti | On the singularities of convex functions[END_REF] x(0) = α et ẋ(t) ∈ F (x(t)) p.p, (2) ∀t ≥ 0, x(t) ≤ M (1), [START_REF] Artstein | Stabilization with relaxed controls[END_REF] 

Consequently, m 0 ≤ T ( 1 2 , 1). Let us consider now α ∈ X such that α ≥ 3M (1).
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By the proposition 4.2, for any x ∈ 1 2 B, there exists a F -trajectory x(.) such that [START_REF] Alberti | On the singularities of convex functions[END_REF] 

.

). Now, we consider an initial state α such that α ≥ 3M ( 12 ). We remark that for x ≥ 2M (1), we have

Then the time used for a Γ 1 trajectory with initial condition α to reach the ball 2M ( 12 ) B is greater than [1 +

Indeed, The proof gives the following lemma. Lemma 4.10.

Proof. (a) Let x ∈ S 0 . Indeed, there exists a Γ 0 -trajectory x(•) which relies

x to the set B with time

] we can write Γ 1 (x) ⊂ β(x)Γ 0 (x) with β(x) as follows (assuming that M ( 1 2 ≥ 1):

]

We observe that if M ( 1 2 ) < 1, we have to omit it in the definition of β. Now, an appropriate change of variables (see Proposition 4.4) provides that there exists a Γ 1 -trajectory x(•) which remains in 3M (1) B and drives x to B with a time

. Now, we can extend this trajectory until T 1 with the following property (by Lemma 4.8): ∀t ≥ T, x(t) ∈ M (1) B and x(T + T1 ( 14 , 1)) ∈ 1 4 B. In IGD, , , so doing, we have constructed a trajectory which remains in 3M (1) B ( where L 1 = 1) and reaches the set T 1 .

. We conclude by the definition of ρ 1 . (b) Let x such that x ≥ 5M [START_REF] Alberti | On the singularities of convex functions[END_REF]. By the definition of B 0 we have

On the other hand, the time required for driving from { y ≥ x -M (1)} to { y ≥ x -2M (1)} is greater than M (1) (the dynamic is bounded by 1). Consequently,

We finish this step by defining a new function V 1 as follows.

We set

We have the following lemma. Lemma 4.12. V 1 is locally Lipschitz on X. Moreover, we have,

Proof. (a) By the Lemma 4.11 (a), for any

And by the remark of (a),

First Case: The minimum is attained for the second term.

We conclude by Lemma 4.9 (b). Second Case: the minimum is attained for the first term and not for the

Proof. (a) and (b) are evident by the theorem 2.7. The assertion (c) is proved as before (Lemma 4.10). We prove now (d) and (e), we begin with (e). Let there be given x ≥ 5M ( 12 n ). By the definition of B n we have

On the other hand, the time required for driving from

We prove now (d). Let x ∈ S n . Indeed, there exists a Γ n -trajectory x(•) which relies x to the set 1 2 n B with time

An appropriate change of variables (see Proposition 4.4) provides that there exists a Γ n+1 -trajectory x(•) which remains in 3M ( 1 2 n ) B and drives x to

. Now, we can extend this trajectory until T n+1 with the following property (by Lemma 4.8

In this way, we have constructed a trajectory which remains in 3M ( 12 n ) B ( where L n+1 = 1) and reaches the set T n+1 . Consequently,

n ). We conclude by the definition of ρ n+1 .
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We can now define the new function V n+1 . We set for all x ∈ X,

where Ṽn (x) := max{0, V n (x) -m n }.

As before, we consider

We have the following lemma. Lemma 4.14. V n+1 is locally Lipschitz on X. Moreover, we have

The proof is similar to the proof of Lemma 4.12. This is let to the reader.

Fourth

Step: The Function V We study the convergence of the sequence (V n ) n≥0 . For that, we need a last lemma.

Proof. We do an inductive proof. The result being already proven for n=1 (Lemma 4.12), assume that we have proved the result for n ≥ 1; we establish the property for n + 1. Let us consider 0 ≤ k ≤ n + 1 and x ∈ S k . First Case: k ≤ n.

