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process can be approximated by a piecewise linear function
advocates the use of adaptive linear models. We propose a linear
regression model within Rao-Blackwellized particle filter. The
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finite mixture, where the weights of components are tuned with a
particle filter. The mixture reflects a priori given hypotheses on
different scenarios of (expected) parameters' evolution. The
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ABSTRACT

We are concerned with Bayesian identification and prediatioa nonlinear discrete stochastic process. The fact,
that a nonlinear process can be approximated by a pieceinisar Ifunction advocates the use of adaptive linear
models. We propose a linear regression model within Raclk®lellized particle filter. The parameters of the linear
model are adaptively estimated using a finite mixture, whkeeweights of components are tuned with a particle
filter. The mixture reflects priori given hypotheses on different scenarios of (expectednpatexs’ evolution. The
resulting hybrid filter locally optimizes the weights to @&fe the best fit of a nonlinear signal with a single linear

model.

1. INTRODUCTION

The theory of approximation of nonlinear signals by piesatinear functions has attained considerable attention
over the recent decades (Tong, 1993), mainly in the field ofrobengineering, e.g., Kalman (1957). The method
is popular, because in many technical applications, ireffereasonable trade-off between the model complexity and
performance (Sontag 2002; Savona 1988). Our method is atetivby the fact that if the transitions between two
successive (almost) linear segments is smooth enougm Beaodelled with switching models, e.g., Judd and Mees
(1995), Ragott al. (2004), Rosenqvist and Karlgmn (2005), or model averaging, Rafteztal. (2010).

Notational conventionsZ] denotes proportionality, i.e., equality up to a constactda A’ denotes transpose Af

p(alb) is a probability density function (pdf) of a (multivariategndom variable givenb. The pdfs are distinguished
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by their argumentt € {1,2, ...} denotes discrete time instants. All integrations are dwentaximal plausible support.

2. BAYESIAN APPROACH TO MODELLING
Assume that we are given a time series of real observalons$ = (yi,...,y_1) and our purpose is to determine
its next valuey;. The statistical approach employs, among others, the parammodels describing the dependence of

y¢ on previous observatiok ! through conditional distributions pdf
P(y|Y',©). @

Under the Bayesian treatmei®, is a set of constant model parameters with pa®|Y'~1). If this distribution is
properly chosen from a class conjugate to the model (1), thee8 theorem yields a posterior pdf of the same type,

and the recursive data update reads (Bernardo and Smith; Ré€erka, 1981)

p(y[Y'1,©)p(OY'?)
p(y[Yt1)

The predictive pdp(y:.1|Y") provides the Bayesian output prediction. Using the ChapK@mogorov equation
(Karush 1961), it holds that

pOY") = )

I
Pa¥!) = [ plyisa ¥, ©)p(O[Y)dO = 12, ©)

wherel denotes the normalizing integral, see, e.g., Peterka §1981

Although the described methodology is importaet se its lack of adaptivity prevents successful application to

nonstatic cases, whe is not time-invariant. For a time varyin@y, it is necessary to perform an additional update
P(OY") = p(Or1|YY). (4)
Here, two significant cases can occur:
1. The evolution modep(©;1|©;,Y") is knowna priori.
2. A suitable model of parameter evolution is not known, batoan expect that they vary slowly.

Case (i) allows one to aggregate both (1) i@, 1|0, Y") into a single complex model. The®; represents the
system state and, under certain conditions, the estimetgkileads to the well known Kalman filter, Peterka (1981).

However, there exists a wide variety of cases, when the @kptiodel of parameter evolution is not known. If
we adopt the assumption of slowly varying parameters (ig,gopular group of estimation methods using forgetting
provides a solution. It heuristically circumvents the pesb of parameter model ignorance by recursive discounting
the old and potentially outdated information carried bygheameter pdf. Formally, we introduce a forgetting operato
g

P(©c1Y") =F[p(O1[Y")]. (5)

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca



©CoO~NOUTA,WNPE

Communications in Statistics - Simulation and Computation Page 5 of 11

The application of the forgetting operator is equivalenti®time update in state-space modelari (2006).

