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ABSTRACT

We are concerned with Bayesian identification and prediction of a nonlinear discrete stochastic process. The fact,

that a nonlinear process can be approximated by a piecewise linear function advocates the use of adaptive linear

models. We propose a linear regression model within Rao-Blackwellized particle filter. The parameters of the linear

model are adaptively estimated using a finite mixture, wherethe weights of components are tuned with a particle

filter. The mixture reflectsa priori given hypotheses on different scenarios of (expected) parameters’ evolution. The

resulting hybrid filter locally optimizes the weights to achieve the best fit of a nonlinear signal with a single linear

model.

1. INTRODUCTION

The theory of approximation of nonlinear signals by piecewise linear functions has attained considerable attention

over the recent decades (Tong, 1993), mainly in the field of control engineering, e.g., Kalman (1957). The method

is popular, because in many technical applications, it offers a reasonable trade-off between the model complexity and

performance (Sontag 2002; Savona 1988). Our method is motivated by the fact that if the transitions between two

successive (almost) linear segments is smooth enough, it can be modelled with switching models, e.g., Judd and Mees

(1995), Ragotet al. (2004), Rosenqvist and Karlström (2005), or model averaging, Rafteryet al. (2010).

Notational conventions:∝ denotes proportionality, i.e., equality up to a constant factor. A′ denotes transpose ofA.

p(a|b) is a probability density function (pdf) of a (multivariate)random variablea givenb. The pdfs are distinguished

1

Page 3 of 11

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

by their argument.t ∈ {1,2, . . .} denotes discrete time instants. All integrations are over the maximal plausible support.

2. BAYESIAN APPROACH TO MODELLING

Assume that we are given a time series of real observationsY t−1 = (y1, . . . ,yt−1) and our purpose is to determine

its next valueyt . The statistical approach employs, among others, the parametric models describing the dependence of

yt on previous observationY t−1 through conditional distributions pdf

p(yt |Y
t−1,Θ). (1)

Under the Bayesian treatment,Θ is a set of constant model parameters with pdfp(Θ|Y t−1). If this distribution is

properly chosen from a class conjugate to the model (1), the Bayes’ theorem yields a posterior pdf of the same type,

and the recursive data update reads (Bernardo and Smith, 2001; Peterka, 1981)

p(Θ|Y t) =
p(yt |Y

t−1,Θ)p(Θ|Y t−1)

p(yt |Y t−1)
. (2)

The predictive pdfp(yt+1|Y
t) provides the Bayesian output prediction. Using the Chapman-Kolmogorov equation

(Karush 1961), it holds that

p(yt+1|Y
t) =

∫
p(yt+1|Y

t ,Θ)p(Θ|Y t)dΘ=
It+1

It
, (3)

whereI denotes the normalizing integral, see, e.g., Peterka (1981).

Although the described methodology is importantper se, its lack of adaptivity prevents successful application to

nonstatic cases, whenΘ is not time-invariant. For a time varyingΘt , it is necessary to perform an additional update

p(Θt |Y
t)→ p(Θt+1|Y

t). (4)

Here, two significant cases can occur:

1. The evolution modelp(Θt+1|Θt ,Y
t) is knowna priori.

2. A suitable model of parameter evolution is not known, but we can expect that they vary slowly.

Case (i) allows one to aggregate both (1) andp(Θt+1|Θt ,Y
t) into a single complex model. Then,Θt represents the

system state and, under certain conditions, the estimationtask leads to the well known Kalman filter, Peterka (1981).

However, there exists a wide variety of cases, when the explicit model of parameter evolution is not known. If

we adopt the assumption of slowly varying parameters (ii), the popular group of estimation methods using forgetting

provides a solution. It heuristically circumvents the problem of parameter model ignorance by recursive discounting

the old and potentially outdated information carried by theparameter pdf. Formally, we introduce a forgetting operator

F:

p(Θt+1|Y
t) = F[p(Θt |Y

t)]. (5)

2
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The application of the forgetting operator is equivalent tothe time update in state-space models, Kárńy (2006).

3. PARTIAL FORGETTING

The use of “classical” forgetting methods, e.g., exponential forgetting (Peterka, 1981), is limited in nonlinear cases.

We present a new approach appealing to partial forgetting, Dedecius (2010). While it enumerates hypotheses about

variability of elements ofΘt , our modification is more general.

Let us define a finite setH of hypotheses{Hi} regarding the distribution ofΘt+1 givenΘt . The distributions

induced by these hypotheses are merged together in form of a finite mixture,

p(Θt+1|Y
t ,πt) = ∑

i
πi,t qi(Θt+1|Y

t), ∑
i

πi,t = 1, (6)

i.e., the posterior distribution ofΘt+1 is represented by a finite mixture of hypothetical pdfsqi(Θt+1|Y
t).