If x /

∈ S n , then by definition of V n , V n (x) = Ṽn (x) + m n . Hence, V n+1 (x) ≤ V n (x) ≤ m k by induction. Otherwise, x ∈ S n . In this case, Ṽn (x) = 0 implies V n+1 (x) ≤ m n ≤ m k by the property on the sequence (m k ). Second Case: k = n + 1. The property follows from the definition of S n+1 .

We can now conclude. Let us consider K a compact set of X \ {0}. Then, as lim n→∞ M ( 1 2 n ) = 0, there exists a positive integer n K such that

By the second property of the sequence (

Hence, the sequence (V n (x)) n≥0 converges for all x in K and the limit is locally Lipschitz function in K (as a stationnar limit of locally Lipschitz functions). On the other hand, for any n ≥ 0, V n (0) = 0; so we can define for all x ∈ X, V (x) := lim n→∞ V n (x).

By the proof above, V is locally Lipschitz on X \ {0}, positive definite and proper (because 1)); we have to show that V is continuous at the origin. This fact is a consequence of the preceding lemma. Let us consider x p -→ p→∞ 0. We want to show that f (x p ) -→ p→∞ 0.
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Let ǫ > 0. There exists n 0 ≥ 0 such that m n 0 ≤ ǫ (because m n ≤ m 0 2 n ). Thus, by the last lemma, ∀n ≥ n 0 , ∀x ∈ S n 0 , V n (x) ≤ ǫ. But for p sufficiently great (p ≥ P ), x p ∈ 1 2 n 0 B ⊂ S n 0 . We deduce that ∀n ≥ n 0 , ∀p ≥ P, V n (x p ) ≤ ǫ. By passing to the limit: ∀p ≥ P, V (x p ) ≤ ǫ, which gives the continuity on the origin. Now, we set ∀x ∈ X,

We can now define the function W by

W is a positive definite and locally Lipschitz function. The decrease condition (2.2) is the consequence of the stationarity of the sequence (V n (x)) n≥0 outside the origin and of the Lemma 4.14 (d). This completes the proof of Theorem 2.7.

Existence of a semiconcave CLF

We begin by some preliminaries on the semiconcavity. It is easy to show that any semiconcave function in Ω is locally Lipschitz. Concave functions are of course, semiconcave. Another class of semiconcave functions is that of C 1 functions with locally Lipschitz gradient. Moreover we have the two following lemmas. Lemma 5.1. Let Ψ : R -→ R be an increasing semiconcave function and u : Ω -→ R be a semiconcave function on Ω. Then Ψ • u is a semiconcave function on Ω. Lemma 5.2. Let u, v : Ω -→ R be two semiconcave functions on Ω, then the function min{u, v} is semiconcave on Ω.

A convenient way to build semiconcave approximations of a given function is provided by the method of inf-convolution, a standard tool in convex and non-smooth analysis. Let Ω be a subset of X and u a positive function in Ω. Define, for any α > 0,

(5.1)

Lemma 5.3. Let u : X -→ R be a locally Lipschitz and proper function.

Then u α is semiconcave on X (the infimum is attained in the definition of u α ) and moreover, u α u, as α → +∞, locally uniformly in X.

Proof. We leave the proof to the reader.

We can link the proximal subdifferentials of u and its inf-convolution. We have the following Lemma. (We refer to [14, Theorem.5.1,p.44] for the proof.) Lemma 5.4. Suppose that x ∈ X is such that ∂ P u α (x) is nonempty. Then there exists a point ȳ ∈ X satisfying the following:

a) The infimum in (5.1) is attained uniquely at ȳ. b) The proximal subgradient

Proof of Theorem 2.10 By Theorem 2.7, there exists a control-Lyapunov pair for the system (2.1); without loss of generality, we can suppose that the function W is 1-Lipschitz on X (othewise, we can set W (x) := inf y∈X {W (y) + x -y }). For any 0 < r < R, we define the following sets:

Let there be given an integer n ∈ N * . By the Lipschitz property of f and V , we can consider

where the constant M n is defined by

On the other hand, we note w n the minimum of W on S V [ 1 2n , 11n], and we set

We define by inf-convolution the function V αn as follows:

