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Abstract

Given a locally defined, nondifferentiable but Lipschitz Lyapunov func-
tion, we construct a (discontinuous) feedback law which stabilizes the
underlying system to any given tolerance. A further result shows that
suitable Lyapunov functions of this type exist under mild assumptions.
We also establish a robustness property of the feedback relative to mea-
surement error commensurate with the sampling rate of the control im-
plementation scheme.
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Introduction

Consider a standard control system of the form

ẋ(t) = f(x(t), u(t)) a.e., u(t) ∈ U , (1)

and let V be a Lyapunov function for the system : We have V (x) ≥ 0, V (x) =
0 iff x = 0, V (x) → ∞ as x → ∞, and (for some function W ) the Infinitesimal
Decrease Condition

min
u∈U

〈∇V (x), f(x, u)〉 ≤ −W (x) < 0, x *= 0. (2)

It is well-known (but true) that the existence of V implies (open-loop) Asymp-
totic Controllablity to the origin :
for every α ∈ IRn, there is a control u(t) such that the solution x(·) of (1) with
initial condition x(0) = α satisfies x(t) → 0 as t → ∞ (and in addition, conver-
gence to zero takes place in a certain uniform and stable manner that we will
not dwell upon here). A related and important goal in many situations is to
produce a state feedback k(·) : IRn → U which stabilizes the system; i.e., such
that the system ẋ = f(x, k(x)) is globally asymptotically stable. This article
explores the question of how to define such a feedback law through the use of a
given Lyapunov function V .

The ideal case, a well-known heuristic useful for motivational purposes, is
the one in which we can find a continuous function k(x) that selects a value of
u ∈ U attaining (or almost) the minimum in (2) :

〈∇V (x), f(x, k(x))〉 ≤ −W (x) ∀x *= 0.

Then any solution of ẋ = f(x, k(x)) is such that

d

dt
V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 ≤ −W (x) < 0,

a monotonicity conclusion that, together with the growth property of V , assures
that x(t) → 0 as t → ∞.
There are two fundamental difficulties with this ideal picture, and both con-
cern regularity issues. The first is that a differentiable Lyapunov function may
not exist, and the second is that even when a smooth V exists, the continuous
selection k(·) does not generally exist. If we have recourse to a discontinuous
feedback k(·),then the issue arises of how to interpret the discontinuous differ-
ential equation ẋ = f(x, k(x)).

The primary goal of this article is to give a general answer to the problem
of defining a (discontinuous) stabilizing feedback based upon a given (nondif-
ferentiable) Lyapunov function, one for which infinitesimal decrease is known
to hold only on a restricted set. The construction is described in section 1,
while section 2 establishes that under mild conditions, a Lyapunov function of
the type required in the previous section always exists. In the final section, we
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address the issue of robustness of the feedback with respect to measurement
error and small perturbations of the dynamics, a particularly important issue
when discontinuity is present. Some works and general references related to the
results of this article include [2, 3, 8, 11, 12, 13, 15, 20, 22, 23, 25, 29, 30]. We
proceed now to situate our result with respect to the literature.

The possible nonexistence of continuous stabilizing feedback was brought to
light in the seminal work of Sontag and Sussmann [28] and of Brockett [4]. The
latter who developed a necessary condition for continuous stabilizability and
adduced the following example, the “non-holonomic integrator” :







ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

(u1, u2) ∈ B̄ =: U .

This system is globally asymptotically controllable yet fails to admit a contin-
uous stabilizing feedback (by Brockett’s condition). In considering the use of
discontinuous feedback laws k(·), one could have recourse to the Filippov solu-
tion concept [14] : x is a solution of ẋ = f(x, k(x)) =: g(x) provided that we
have

ẋ ∈
⋂

δ>0

meas(Ω)=0

clco(g([x + δB] \ Ω)).

However, as shown by Ryan [24] and by Coron [11], Brockett’s condition con-
tinues to hold for this solution concept, so that the nonholonomic integrator
(for example) cannot be stabilized by a discontinuous feedback in the Filippov
sense.

In [6] it was shown that any globally asymptotically controllable system
is stabilizable by a (possibly discontinuous) feedback if the trajectory x(·) as-
sociated to the feedback is defined in a natural way that involves discretizing
the control law (closed-loop system sampling) in a manner similar to [19]. We
proceed now to describe this concept, which is the one used in this article.

Let π = {ti}i≥0 be a partition of [0,∞), by which we mean a countable,
strictly increasing sequence ti with t0 = 0 such that ti → ∞ as i → ∞. The
diameter of π, denoted diam(π), is defined as supi≥0(ti+1 − ti). Given an initial
condition x0, the π-trajectory x(·) corresponding to π and an arbitrary feedback
law k : IRn → U is defined in a step-by-step fashion as follows. Between t0 and
t1, x is a classical solution of the differential equation

ẋ(t) = f(x(t), k(x0)), x(0) = x0, t0 ≤ t ≤ t1.

(Of course in general we do not have uniqueness of the solution, nor is there
necessarily even one solution, although the latter will be ruled out by the feed-
back constructed in section 1, which will preclude blow up of the solution in
finite time.) We then set x1 := x(t1) and restart the system with control value
k(x1):

ẋ(t) = f(x(t), k(x1)), x(t1) = x1, t1 ≤ t ≤ t2,
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and so on in this fashion. The resulting trajectory x is a physically meaningful
one that corresponds to a natural sampling procedure and piecewise constant
controls; the smaller diam(π), the greater the sampling rate. Since our results
are couched in term of π-trajectories, the issue of defining a solution concept
for discontinuous differential equations is effectively sidestepped. Our approach
will lead to precise estimates of how small the step size diam(π) must be for
a prescribed stabilization tolerance to ensue, and of the resulting stabilization
time, in terms of the given data.

The next major point to address concerns the nonsmoothness of the Lya-
punov function V . An early and important result of Artstein [1] implies in
particular that the nonholonomic integrator fails to admit a smooth V (see [7]
for related results). It has been shown by Sontag [25], however, that globally
asymptotically controllable systems always admit a continuous Lyapunov func-
tion V satisfying the following nonsmooth version of the infinitesimal decrease
condition :

inf
u∈U

DV (x; f(x, u)) ≤ −W (x) < 0, x *= 0, (3)

where the lower Dini derivate DV is defined by

DV (x; v) := lim inf
t↓0

v′→v

V (x + tv′) − V (x)

t
. (4)

Among the several important ways in which the theory of nonsmooth analysis
intervenes in this article is that of asserting the equivalence to (3) of another,
and for our purposes more useful, form of the infinitesimal decrease condition :

inf
v∈cof(x,U)

〈v, ζ〉 ≤ −W (x) < 0 ∀x *= 0, ∀ζ ∈ ∂P V (x). (5)

Here ∂P V (x) refers to the proximal subdifferential of V at x (which may very
well be empty); ζ belongs to ∂P V (x) iff there exists σ and η > 0 such that

V (y) − V (x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ B(x, η).

The equivalence of (3) and (5) is a consequence of Subbotin’s Theorem (see for
example [9], our principal source for the theory of nonsmooth analysis).