A theoretically correct solution would express one hypothetical pdf for each (almost) linear window. In practice,

this is hardly possible and a generalization of the approachis exploited. The hypothesesHi ∈ H enumerate several

cases, that are likely to occur. Their number depends on a specific task, mainly the signal properties, and the user’s

ability to guess the properties ofΘt in each window. For instance, we may state a hypothesis abouteach particular

element ofΘt = {Θ1,t , . . . ,ΘN,t} and about all of them in one shot:

H0 : p(Θt+1|Y
t ,H0) = p(Θt |Y

t)

= q0(Θt+1|Y
t)

H1 : p(Θt+1|Y
t ,H1) = p(Θ2,t , . . . ,ΘN,t |Y

t ,Θ1,t)

×F[p(Θ1,t |Y
t)] = q1(Θt+1|Y

t)

...

HN : p(Θt+1|Y
t ,HN) = p(Θ1,t , . . . ,ΘN−1,t |Y

t ,ΘN,t)

×F[p(ΘN,t)] = qN(Θt+1|Y
t)

HN+1 : p(Θt+1|Y
t ,HN+1) = F[p(Θt |Y

t)]

= qN+1(Θt+1|Y
t)

This particular set ofN+1 hypotheses is an example of many possible choices. The two extreme hypothesesH0 and

HN+1 represent the user’s belief that none or all parameter vary,respectively. The remaining hypothesesH1, . . . ,HN

concern the case of variability ofΘt ’s one element (with appropriate index). We can choose different operatorsF or

completely expert pdfsqi(Θt+1|Y
t) as well.

Working with the mixture (6) would require a rather complex treatment. Instead, we prefer to find a single pdf ˜p

of the same class as the components, minimizing the expectedKullback-Leibler divergence ofp on p̃, given by

E
[
D (p||p̃) |H ,πt ,Y

t]= (7)

= E

[∫
p(Θt+1|Y

t ,πt)
p(Θt+1|Y

t ,πt)

p̃(Θt+1|Y t ,πt)
dΘ

∣
∣
∣H ,πt ,Y

t
]

︸ ︷︷ ︸

→min

.

3
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It can be shown, thatD ( f ||g)≥ 0 with equality forf = g almost everywhere, Kullback and Leibler (1951). A solution,

for certain analytical cases (Dedecius, 2010), defines the approximate pdf ˜p(Θt+1|Y
t ,πt), which may be directly used

as the next prior distribution pdf in (2).

4. RAO-BLACKWELLIZED PARTICLE FILTER

Let Ψt+1 = (Θ′
t+1,π

′
t)
′ be a real column vector. Given the value ofπt , the minimization (7) yielding the approx-

imation p̃(Θt+1|Y
t ,πt) of (6), can be evaluated. The approximate pdf can be used for linear recursive estimation of

model (1). Since weightsπt are unknown, we attempt to estimate the joint pdf of regression parameters and weights

p(Ψt+1|Y
t). We exploit the natural factorization ofΨt+1 and decompose the pdfp(Ψt+1|Y

t) as follows

p(Ψt+1|Y
t) = p(Θt+1|Y

t ,πt)
︸ ︷︷ ︸

linear

p(πt |Y
t)

︸ ︷︷ ︸

PF

(8)

wherep(Θt+1|Y
t ,πt) is analytically tractable whilep(πt |Y

t) is not. The latter pdf is approximated using particle

filter (PF) theory, Doucetet al. (2001).

Particle filtering refers to a range of techniques for generating an empirical approximation of the pdf

p
(
Π

t |Yt)≈
1
M

M

∑
j=1

δ
(

Π
t −Π

t,( j)
)

, (9)

whereΠt = (π1, . . . ,πt) andΠt,( j), j = 1, . . . ,M are independent identically distributed samples from the posterior,

andδ(·) denotes the Diracδ-function. Therefore, this approach is feasible only if thewe can sample from the exact

posteriorp(Πt |Yt). If this is not the case, the samples can be drawn from a chosenproposal distribution (importance

function), f (Πt |Yt), as follows:

p
(
Π

t |Yt) =
p(Πt |Yt)

f (Πt |Yt)
f
(
Π

t |Yt)

≈
p(Πt |Yt)

f (Πt |Yt)

1
M

M

∑
j=1

δ
(

Π
t −Π

t,( j)
)

. (10)

Using the properties of the Diracδ-function, the approximation can be written in the form of a weighted empirical

distribution, as follows:

p
(
Π

t |Yt)≈
M

∑
j=1

w( j)
t δ

(

Π
t −Π

t,( j)
)

, (11)

w( j)
t ∝

p
(

Π
t,( j)|Yt

)

f
(
Πt,( j)|Yt

) . (12)

Under this importance sampling procedure, the true posterior distribution needs only to be evaluated pointwise.