3. PARTIAL FORGETTING

The use of “classical” forgetting methods, e.g., exporafdrgetting (Peterka, 1981), is limited in nonlinear case
We present a new approach appealing to partial forgettimgleDius (2010). While it enumerates hypotheses about
variability of elements 0®;, our modification is more general.

Let us define a finite set/ of hypotheseqH;} regarding the distribution 0®;.1 given ®;. The distributions

induced by these hypotheses are merged together in formmfearixture,
P(Or1|Y' m) = D Tht 0 (41| YY), D> me=1, (6)
I I

i.e., the posterior distribution @ 1 is represented by a finite mixture of hypothetical pgif®; 1|Y").

A theoretically correct solution would express one hyptitiad pdf for each (almost) linear window. In practice,
this is hardly possible and a generalization of the apprégeixploited. The hypothesé € # enumerate several
cases, that are likely to occur. Their number depends ondfepiask, mainly the signal properties, and the user’s
ability to guess the properties @ in each window. For instance, we may state a hypothesis adamiit particular
element of®; = {O1,...,On;} and about all of them in one shot:

Ho: P(®ry1]Y' Ho) = p(6|Y")
= 0o(Or11|Y")
Hy: P(Oi11|Y  H1) = p(Oyt....,Ont Y, O1y)

xF[P(O1|Y")] = qu(Or41[Y?)

Hy : P(Or11| Y, HN) = p(Osy,....On_14|Y", Ony)
x F[P(On1)] = ON(Orsa| YY)
Hisa P(O+1|Y" Hyi1) = F[p(Of[YY)]

= OnN+1(Og 41|V

This particular set oN + 1 hypotheses is an example of many possible choices. Thextnenge hypothesdd, and
Hni1 represent the user’s belief that none or all parameter vaspectively. The remaining hypothedés... Hy
concern the case of variability @,’s one element (with appropriate index). We can choosergiffeoperatorg or
completely expert pdfg; (©,1|Y!) as well.

Working with the mixture (6) would require a rather complexatment. Instead, we prefer to find a single pdf ~

of the same class as the components, minimizing the exp&ci#izhck-Leibler divergence ob on 3, given by

E[D(p||p) |4, m., Y] = 7)
P(Or1| Y, 7y) t:|
:E/ O |Vt ) D2 ) gl g 1yt
[ p(Ora1Y ' m) LT o) .
—min
3
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It can be shown, thab (f||g) > 0 with equality forf = g almost everywhere, Kullback and Leibler (1951). A solution
for certain analytical cases (Dedecius, 2010), definesgheoaimate pdp(©;.1|Y", m), which may be directly used

as the next prior distribution pdf in (2).

4. RAO-BLACKWELLIZED PARTICLE FILTER

Let \Ilt+]_ == (@I

t+1,7)" be areal column vector. Given the valuemf the minimization (7) yielding the approx-

imation (@ 1| Y, ) of (6), can be evaluated. The approximate pdf can be usethfearlrecursive estimation of
model (1). Since weights; are unknown, we attempt to estimate the joint pdf of regogsparameters and weights

p(Py.1|Y"). We exploit the natural factorization @, ; and decompose the pgf ¥, 1|Y") as follows

P(TriafYY)

= p(O1|Y",m) p(m|Y) (8)
N — ——

linear PF
wherep(©.1|Y",m) is analytically tractable whilg(m|Y?) is not. The latter pdf is approximated using particle
filter (PF) theory, Doucegt al. (2001).