Lemma 5.5. Let x 0 ∈ S V (M n ). If the infimum in the definition of V αn (x 0 ) is attained at ȳ, then x 0 -ȳ ≤ min{

Proof. If the infimum is attained for ȳ, then

we find a contradiction. Hence,

On the other hand, we have found the estimate

x 0 -ȳ which implies the desired inequality by the bound on x 0 -ȳ . IGD, , , Lemma 5.6. Let x 0 ∈ S V [ 1 2n , 11n] and ζ ∈ ∂ P V αn (x 0 ), then

Proof. By the Lemmas 5.4 and 5.5, the infimum in the definition of V αn (x 0 ) is attained uniquely at a point ȳ ∈ S V (11n) which satisfies x 0 -ȳ ≤ wn 2(1+L n V L n f ) and such that ζ ∈ ∂ P V (ȳ). Thus, by the Lipschitz properties of f , V and W , we can write:

Lemma 5.7. There exists Ψ n : R ≥0 -→ R ≥0 C ∞ increasing which satisfies the following properties:

2 . Proof. The different properties lead to defining a piecewise affine function which we then regularize to render it C ∞ , giving Ψ n .

We now set Ṽn := Ψ n • V αn , this function is semiconcave on X by Lemma 5.1. The definitive Lyapunov pair (V, W) is defined for all x ∈ X by:

]. Hence, Lemma 5.7 implies that Ṽn (x 0 ) = V αn (x 0 ). On the other hand, for any p ≥ n, by construction α p ≥ α n and then V αp (x 0 ) ≥ V αn (x 0 ). The same argument as above on Ψ p leads to Ṽp (x 0 ) = V αp (x 0 ) ≥ Ṽn (x 0 ) = V αn (x 0 ). consequently, we have shown that V(x 0 ) = min 1≤p≤n Ṽp (x 0 ). Now, if the minimum in the definition of V(x 0 ) is attained for Ṽn 0 (x 0 ) (with 1 ≤ n 0 ≤ n) then ζ ∈ ∂ P V(x 0 ) =⇒ ζ ∈ ∂ P Ṽn 0 (x 0 ) = Ψ (V αn 0 (x 0 ))∂ P V αn 0 (x 0 ). We now have to show the inequality (5.5). First Case: If V (x 0 ) > 11n 0 and V αn 0 (x 0 ) ≤ 11n 0 , then there exists ȳ ∈ x 0 + B IGD, , , (because α n 0 ≥ 11n 0 ) such that V αn 0 (x 0 ) = V (ȳ) + α n 0 x 0 -ȳ 2 . Therefore, ȳ ∈ S V (11n 0 ) and x 0 ∈ S V (M n 0 ) by definition of M n 0 . By Lemma 5.5 and Lemma 5.7 (ii), we obtain V αn 0 (x 0 ) ≥ 11n 0 -1 8n 0 and Ṽn 0 (x 0 ) ≥ 11n 0 +V (x 0 ). But Ṽn (x 0 ) = V αn (x 0 ) ≤ V (x 0 ). Hence, n 0 = n, and we have the decrease property by Lemma 5.6. Second Case: If V (x 0 ) > 11n 0 and V αn 0 (x 0 ) > 11n 0 , then Lemma 5.7(ii) implies Ṽn 0 (x 0 ) ≥ 11n 0 + V (x 0 ), we conclude as in the first case. Third Case: If V (x 0 ) < 1 2n 0 , then

But we proved that Ṽn (x 0 ) = V αn (x 0 ) ≤ V (x 0 ), so the minimum is also attained for n; then we have (5.5) by Lemma 5.6. Fourth Case: If x 0 ∈ S V [ 1 2n 0 , 11n 0 ], then we conclude by Lemma 5.6 and Lemma 5.7 (iv). This last Lemma shows that the minimum in the definition of V(x) is always attained for x = 0. Therefore, the function V is semiconcave outside the origin (by Lemma 5.2). On the other hand, V is continuous on the origin (because 0 ≤ V ≤ V ) and satisfies the decrease condition by 5.5. Consequently V provides a control-Lyapunov function; which proves the Theorem 2.10.