The challenge for on-line algorithms is to achieve recursive generation of samples and evaluation of the importance

weights. Using standard Bayesian calculus, (12) may be written in the following recursive form:

w( j)
t ∝

p(yt+1|Y
t) p

(

π
( j)
t |π

( j)
t−1

)

f
(

π
( j)
t |Πt−1,( j),Y t

) w( j)
t−1 (13)

4
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Furthermore, iff
(

π
( j)
t |Πt−1,( j),Y t

)

= p
(

π
( j)
t |π

( j)
t−1

)

, then the importance density becomes only dependent on the

πt−1 andyt . This is particularly useful in the common case when only a filtered estimate of the posteriorp(πt |Y
t)

is required at each time step. It means that only theπ
(i)
t need to be stored, Risticet al (2004). Then, the marginal

posterior densityp(πt |Y
t) can be approximated as

p
(
πt |Yt)≈

M

∑
j=1

w( j)
t δ

(

πt −π
( j)
t

)

. (14)

Substituting (14) into (8) yields

p
(
Ψt |Y

t)=
M

∑
j=1

w( j)
t p

(

Θt |π
( j)
t ,Y t

)

δ
(

πt −π
( j)
t

)

(15)

Now, we have to sample from the space ofπt . The weights can be evaluated recursively:

w( j)
t ∝

p
(

yt |π
( j)
t

)

p
(

π
( j)
t |π

( j)
t−1

)

f
(

π
( j)
t |π

( j)
t−1,yt

) w( j)
t−1. (16)

For exact marginalization, all proofs of global convergence hold, Doucetet al, 2000.

5. IMPLEMENTATION Let the model (1) be a linearNth-order autoregressive model with Gaussian disturbances

p(yt |Y
t−1,Θt) = p(yt |ϕt ,θt ,Y

t−1)∼N (ϕ′
tθt ,σ2), (17)

whereϕt = (yt−1, . . . ,yt−N,1)′ is a regression vector andθt ∈R
N+1 is a vector of regression coefficients, andσ2 ∈R

+

is the noise variance. The Bayesian paradigm exploits the Gauss-inverse-Wishart distribution as a suitable conjugate

prior distribution, Ḱarńy (2006).

p(Θt |Y
t−1)∼ G iW (Vt ,νt), (18)

whereVt ∈R
(N+1)×(N+1) denotes an extended information matrix, i.e., a positive-definite symmetric matrix. The term

νt ∈ R
+ stands for the degrees of freedom, Peterka (1981). The data update rule (2) reads

Vt = Vt−1+(yt ,ϕ
′
t)
′(yt ,ϕ

′
t)

νt = νt−1+1.

There are various methods accomplishing the time update based on forgetting (5), e.g. Peterka (1981), Jazwinsky

(1970), Kulhav́y and Ḱarńy (1984), and many others. The approximation of mixture (6) of G iW pdfs, in the sense

of minimizing the Kullback-Leibler divergence (7), is thoroughly described in Dedecius (2010). The weightsπt are

sampled from the Dirichlet distributionD ir (πt) by a particle filter. The evolution modelπt |πt−1 is given by the

following transition pdf

πt |πt−1 ∼D ir (πt−1/∆+s), (19)

5
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where∆ is the width of the random walk ands is the stabilization term.∆, s and the proposal distribution area priori

given by the user. A popular choice of the proposal distribution f
(

π
( j)
t |π

( j)
t−1,yt

)

= p
(

π
( j)
t |π

( j)
t−1

)

simplifies (16),

w( j)
t ∝ p

(

yt |π
( j)
t

)

w( j)
t−1.

There exist other optimal choices of proposal density as well, see, e.g., Doucetet al. (2001).

6. SIMULATION

In this simulation, we analyze a time seriesyt = x(t)+et , wherex(t) is given by thex-component of the Lorenz

system, Lorenz (1963)

ẋ = σ(y−x)

ẏ = ρx−y−xz

ż=−βz+xy

andet ∼N (0,1). We numerically integrate the system by the fourth-order Runge-Kutta algorithm with time step 0.05

and parametersσ = 10, ρ = 28, andβ = 8/3. The integration was initialized withx0 = 0,y0 = 1 andz0 = 1.05. The

sampling period coincides with the integration step. The system was modelled using a second-order autoregressive

model (17) withϕt = (yt−1,yt−2,1). Its parameters were estimated using partial forgetting with hypotheses formulated

in Section , whereF is the exponential forgetting with factor 0.95. The result of modelling the first 500 samples is

depicted in Fig. 1. We can see, that after the learning period(approximately first 100 samples), the estimator stabilizes

and the model achieves a good performance.

CONCLUSION

The autoregressive model with partial forgetting within the Rao-Blackwellized particle filter was discussed. We

presented a hybrid filtering method, where a subset of parameters is estimated using a particle filter. The rest of the

parameters are estimated conditionally linear. The presented algorithm in its basic form performs well, however, there

is a lot of space for further improvements, e.g., use of an adaptive proposal in the particle filter.
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