The essential reason for which proximal calculus is well-suited to our ap-
proach is because of its relation to metric projection onto sets, upon which is
based the “proximal aiming” method that we employ. The crux is this : when
x(ti) = x lies outside a level set S = S(c) := {V ≤ c} and admits closest point
(or projection) s in S, then x − s is a “proximal normal” to S at s, and for
some λ > 0 we have λ(x − s) ∈ ∂P V (x). Then (5) can be invoked at s to find
a suitable value of the control u which moves the state toward S, in the sense
that the Euclidian distance dS decreases at a certain positive rate ∆ :

dS(x(t)) − dS(x(ti)) ≤ −∆(t − ti), ∀ti ≤ t ≤ ti+1,
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provided x(ti) is close enough to S to start with, and provided diam(π) is small
enough. A sequence of such feedbacks is amalgamated in the first section to
produce the stabilizing feedback k(·) that is sought.

The approach as presented in §1 requires the Lyapunov function V to be
Lipschitz (in the zone under consideration). It is not known whether a glob-
ally asymptotically controllable system must admit a suitably Lipschitz V , but
that is not quite the setting in which we work. Instead, Theorem 1 derives
finite-time stabilizability , but to a close approximation of some inner level set
S(a), as a consequence of the supposed existence of a Lipschitz Lyapunov func-
tion. In contrast, [6] obtains asymptotic stabilizability to the origin (the case
S(a) = {0}), and the proof uses Moreau-Yosida inf convolution to produce a
Lipschitz Lyapunov function as an intermediate step. This methodology is also
employed in [10], in a differential game setting. The direct use of a Lipschitz
Lyapunov function, when it is possible, leads to a far more transparent feed-
back construction, and has the important consequence of yielding robustness, as
we discuss presently. The fact that under mild assumptions, suitable Lipschitz
functions exist leading to practical stabilization to any required tolerance, is
proven in section 2.

Ledyaev and Sontag [21] have recently proved that there is a close relation-
ship between the issues of “how regular a Lyapunov function does the system
admit” and “how robust a stabilizing feedback does the system admit”. Con-
sider for example a perturbed equation ẋ = f(x, k(x + p)), where p represents
a measurement error. Full robustness of the feedback k is taken to mean that
for any ǫ, there is a δ > 0 such that whenever the perturbation p(t) satisfies
‖p(t)‖ ≤ δ for all t, then stabilization to the ǫ-ball takes place. This seems to
have been studied by Hermes [17]. Then [21] asserts that the system admits a
fully robust stabilizing feedback iff it admits a smooth (C1 or C∞) Lyapunov
function. Thus the nonholonomic integrator, which can be stabilized by a dis-
continuous feedback (in view of [6]), does not admit a fully robust stabilizing
feedback. It appears that Hermes [16] was the first to raise the question of
robustness of discontinuous feedback with respect to measurement error.

The above concept of full robustness, unrelated as it is to the system sam-
pling method that we employ, is not the one discussed in this article. Instead,
we introduce a type of relative robustness in which we require the size of the
measurement error to be limited as a function of the maximum step size δ of the
underlying partition. This step size δ must still be small enough (for stabiliza-
tion), but at the same time the individual steps must be big enough to preclude
a possible chattering phenomenom, even in the presence of small errors. This
consideration, which leads us to specify “reasonably uniform” sampling in sec-
tion 3, appears to be new in this context. The term “reasonably uniform” is
taken here to mean that the following hold :

δ

2
≤ ti+1 − ti ≤ δ ∀i ≥ 0,

although it is possible to replace the factor 1
2 by any constant in (0, 1).
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To conclude with the nonholonomic integrator, then, it turns out that the
system does admit a stabilizing feedback to within any prescribed tolerance r, in
the sense that we will have ‖x(t)‖ ≤ r for all t ≥ T , whenever x is a π-trajectory,
where π is a reasonably uniform partition whose diameter is sufficiently small,
and whenever measurement and external error do not exceed a critical level
related to the diameter (or sampling rate).

1 A feedback construction

For a given function V : IRn -−→ (−∞,∞], we shall deal frequently with the
sublevel sets S(r) defined as follows :

S(r) := {x ∈ IRn : V (r) ≤ r}.

In addition, the following sets are considered :

S(a, b) := {x ∈ IRn : a ≤ V (x) ≤ b}.

Let a and b be two given numbers with a < b. The following hypotheses are
made concerning the function V and the system function f :

(H1) V is lower semicontinuous, S(b) *= ∅, and for some η > 0, V is Lipschitz
of rank LV on S(a, b) + ηB :

|V (x) − V (y)| ≤ LV ‖x − y‖ ∀(x, y) ∈ S(a, b) + ηB.

(H2) ∃δ1 ∈ (0, b − a) and δ2 > 0 such that

S(a + δ1) + δ2B ⊂ S(b).

(H3) f(x, u) is continuous on S(b) + ηB as a function of x for each u ∈ U , and
∃m > 0 such that

‖f(x, u‖ ≤ m ∀x ∈ S(b) + ηB,∀u ∈ U .

(H4) f is Lipschitz in x of rank Lf on S(a, b) + ηB :

‖f(x, u) − f(y, u)‖ ≤ Lf‖x − y‖ ∀x, y ∈ S(a, b) + ηB,∀u ∈ U .

(H5) There exists ω > 0 such that, for every x ∈ S(a, b) + ηB, we have

inf
v∈cof(x,U)

DV (x; v) ≤ −ω.

Remark 1.1 We do not require that f and V be defined except on S(b) + ηB;
the Lipschitz conditions on these functions, as well as the Infinitesimal Decrease
Condition (H5), are posited only on a neighborhood of S(a, b). No hypotheses
are made concerning the abstract set U , nor on the nature of the dependence of
f on the control variable.
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Theorem 1 For any γ > 0 sufficiently small, there exist positive numbers δ, T
and a feedback k : S(b) + ηB -−→ U such that whenever a partition π satisfies
diam(π) < δ, then any π−trajectory x(·) having x(0) ∈ S(b) + γB satisfies

x(t) ∈ S(b) + γB ∀t ≥ 0,

x(t) ∈ S(a) + γB ∀t ≥ T.

Remark 1.2 Thus we almost recover the conclusion of the “ideal case” dis-
cussed in the Introduction, but in approximate terms, with a discontinuous
feedback, and for a nonsmooth Lyapunov function satisfying localized hypothe-
ses. The proof is constructive and gives estimates of γ, δ and T in terms of the
given data.

Remark 1.3 Note that (H5) is a weaker hypothesis than (3). An important
fact used in the proof is that the Infinitesimal Decrease Condition (H5) has a
strictly equivalent formulation in proximal terms, as follows :

inf
u∈U

〈ζ, f(x, u)〉 ≤ −ω ∀x ∈ S(a, b) + ηB,∀ζ ∈ ∂P V (x).

Here, ∂P V is the proximal subdifferential of V [9]. The equivalence of the formu-
lations is nontrivial, and is a consequence of Subbotin’s Theorem [9, Theorem
3.4.2].

The proof of Theorem 1 is based upon defining a feedback control, via pro-
jections. The first two lemmas below guarantee that the projections lie in the
set where the hypotheses are active.

Lemma 1.1 Let ǫ lie in [0, δ1] and suppose that x is a point in the set

[S(a + ǫ) + min{δ2, η}B] \ S(a + ǫ).

Then x ∈ S(a, b), and if s ∈ proj(x, S(a + ǫ)), then s ∈ S(a, b) + ηB.

Proof Since we have S(a+δ1)+δ2B contained in S(b) by hypothesis, it follows
that x lies in S(b). Since x does not belong to S(a + ǫ), we deduce x ∈ S(a, b).
Finally, we have

‖s − x‖ < min{δ2, η} ≤ η,

whence s ∈ S(a, b) + ηB.

Lemma 1.2 Let 0 < γ < η/2, and suppose that for some r′ and r with a ≤
r′ < r ≤ b we have x ∈ [S(r) + γB] \ [S(r′) + γB]. Then x ∈ S(a, b) + γB, and
if s ∈ proj(x, S(r)), then s ∈ S(a, b) + ηB.

Proof There exists y ∈ S(r) having ‖y − x‖ < γ. Since x does not belong to
S(r′)+γB, we have V (y) > r′ necessarily. Thus y ∈ S(a, b) and x ∈ S(a.b)+γB.
Finally, we note ‖x− s‖ < γ, whence ‖y − s‖ < 2γ and s lies in S(a, b) + ηB.

The next “solvability” result is central to our approach. The notation u+

stands for max{u, 0}.
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Lemma 1.3 For any r ∈ [a, b], for any x ∈ S(a, b), we have

d(x, S(r)) ≤
m

ω
(V (x) − r)+.

Proof We shall invoke results (and terminology) from [9] to give a short proof
of this result, whose proof from first principles would be lengthy.
We define a lower semicontinuous function g : IRn -−→ [0,∞] as follows :
g(x) := (V (x)− r)+ + IS(b)(x), where IS(b)(·) is the indicator function of the set
S(b). At any point x in the open set C := {y : g(y) > 0} at which g is finite,
we have x ∈ S(a, b), and the infinitesimal decrease condition implies that

inf{Dg(x; v) : v ∈ cof(x,U)} ≤ −ω.

It follows from this that for any ǫ > 0, for any x ∈ C, for any ζ ∈ ∂P g(x), there
exists u ∈ U such that

〈ζ, f(x, u)〉 ≤ −ω + ǫ.

Since ‖f(x, u‖ ≤ m and since ǫ > 0 is arbitrary, we derive ‖ζ‖ ≥ ω
m

. This
verifies the hypothesis of the Solvability Theorem [9, Theorem 3.3.1] (applied
with V = Ω = IRn), whose conclusion is precisely the desired one since S(r) =
{x : g(x) = 0}.

We now proceed to fix γ > 0 such that

γ < min

{

δ1,
η

2
,

ω

12LfLV

}

, (6)

and we define

β := min

{

δ1,
(b − a)

2
,
γω

4m

}

. (7)

Let N be the first integer such that

b − Nβ > a ≥ b − (N + 1)β.

Note that N ≥ 1 since β < b − a. We proceed to define certain sets Ωi(i =
0, 1, · · · , N + 1) that lie at the heart of our construction.
For 0 ≤ i ≤ N − 1, we set

Ωi := [S(b − iβ) + γB] \ [S(b − (i + 1)β) + γB];

for i = N we set

ΩN := [S(b − Nβ) + γB] \ [S(b − Nβ) +
γ

4
B];

and finally, we define ΩN+1 := S(b − Nβ) + γ
4 B.

We now gather some facts about these sets.

Lemma 1.4

8



(a) The Ωi are disjoint, and Ωi is contained in S(a, b) + γB for i ≤ N .

(b)
⋃N+1

i=0 Ωi = S(b) + γB.

(c) If x ∈ Ωi for some i ∈ {0, 1, · · · , N} and s ∈ proj(x, S(b − iβ)), then
s ∈ S(a, b) + ηB.

(d) S(b − iβ) + γ
4B ⊂ S(b − (i + 1)β)) + γB (i = 0, 1, · · · , N − 1).

(e) For every i ∈ {0, 1, · · · , N}, ∀x ∈ Ωi, we have γ
4 ≤ d(x, S(b − iβ)) < γ.

(f) S(b − Nβ) + γ
2 B ⊂ S(a) + γB.

Proof

(a): That the Ωi are disjoint is evident; that they lie in S(a, b)+ γB for i ≤ N
follows from Lemma 1.2 for i < N and from Lemma 1.1 for i = N (recall
that b − Nβ − a ≤ β ≤ δ1 and γ < δ2).

(b): Evident.

(c): Direct from Lemma 1.2 (i < N) or Lemma 1.1 (i = N).

(d): Let x lie in S(b− iβ)+ γ
4B, and let s ∈ S(b− iβ) satisfy ‖x−s‖ < γ

4 . Then
V (s) ≤ b − iβ, and if V (s) ≤ b − (i + 1)β the conclusion is immediate.
Otherwise we have

V (s) > b − (i + 1)β > a,

so that s ∈ S(a, b). By lemma 1.3 there exists y ∈ S(b − (i + 1)β) such
that

‖s − y‖ ≤
m

ω
[V (s) − b + (i + 1)β] ≤

mβ

ω
≤

γ

2
,

in view of (7). Then ‖x − y‖ ≤ ‖x − s‖ + ‖s − y‖ < γ
4 + γ

2 < γ, which
established the desired conclusion.

(e): For i = N , this is immediate from the definition of ΩN ; for i < N , it is a
consequence of (d).

(f): Let x belong to S(b−Nβ)+ γ
2 B, and let s ∈ S(b−Nβ) satisfy ‖x−s‖ < γ

2 .
If V (s) ≤ a, then x ∈ S(a) + γB. Otherwise, s belongs to S(a, b), and
lemma 1.3 implies the existence of y ∈ S(a) such that

‖y − s‖ ≤
m

ω
[V (s) − a] ≤

m

ω
[b − Nβ − a] ≤

mβ

ω
≤

γ

2
.

But then ‖x − y‖ < γ, so again x ∈ S(a) + γB.

Lemma 1.5 Let x ∈ Ωi(i = 0, 1, · · · , N), and let s ∈ proj(x, S(b − iβ)). Then
there exists u ∈ U such that

〈x − s, f(s, u)〉 ≤
−ω

2LV

‖x − s‖.
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Proof By definition, x− s lies in the proximal normal cone NP (x, S(b− iβ)).
Note that s lies in S(a, b)+ηB (by Lemma 1.2 for i < N , Lemma 1.1 for i = N),
so that V is Lipschitz of rank LV in a neighborhood of s. A basic calculus
result [9, 1.11.26] yields the existence of λ > 0 such that λ(x − s) ∈ ∂LV (s),
and necessarily λ‖x − s‖ ≤ LV . In accord with Remark 1.1, there exists u ∈ U
such that

〈λ(x − s), F (s, u)〉 ≤
−ω

2
.

The result follows.

Defining the feedback

We now define a feedback k(·) on S(b) + γB as follows. If x ∈ Ωi for some
i ∈ {0, 1, · · · , N}, then we set k(x) = u, where u corresponds to x (and a
projection s) as in lemma 1.5. There remain the points x in ΩN+1 to consider
(see Lemma 1.4 (b)). For such x, we define k(x) to be any point in U , for
example one which minimizes ‖f(x, u)‖.

The remainder of the proof consists in establishing that for suitably small
mesh size, any π-trajectory generated by k(·) with initial condition in S(b)+γB
remains in S(b) + γB, enters S(a) + γB within a certain (uniform) time, and
then remains in that set subsequently.
We consider countable partitions {tj} such that t0 = 0, limj→∞ tj = ∞, and
such that tj+1 − tj ≤ δ ∀j ≥ 0, where δ is any positive number satisfying

δ < min

{

γ

4m
,

ω

6mLfLV

,
γω

48m2LV

, 1

}

. (8)

For such a partition, let x0 be any point in S(b) + γB, and let x(·) be a π-
trajectory with x(0) = x0. We denote x(tj) by xj , and we set ∆ := ω

60LV
.

Lemma 1.6 For some tj ∈ π, suppose that xj ∈ Ωi, i ∈ {0, 1, · · · , N}.
Then x(t) ∈ S(b) + γB for t ∈ [tj , tj+1], and

d(x(t), S(b − iβ)) ≤ d(xj , S(b − iβ)) − ∆(t − tj) ∀t ∈ [tj , tj+1].

Proof We have xj ∈ S(a, b) + γB by Lemma 1.4 (a), and ‖ẋ(t)‖ ≤ m while
x(t) lies in S(b) + ηB. Since δm < γ

4 by (8) and γ < η
2 , it follows that x(t) lies

in S(a, b)+ ηB for t ∈ [tj , tj+1], as does the point s that figures in the definition
of k(xj); this was pointed out in the proof of Lemma 1.5, where we also deduced
the inequality

〈xj − s, f(s, k(xj))〉 ≤
−ω

2LV

‖xj − s‖. (9)

We fix t ∈ (tj , tj+1) and set Ψ := x(t)−s

‖x(t)−s‖ .(Note that x(t) *= s, since ‖xj−s‖ ≥ γ
4

by Lemma 1.4 (e), and since ‖x(t) − xj‖ < δm < γ
4 .)

We now observe two inequalities :

d(x(t), S(b − iβ)) ≤ ‖x(t) − s‖ = 〈Ψ, x(t) − s〉,
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d(xj , S(b − iβ)) = ‖xj − s‖ ≥ 〈Ψ, xj − s〉.

These together imply

d(x(t), S(b − iβ)) − d(xj , S(b − iβ)) ≤ 〈Ψ, x(t) − xj〉

= τ〈Ψ, fj〉, (10)

where we introduce the notation τ := t − tj ,

x(t) = xj + τfj , fj :=
1

τ

∫ t

tj

f(x(r), k(xj))dr.

We also set

f̂j := f(s, k(xj)) =
1

τ

∫ t

tj

f(s, k(xj))dr.

Note that ‖fj − f̂j‖ ≤ 1
τ

∫ t

tj
Lf‖x(r) − s‖dr

(the Lipschitz condition applies because we are in S(a, b) + ηB)

≤
1

τ

∫ t

tj

Lf (‖x(r) − xj‖ + ‖xj − s‖)dr

≤ Lf(τm + d(xj , S(b − iβ))).

It follows from this and (9) that we have

〈xj − s, fj〉 = 〈xj − s, f̂j + fj − fj〉

≤
−ω

2LV

‖xj − s‖ + Lfd(xj , S(b − iβ)){τm + d(xj , S(b − iβ))}

≤ d(xj , S(b − iβ))[
−ω

2LV

+ Lfδm + γLf ]

(since τ < δ and d(xj , S(b − iβ)) ≤ γ)

≤ d(xj , S(b − iβ))[
−ω

2LV

+
ω

6LV

+
ω

6LV

]

(we have invoked (8) and (6))

≤ −
γω

24LV

(since d(xj , S(b − iβ)) ≥
γ

4
by Lemma 1.4 (e)).

We shall use this bound on 〈xj − s, fj〉 to derive one on 〈x(t)− s, fj〉 as follows:

〈x(t) − s, fj〉 = 〈xj + τfj − s, fj〉 ≤ 〈xj − s, fj〉 + τ‖fj‖
2

≤
−γω

24LV

+ δm2 ≤
−γω

48LV

(11)

(in light of (8)).
We also have

‖x(t) − s‖ = ‖xj + τfj − s‖ ≤ ‖xj − s‖ + τ‖fj‖ ≤ γ + δm

<
5γ

4
(by (8)).

11



Combining this with (11) we arrive at

〈Ψ, fj〉 = 〈
x(t) − s

‖x(t) − s‖
, fj〉 ≤

−γω

48LV

/
5γ

4
= −∆.

Together with (10), this gives the inequality asserted by the Lemma. Since this
inequality evidently implies

d(x(t), S(b − iβ)) < γ,

it also follows that x(t) ∈ S(b) + γB.

Lemma 1.7 If xj ∈ Ωi where 0 ≤ i ≤ N , then xj+1 lies in Ωi′ for some i′ ≥ i.

Proof Since xj ∈ Ωi, we have d(xj , S(b − iβ)) < γ, and (by Lemma 1.6)
d(xj+1, S(b − iβ)) < γ. Now let 1 ≤ k < j. Since S(b − iβ) ⊂ S(b − (k + 1)β),
we deduce d(xj+1, S(b − (k + 1)β)) < γ. But then xj+1 /∈ Ωk by definition of
Ωk. Since xj+1 ∈ S(b) + γB by Lemma 1.6, we must have xj+1 ∈ Ωi′ for some
i′ ≥ i, in view of Lemma 1.4 (b).

Lemma 1.8 If x(τ) ∈ ΩN+1 for some τ ∈ π, then x(t) ∈ S(a) + γB ∀t ≥ τ .

Proof We know that x(τ) lies in the interior of S(a) + γB by Lemma 1.4
(f). For t > τ , as long as d(x(t), S(b − Nβ)) does not attain or exceed γ

2 , then
x(t) remains in S(a)+ γB. Thus ‖ẋ(t)‖ remains bounded by m and no blow-up
occurs (i.e., x(t) is well-defined).
It suffices therefore to prove that the continuous function g(t) := d(x(t), S(b −
Nβ)) does not become greater than or equal to γ

2 for some t0 > τ . We have
g(τ) ≤ γ

4 .
Note that S(b−Nβ)+γB lies in S(b)+γB, so that the bound ‖ẋ‖ ≤ m continues
to apply for some time after any positive point t0 at which g(t) becomes equal
to γ

2 . Thus g(t) is locally well-defined. Yet Lemma 1.6 (for i = N) shows
that g is decreasing when g(t) lies between γ

4 and γ. The conclusion is that
g(t) ≤ γ

2 ∀t > τ (or in fact that g(t) never even exceeds γ
4 ).

One last lemma and the proof is complete.

Lemma 1.9 Let T := (1 + b−a
β

)(1 + 45γLV

ω
). Then

x(t) ∈ S(a) + γB ∀t ≥ T.

Proof In view of Lemma 1.8 and Lemma 1.4 (f), it suffices to prove that there
is a node τ ∈ π with τ ≤ T for which x(τ) ∈ ΩN+1. Note that x(0) belongs
to some Ωi(0 ≤ i ≤ N + 1) by Lemma 1.4 (b); if i = N + 1 we are done, so
assume i ≤ N . Since δ < 1 by (8), there is a node τ1 lying in the open interval
(σ, σ + 1), where σ := 3γ

4∆ . By Lemma 1.7, x(τ1) belongs either to Ωi or to Ωi′

for some i′ > i. In the former case, it follows that x(t) lies in Ωi for every node
t ∈ π lying between 0 and τ1, and the inequality of Lemma 1.6 applies to give

d(x(τ1), S(b − iβ)) ≤ d(x(0), S(b − iβ)) − ∆τ1

< γ −
3γ

4
=

γ

4
.
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However, the left side is no less than γ
4 by Lemma 1.4 (e). This contradiction

shows that, in fact, x(τ1) must belong to some Ωi′ for an index i′ > i. The same
argument, beginning now at (τ1, x(τ1)), yields the existence of a node τ2 ∈ π
with τ2 ≤ 2σ + 2 such that x(τ2) belongs to Ωi′′ , where i′′ > i′. Continuing in
this manner, we find that (since there are at most N + 1 steps as above prior
to landing in ΩN+1), there is a node τ ∈ π with τ ≤ (N + 1)(σ + 1) such that
x(τ) ∈ ΩN+1. But N < b−a

β
implies that the T defined in the statement of the

Lemma is greater than (N + 1)(σ + 1).

2 Construction of a Lyapunov function

We show in this section thst under reasonable assumptions, there always exist
Lyapunov functions having the properties required for the feedback construction
of the preceding section, and giving rise to practical feedback stabilization of
arbitrarily prescribed range. While the result below seems new and the approach
to proving it has some novel features, there is a familiar heuristic at work :
the Lyapunov function is contructed as the value function associated with a
parametrized family of optimal control problems.

The function f(x, u) describing the dynamics is supposed in this section to
satisfy much the same regularity conditions as before. Specifically, we require
that for any bounded subset S of IRn, there exist constants m = m(S) and
L = L(S) such that

‖f(x, u)‖ ≤ m ∀x ∈ S, ∀u ∈ U

‖f(x, u) − f(y, u)‖ ≤ L‖x − y‖ ∀x, y ∈ S, ∀u ∈ U .

(As before, U is just an abstract set, and no hypotheses are made concerning
the nature of the dependence of f on u.)
In addition, we require controllability to the ball of radius r0 via relaxed trajec-
tories. Let us now proceed to make this precise. We are given r0 ≥ 0, and we
define a multifunction Γ on IRn by

Γ(x) := clco{f(x, u) : u ∈ U}.

By “trajectory” we mean an absolutely continuous function x(·) on an interval
[0, T ] such that

ẋ(t) ∈ Γ(x(t)) a.e. t ∈ [0, T ].

Given α ∈ IRn, we define T0(·) as the least time required for a trajectory to go
from α to the closed ball r0B̄ :

T0(α) := inf{T ≥ 0 : x(·) is a trajectory on [0, T ], x(0) = α, ‖x(T )‖ ≤ r0}.

the controllability hypothesis that we make is that every α admits a trajectory
steering it to r0B̄ in finite time, a time which goes to zero as α approaches r0B̄.
Equivalently :

(CH) T0(α) < ∞ ∀α ∈ IRn, and lim
‖α‖↓r0

T0(α) = 0.

13



Theorem 2 For any pair r and R with R > r > r0, there exist a function V
and numbers a, b, γ, η such that

S(a) + γB ⊂ B(0, r) ⊂ B̄(0, R) ⊂ S(b) + γB,

and such that V satisfies all the hypotheses of Theorem 1; in addition S(b) is
compact. Thus there is a feedback defined on a neighborhood of B̄(0, R) which
stabilizes the state to B(0, r) in the sense of Theorem 1.

We begin by defining another multifunction Γ̃ (more useful than Γ for being
compact-valued) :

Γ̃(x) := clco{
v

1 + ‖v‖
: v ∈ Γ(x)}.

We set

T̃0(α) := inf{T ≥ 0 : x(·) is a Γ̃ − trajectory on [0, T ], x(0) = α, ‖x(T )‖ ≤ r0}.

Evidently (or by convention) we have T̃0 = 0 on r0B̄.

Lemma 2.1 (a) Γ̃ is locally Lipschitz and has nonempty convex compact val-
ues in B̄(0, 1).

(b) T̃0(α) is finite ∀α ∈ IRn.

(c) lim‖α‖↓r0
T̃0(α) = 0.

(d) There exists a positive number ǫ such that whenever α ∈ B(0, r0 + ǫ),
and whenever the Γ̃-trajectory x(·) has x(0) = α and ‖x(T )‖ ≤ r0 for
some T ≤ T̃0(α) + ǫ, then we have ‖x‖∞ ≤ r0 + 1. We can suppose
ǫ < 1, ǫ < r − r0, and that

sup{T̃0(α) : α ∈ B(0, r0 + ǫ)} <
(r − r0)

2

17(r0 + 1)
. (12)

Proof We omit the routine proof of (a). For (b), let α ∈ IRn be given. By
assumption, there is a Γ-trajectory x on an interval [0, T ] such that x(0) =
α, ‖x(T )‖ = r0. We set

T̃ :=

∫ T

0

(1 + ‖ẋ(t)‖)dt

and we define a function x̃ on [0, T̃ ] by

x̃(τ) := x(t),

where t = t(τ) is determined in [0, T ] by

τ =

∫ t

0

(1 + ‖ẋ(r)‖)dr

14



(this change of variables or time scale is known as the Erdmann Transform.)
Then

dx̃

dτ
=

ẋ(t)

1 + ‖ẋ(t)‖
∈ Γ̃(x̃(τ)) a.e.,

so that x̃ is a Γ̃-trajectory. Hence T̃0(α) ≤ T̃ < ∞.
We turn now to (c). Let αi be a sequence for which ‖αi‖ decreases to

r0. Then T0(αi) → 0 by assumption. Let m be such that ‖f(x, u)‖ ≤ m for
(x, u) ∈ B̄(0, r0 + 1) ×U . Then, as soon as T0(αi) is strictly less than 1

m
, there

is a Γ-trajectory xi on an interval [0, Ti] such that

xi(0) = αi, ‖xi(Ti)‖ ≤ r0, Ti <
1

m
, Ti < T0(αi) +

1

i
.

It follows that ‖xi‖∞ < r0 + 1. Now let x̃i be the Erdmann Transform of xi as
given above. Then

T̃0(αi) ≤ T̃i =

∫ Ti

0

(1 + ‖ẋi(t)‖)dt ≤ (1 + m)Ti < (1 + m)(T0(αi) +
1

i
).

It follows that T̃0(αi) → 0, as required.
We now examine (d). If the assertion is false, there exist a sequence αi with

‖αi‖ ↓ r0 and corresponding Γ̃-trajectories xi with xi(0) = αi, ‖xi(Ti)‖ ≤ r0,
such that

Ti ≤ T̃0(αi) +
1

i
, ‖xi‖∞ > r0 + 1.

Since T̃0(αi) → 0 by (c), we have Ti → 0. On the other hand, there is a
subinterval of [0, Ti] in which ‖xi‖ goes from being r0 + 1 to r0, and since
‖ẋi(t)‖ ≤ 1 the length of that subinterval (and hence, Ti) is at least 1. This
contradiction establishes the first part of (d); the rest follows immediatly by
shrinking ǫ as required, in light of (c).

We proceed now to define a new multifunction F (x) whose effect is to enlarge
the set Γ̃(x) for ‖x‖ < r0 + ǫ. We set

F (x) :=







Γ̃(x) for ‖x‖ ≥ r0 + ǫ

Γ̃(x) + 2[ r0+ǫ−‖x‖
ǫ

]B̄ for r0 ≤ ‖x‖ ≤ r0 + ǫ

Γ̃(x) + 2B̄ for ‖x‖ ≤ r0

Having done this, we define a value function V (·) on IRn in terms of the trajec-
tories of F as follows :

V (α) := inf{

∫ T

0

‖x(t)‖dt : T ≥ 0, x(0) = α, ẋ ∈ F (x)a.e., ‖x(T )‖ ≤ r0}.

We stress that T is a choice variable here, in this free time problem.
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Lemma 2.2 (a) F is compact and convex-valued, uniformly bounded and lo-
cally Lipschitz.

(b) V (·) is finite-valued and lower semicontinuous, and the infinum defining
V (α) is attained for every α.

(c) V (α) > 0 iff ‖α‖ > r0, and lim‖α‖↓r0
V (α) = 0.

(d) The sublevel sets S(b) := {x : V (x) ≤ b} of V are compact.

Proof The assertions of (a) are immediate. Since F (x) is uniformly bounded,
the attainment and the lower semicontinuity asserted in (b) follow from standard
“compactness of trajectories” arguments; see [9, Chapter 4] for details. The first
assertion of (c) is clear, and the other one stems from Lemma 2.1 as follows.
Let α ∈ B(0, r0 + ǫ), and let the Γ̃-trajectory x satisfy x(0) = α, ‖x(T )‖ ≤ r0,
and T ≤ T̃0(α) + δ, for some δ ∈ (0, ǫ).
Then ‖x‖∞ ≤ r0 + 1, and we deduce

V (α) ≤

∫ T

0

‖x(t)‖dt ≤ (T̃0(α) + δ)(r0 + 1).

Since T̃0(α) ↓ 0 as ‖α‖ ↓ r0, (c) follows. Finally we turn to (d). If ‖α‖ > r0+1+ǫ,
then the time required for a trajectory to go from ‖x‖ = α to ‖x‖ = r0 + ǫ is at
least α− r0 − ǫ. But then V (α) ≥ (r0 + ǫ)(‖α‖− r0 − ǫ). This established (d).

The next step invokes Hamiltonian conditions for optimal control, and uses
the lower Hamiltonian h associated with F :

h(x, p) := min{〈p, v〉 : v ∈ F (x)}.

Lemma 2.3 Let ζ ∈ ∂P V (α), where ‖α‖ > r0. Let x be a trajectory solving
the problem that defines V (α), with associated time T . Then there exists an
absolutely continuous function p on [0, T ] such that

(−ṗ −
x

‖x‖
, ẋ) ∈ ∂Ch(x, p) a.e. t ∈ [0, T ] (13)

p(0) = ζ (14)

h(x(t), p(t)) + ‖x(t)‖ = 0 ∀t ∈ [0, T ]. (15)

Proof By definition of ∂P V (α), we have for some σ ≥ 0 and for all α′ near α,

V (α′) + σ‖α′ − α‖2 − 〈ζ, α′〉 ≥ −〈ζ, α〉.

Let x′ be a trajectory near x (in the L∞ norm), put α′ = x′(0) and α = x(0) and
rearrange to derive that x′(·) = x(·) solves locally the problem of minimizing

∫ T ′

0

‖x′(t)‖dt − 〈ζ, x′(0)〉 + σ‖x′(0) − x(0)‖2
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over the trajectories x′ for F satisfying ‖x′(T ′)‖ ≤ r0. (Here T ′ and x′(0) are
free.) We apply the corollary of Theorem 3.6.1 of [5] (in reverse time) to deduce
the existence of an absolutely continuous function q on [0, T ] satisfying

(−q̇, ẋ) ∈ ∂C [H(x, q) − ‖x‖](x, q) a.e. t ∈ [0, T ], (16)

q(0) = −ζ, (17)

H(x(t), q(t)) − ‖x(t)‖ = 0, t ∈ [0, T ], (18)

where H(x, p) is the function −h(x,−p) and ∂C denotes the generalized gradient.
The Hamiltonian inclusion above implies

(q̇ −
x

‖x‖
, ẋ) ∈ ∂Ch(x,−q) a.e.

Now putting p := −q gives the conclusions the form asserted in the statement
of the lemma.

Lemma 2.4 For any constant c > 0, there is a constant Mc with the following
property. If α ∈ S(c) and if the trajectory x on [0, T ] attains the infimum
defining V (α), then ‖x‖∞ ≤ Mc, T ≤ Mc.

Proof If ‖x‖∞ > c+ r0 +1, then the time required for ‖x‖ to attain the value
r0 + 1 exceeds c (since ‖ẋ‖ ≤ 1). But then V (α) ≥ (1 + r0)c > c. This shows
that ‖x‖∞ is bounded by c + r0 + 1. By Lemma 2.1(c), lim‖α‖↓r0

T̃0(α) = 0. So

there exists ρ > r0 such that ∀x ∈ B(0, ρ), |T̃0(x)| ≤ 1. Now for ‖α‖ ≥ ρ, let τρ

denote the first time that ‖x(t)‖ attains the value ρ. Then V (α) ≥ ρτρ, whence
τρ ≤ c

ρ
for α ∈ S(c).

We deduce that

T̃0(α) ≤ τρ + 1 (by construction of ρ)

≤
c

ρ
+ 1.

If ‖α‖ < ρ, the same bound evidently holds.
It suffices now to set

Mc := max{
c

ρ
+ 1, c + r0 + 1}.

Lemma 2.5 V is locally Lipschitz on IRn.

Proof We prove first that V is locally Lipschitz on the open set {V > 0} =
comp(B̄(0, r0)). Let α0 belong to this set, take any δ > 0 such that δ < ‖α0‖−r0,
and any element ζ ∈ ∂P V (α), where

‖α − α0‖ < δ, V (α) ≤ V (α0) + δ =: c. (19)
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The conclusions of Lemma 2.4 are available for any trajectory solving the V (α)
problem. If K is a Lipschitz constant for F on the ball B(0, Mc + 1) (where Mc

comes from Lemma 2.4), then the Hamiltonian inclusion (13) implies

‖ṗ‖ ≤ K‖p‖ + 1. (20)

The condition (15) at t = T gives −‖p(T )‖ ≥ −r0 since ‖x(T )‖ = r0, and since
F (x(T )) = clcof(x(T ),U) + 2B̄ ⊃ B̄. Thus ‖p(T )‖ ≤ r0. This, together with
(20) and Gronwall’s Lemma, leads to

‖ζ‖ = ‖p(0)‖ ≤ eKT ‖p(T )‖ +

∫ T

0

eK(T−s)ds

≤ r0e
KT +

eKT − 1

K

≤ r0e
KMc +

eKMc − 1

K
,

since T ≤ Mc by Lemma 2.4. This establishes a uniform bound on elements
of ∂P V (α) whenever α satisfies (19), which proves that V is Lipschitz on a
neighborhood of α0 [9, 1.11.11]. Thus V is locally Lipschitz on the set where
it is strictly positive.

There is a neighborhood N of B̄(0, r0) on which V is bounded above, in view
of Lemma 2.2(c). The argument above therefore yields a bound L on elements
of ∂P V (α) for all α ∈ N \ B̄(0, r0), so that V is uniformly Lipschitz of rank L
on α ∈ N \ B̄(0, r0) by [9, Theorem 1.7.3]. Of course, V = 0 on B̄(0, r0). That
V is Lipschitz on N , and hence locally Lipschitz on IRn, now follows.

Lemma 2.6

sup{V (α) : α ∈ B(0, r0 + ǫ)} < inf{V (α) : ‖α‖ ≥
r1 − r0

2
}

Proof Let ‖α‖ < r0 + ǫ, fix δ ∈ (0, ǫ) and let the trajectory x on [0, T ]
satisfy x(0) = α, ‖x(T )‖ ≤ r0, T < T̃0(α) + δ. Then by Lemma 2.1 we have
‖x‖∞ ≤ r0 + 1 and so

V (α) ≤

∫ T

0

‖x(t)‖dt ≤ (T̃0(α) + δ)(r0 + 1).

We derive V (α) ≤ (r0 + 1)T̃0(α), and (from (12))

V (α) <
(r − r0)

2

17
.

Now let ‖α‖ ≥ r−r0

2 , and let x solve the problem defining V (α). There is an
interval of length at least r−r0

4 during which ‖x(t)‖ ≥ r−r0

4 (since ‖ẋ‖ ≤ 1),
whence

V (α) >
(r − r0)

2

16
.

The result follows.
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Lemma 2.7 There exist positive numbers a, b, η with a < b such that

S(a) + ηB ⊂ B(0, r) ⊂ B̄(0, R) ⊂ S(b)

and
S(a, b) + ηB ⊂ {α : r0 + ǫ < ‖α‖}.

Proof Pick a number a > 0 lying between the two quantities in the statement
of Lemma 2.6. Then evidently

S(a) ⊂ B(0,
r − r0

2
), cl(compS(a)) ⊂ compB̄(0, r0 + ǫ),

whence S(a) + ηB ⊂ B(0, r) for η > 0 suitable small. It also follows that
the compact set clS(a, b) is contained in the open set {α : r0 + ǫ < ‖α‖}. By
shrinking η further if necessary, this will be true of clS(a, b)+ηB as well. Finally,
any b suitably large will satisfy B̄(0, R) ⊂ S(b), since V is bounded on bounded
sets.

Lemma 2.8 The Infinitesimal Decrease Condition (H5) of §holds on S(a, b) +
ηB, with ω := −r0 − ǫ.

Proof As remarked in §1, it suffices to show that for any α ∈ S(a, b) + ηB,
for any ζ ∈ ∂P V (α), one has :

inf{〈ζ, f(α, u)〉 : u ∈ U} ≤ −r0 − ǫ. (21)

Let x be a trajectory solving the problem defining V (α).
Then, by Lemma 2.3, we have (at t = 0) :

h(α, ζ) + ‖α‖ = 0.

Since ‖α‖ > r0 + ǫ by Lemma 2.7, we have

F (α) = Γ̃(α),

so that the preceding equality yields, for any δ > 0, the existence of some
element v ∈ Γ(α) such that

〈ζ,
v

1 + ‖v‖
〉 ≤ −‖α‖ + δ < −(r0 + ǫ) + δ.

For δ small enough, the right side is negative, whence

〈ζ, v〉 < −(r0 + ǫ) + δ.

Given that Γ(x) := clcof(x,U), this yields the existence of u ∈ U for which

〈ζ, f(α, u)〉 < −(r0 + ǫ) + 2δ.

Since δ is arbitrarily small, (21) ensues.
Since S(b) is compact, f is Lipschitz in x and bounded on S(b)+ηB, in accord

with hypotheses (H3) (H4) of section 1. When the level sets are compact, (H2)
always holds. The verification of this is the last property to confirm.
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Lemma 2.9 Hypothesis (H2) holds.

Proof If (H2) fails, then there exist sequences αi ∈ IRn, ǫi ↓ 0, and ui ∈ B(0, 1)
such that

V (αi) ≤ a + ǫi and V (αi + ui) > b.

Since S(b) is compact, we can suppose by passing to a subsequence that αi → α0.
Then V (α0) ≥ b > a ≥ V (α0), a contradiction.

The setting of Theorem 1 is established, and Theorem 2 is proved.

3 Robustness

We prove in this section that the feedback constructed in §1 is robust with
respect to small measurement error and persistent external disturbance, in a
precise sense that requires two stipulations. The first is that the measurement
error must not exceed in order of magnitude the step size of the underlying
discretization, a condition which appears to be rather natural. The second
requirement is perhaps more surprising, and surfaces from the nature of the
feedback construction. It dictates that each step be “big enough” (while contin-
uing to be “small enough”) so as to counteract the measurement error by means
of the attractive effect inherent in the construction. Thus the partitions used
to discretize the effect of the control are taken to be “reasonably uniform”.
Our perturbed system is modeled by

ẋ = f(x, k(x + p)) + q,

where the external disturbance q : [0,∞) -−→ IRn is a bounded measurable
function :

‖q(t)‖ ≤ Eq t ≥ 0 a.e.

Given a partition π = {ti}i≥0 of [0,∞) and the initial condition x0, the result-
ing π-trajectory of our perturbed system is defined by successively solving the
differential equation

ẋ(t) = f(x(t), k(x(ti) + pi)) + q(t), t ∈ [ti, ti+1],

with x(0) = x0. The continuous function x(t) is the real state of the system,
while the sequence {x(ti) + pi} corresponds to the inexact measurements used
to select control values.

Theorem 3 The feedback k : S(b) + γB → U constructed in Theorem 1 is
robust in the following sense. There exist positive numbers δ0, T and Eq such
that, for every δ ∈ (0, δ0) there exists Ep(δ) > 0 having the following property :
for any partition π = {ti}i≥0 having

δ

2
≤ ti+1 − ti ≤ δ i ≥ 0,
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where 0 < δ < δ0, for any set of measurement errors {pi}i≥0 having

‖pi‖ ≤ Ep i ≥ 0,

for any initial condition x0 such that x0 + p0 ∈ S(b) + γB, for any disturbance
q having ‖q‖∞ ≤ Eq, the resulting π-trajectory x satisfies

x(ti) + pi ∈ S(b) + γB ∀i ≥ 0,

x(t) ∈ S(b) + 2γB ∀t ≥ 0,

x(t) ∈ S(a) + γB ∀t ≥ T.

Remarks 3.1 (a) Note that unlike T and Eq, the maximum admissible mea-
surement error Ep depends on δ. Note also that (in contrast to Theorem
1) x(t) may not lie in S(b)+ γB for all t, although for large it must do so.
(For example, we do not require x(0) ∈ S(b) + γB.)
However, the “observed values” of the state, namely the values x(ti) +
pi(i ≥ 0), all fall in S(b) + γB the domain of definition of k.

(b) Certain other kinds of error, for example a disturbance d(·) entering into
the dynamics in the form ẋ = f(x, k(x) + d), can be reduced to that of
external disturbance by positing suitable continuity of f in the control
variable.

(c) The maximum admissible disturbance measure Eq will be seen to be pro-
portional to ω

LV
. This has a natural physical meaning, as can easily be

seen in the case of smooth V and a continuous feedback k(x) such that
〈∇V (x), f(x, k(x))〉 ≤ −W (x).
Then we see that the perturbed system

ẋ = f(x, k(x)) + q

is stabilized by k if ‖q‖∞ < W (x)
‖∇V (x)‖ for every x, a bound akin to that

involving ω
LV

.

We adapt the proof of Theorem 1, whose first five lemmas hold with no
change whatever, as does the definition of k(·). Recall that γ, β and N were
introduced (earlier; see (6) (7)). We now define our upper bound for δ :

δ0 := min

{

6γLV

ω
, 1,

γω

24LV (m + ω
6LV

+ 1)2
,

γ

20m

}

(22)

Eq :=
ω

6LV

(23)

T :=

(

1 +
b − a

β

) (

1 +
81γLV

ω

)

(24)
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(this T differs slightly from the one in Theorem 1) and we let π = {ti}i≥0

be a partition as described i the statement of Theorem 3, with corresponding
measurement errors {pi}i≥0 having ‖pi‖ ≤ Ep for some Ep > 0 satisfying

Ep < min{
3γ

80
, δ,

δω

432LV

}. (25)

We also admit any disturbance q(·) for which ‖q‖∞ ≤ Eq, and we take x0 such
that x0 + p0 ∈ S(b) + γB. We shall show that the corresponding π-trajectory
has the required properties. We introduce the notation

xi := x(ti), yi := xi + pi

for the actual and the measures space state values at time ti, and proceed to
develop modified versions of the fourlast lemmas figuring in the proof of Theorem
1. We set ∆̃ := ω

108LV
.

Lemma 3.1 For some tj ∈ π, suppose that yj ∈ Ωi, i ∈ {0, 1, · · · , N}. Then

x(t) ∈ S(b) + 2γB ⊂ S(b) + ηB, tj ≤ t ≤ tj+1

yj ∈ S(b) + γB, yj+1 ∈ S(b) + γB,

d(yj+1, S(b − iβ)) ≤ d(yj , S(b − iβ)) − ∆̃(tj+1 − tj).

Proof Note that yj ∈ S(b) + γB by Lemma 1.4; it will follow from the last
conclusion of the current Lemma that yj+1 ∈ S(b) + γB. Also, ‖xj − yj‖ =
‖pj‖ ≤ Ep, together with ‖x(t) − xj‖ ≤ δm, yield

x(t) ∈ S(a, b) + γB + (Ep + δm)B ⊂ S(b) + 2γB,

since Ep + δm < γ in view of (22) and (25). Since 2γ < η by (6), this gives
x(t) ∈ S(b) + ηB. By Lemma 1.5 we have

〈yj − s, f(s, k(yj))〉 ≤ −
ω

2LV

‖yj − s‖, (26)

where s ∈ proj(yj , S(b − iβ)). Fix t ∈ (tj , tj+1) and set

Ψ :=
x(t) − s

‖x(t) − s‖
.

Note that x(t) *= s since ‖yj − s‖ ≥ γ
4 by Lemma 1.4 (e), while

‖yj − x(t)‖ ≤ ‖yj − xj‖ + ‖xj − x(t)‖ < Ep + δm <
γ

4
,

as already noted.
We observe the relations

d(x(t), S(b − iβ)) ≤ ‖x(t) − s‖ = 〈Ψ, x(t) − s〉,

d(yj , S(b − iβ)) = ‖yj − s‖ ≥ 〈Ψ, yj − s〉,
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whence

d(x(t), S(b − iβ)) − d(yj , S(b − iβ)) ≤ 〈Ψ, x(t) − yj〉

= 〈Ψ, xj + τ(fj + qj) − yj〉

≤ τ〈Ψ, fj + qj〉 + ‖pj‖, (27)

where we have introduced

τ := t − tj ,

fj :=
1

τ

∫ t

tj

f(x(r), k(yj))dr,

qj :=
1

τ

∫ t

tj

q(r)dr.

We also set f̂j := f(s, k(yj)); note ‖f̂j‖ ≤ m. We have

‖fj − f̂j‖ ≤
1

τ

∫ t

tj

Lf‖x(r) − s‖dr ≤
Lf

τ

∫ t

tj

(‖x(r) − xj‖ + ‖xj − s‖)dr

≤ Lf(δm + ‖xj − yj‖ + ‖yj − s‖)

≤ Lf(δm + Ep + γ) ≤
5

4
Lfγ. (28)

We deduce

〈x(t) − s, fj + qj〉 = 〈xj + τ(fj + qj) − s, fj + qj〉

= 〈yj − s − pj, fj + qj〉 + τ‖fj + qj‖
2

≤ 〈yj − s, fj〉 + Ep(m + Eq) + δ(m + Eq)
2

= 〈yj − s, f̂j〉 + 〈yj − s, fj − f̂j〉 + (m + Eq)[δm + δEq + Ep]

≤ −
ω

2LV

‖yj − s‖ +
5

4
‖yj − s‖Lfγ + (m + Eq)[δm + δEq + Ep]

(where we have used (26) and (28) )

≤ d(yj , S(b − iβ))

[

−
ω

2LV

+
ω

6LV

]

+ δ[m + Eq + 1]2

(by (6), and since Ep < δ by (25))

≤
γ

4

[

−
ω

3LV

]

+
γω

24LV

= −
γω

24LV

(since d(yj , S(b − iβ)) ≥ γ
4 by Lemma 1.4, and since δ < δ0 defined by (22)).

Note also that

‖x(t) − s‖ = ‖yj − pj + τ(fj + qj) − s‖

≤ γ + Ep + δ(m + Eq) ≤
5γ

4
+ δEq <

9γ

4
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(note δEq < γ because of δ < δ0, in view of (22) (23)).
It follows that

〈Ψ, fj + qj〉 = 〈
x(t) − s

‖x(t) − s‖
, fj + qj〉 ≤ −

(γω)/(24LV )

(9γ)/4
= −

ω

54LV

.

Substituting into (27) leads to

d(x(t), S(b − iβ)) − d(yj , S(b − iβ)) ≤ −2∆̃(t − tj) + Ep.

We obtain from this

d(yj+1, S(b − iβ)) − d(yj , S(b − iβ)) ≤ ‖yj+1 − x(tj+1)‖ − 2∆̃(t − tj) + Ep

≤ −∆̃(tj+1 − tj) + [2Ep − ∆̃(tj+1 − tj)]

≤ −∆̃(tj+1 − tj),

by (25), and since tj+1 − tj ≥ δ
2 .

Lemma 3.2 If yj ∈ Ωi, where i ≤ N , then yj+1 lies in Ωk for some k ≥ i.

Proof We know that yj+1 ∈ Ωk for some k, since yj+1 belongs to S(b)+γB by
Lemma 3.1. Suppose that k < i. We have d(yj , S(b−iβ)) < γ by definition of Ωi,
and Lemma 3.1 implies d(yj+1, S(b− iβ)) < γ. But S(b− iβ) ⊂ S(b− (k +1)β),
so that d(yj+1, S(b − (k + 1)β)) < γ. But then yj+1 /∈ Ωk by definition of Ωk

(note that k ≤ N). This contradiction proves the Lemma.

Lemma 3.3 If τ ∈ π is such that y(τ) ∈ ΩN+1, then

x(t) ∈ S(a) + γB ∀t ≥ τ.

Proof We first establish

d(y(τ ′), S(b − Nβ)) ≤
2γ

5
for all nodes τ ′ ≥ τ. (29)

We consider first τ ′ = τ + 1. We have d(y(τ), S(b − Nβ)) ≤ γ
4 , whence

d(y(τ + 1), S(b − Nβ)) ≤ d(x(τ + 1), S(b − Nβ)) + Ep

≤ d(x(τ), S(b − Nβ)) + Ep + mδ

≤ d(y(τ), S(b − Nβ)) + 2Ep + mδ

<
γ

4
+

3γ

20
=

2γ

5
( by (25)).

If d(y(τ + 1), S(b − Nβ)) is in fact ≤ γ
4 , then this same argument yields

d(y(τ + 2), S(b − Nβ)) ≤
2γ

5
.

If however d(y(τ + 1), S(b − Nβ)) > γ
4 , then y(τ + 1) lies in ΩN by definition,

and Lemma 3.1 yields again d(y(τ + 2), S(b − Nβ)) < 2γ
5 . Continuing in this
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way, we obtain (29) for all nodes τ ′ ≥ τ .
We use (29) to argue as follows : let t ≥ τ , and let τ ′ ≥ τ be a node adjacent
to t; then

d(x(t), S(b − Nβ)) ≤ d(x(τ ′), S(b − Nβ)) + δm

≤ d(y(τ ′), S(b − Nβ)) + Ep + δm

<
2γ

5
+

γ

10
=

γ

2
(by (25)).

This gives x(t) ∈ S(a) + γB by Lemma 1.4 (f).

Lemma 3.4 Let

T :=

(

1 +
b − a

β

) (

1 +
81γLV

ω

)

.

Then x(t) ∈ S(a) + γB ∀t ≥ T .

Proof In view of Lemma 3.3, it suffices to prove that some node τ ∈ π with
τ ≤ T is such that y(τ) ∈ ΩN+1. The argument is identical to that used to
prove Lemma 1.8, with ∆ replaced by ∆̃, and applied to the yi rather than the
xi.
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