Particle filtering refers to a range of techniques for getimegaan empirical approximation of the pdf

i 2,5 ()

M are independent identically distributed samples from th&tqrior,

p(IT|Y!) ~ 9)

whereIl' = (r1,...,m) andITb(), j=1,..
andd(-) denotes the Dirad-function. Therefore, this approach is feasible only if #he can sample from the exact
posteriorp (ITH|Y!). If this is not the case, the samples can be drawn from a chreposal distribution (importance

function), f (IT|Y!), as follows:

p(I'|Y")

Q

(10)

Using the properties of the Diragfunction, the approximation can be written in the form of aighted empirical

distribution, as follows:

p (T [Y!) ~ ZW ( Hn(i))’ (11)
t,(j t
wl O m (12)

Under this importance sampling procedure, the true pastdistribution needs only to be evaluated pointwise.
The challenge for on-line algorithms is to achieve rec@rgigneration of samples and evaluation of the importance
weights. Using standard Bayesian calculus, (12) may béemrih the following recursive form:
p(ya[YY)p (m(” i)
( )|t Yt)

j
Wt(—)l

w O (13)

4
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Furthermore, iff ( \Ht L( Yt) = p(ﬂ-t |7rt 1) then the importance density becomes only dependent on the
m_1 andy;. This is particularly useful in the common case when onlytarfid estimate of the posteriptm|Y*)
is required at each time step. It means that onlyft-tqé need to be stored, Rist&t al (2004). Then, the marginal

posterior density(|Y") can be approximated as

'7'l't|Yt ~

( (i)) ' (14)

HM§

Substituting (14) into (8) yields

<

p(T|Y!) = z (@t|7rt ),Yt>6<7rt—7r(j)> (15)

Now, we have to sample from the spacemf The weights can be evaluated recursively:

(g p(aPD)
e <tf (tﬂf)”frf(”:,yt)t 1)th1' -

For exact marginalization, all proofs of global convergehold, Doucett al, 2000.

5. IMPLEMENTATION Let the model (1) be a linedith-order autoregressive model with Gaussian disturbances

(yt|lft L ®t (yt|‘pt36taYt 1) N(90{0t702)7 (17)

wherep; = (Vi—1,---,¥t—N, 1)’ is a regression vector al € RN+1is a vector of regression coefficients, asfde R+
is the noise variance. The Bayesian paradigm exploits thes§saverse-Wishart distribution as a suitable conjugate
prior distribution, Karny (2006).

P(OY' ) ~ GIW(V,w), (18)

whereV; € RIN+Dx(N+1) denotes an extended information matrix, i.e., a positigfaite symmetric matrix. The term
v; € R stands for the degrees of freedom, Peterka (1981). The ddtairule (2) reads

Vi =Vici+ (Y 0t) (M )

Vi =V 1+ 1

There are various methods accomplishing the time updatd@sforgetting (5), e.g. Peterka (1981), Jazwinsky
(1970), Kulhay and Karry (1984), and many others. The approximation of mixture (6§01 pdfs, in the sense
of minimizing the Kullback-Leibler divergence (7), is tloaghly described in Dedecius (2010). The weightsre
sampled from the Dirichlet distributio®ir (7y) by a particle filter. The evolution modet;|m;_; is given by the
following transition pdf

|1 ~ Dir (w_1/A+9), (19)
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whereA is the width of the random walk argis the stabilization termA, s and the proposal distribution aagpriori

given by the user. A popular choice of the proposal distitisut (ﬂ't(j)‘ﬂ't(l)l,yt) =p (m(j)hrt@l) simplifies (16),

o0 p (i) Wi,

There exist other optimal choices of proposal density a§ se#, e.g., Doucedt al. (2001).

6. SIMULATION
In this simulation, we analyze a time serigs= x(t) + &, wherex(t) is given by thex-component of the Lorenz

system, Lorenz (1963)

X=0(y—x)
y=pX—Yy—Xz
z=—PBz+xy

ande ~ A((0,1). We numerically integrate the system by the fourth-ordemg@uKutta algorithm with time step 0.05
and parameters = 10, p = 28, andp = 8/3. The integration was initialized witky = 0,yo = 1 andz, = 1.05. The
sampling period coincides with the integration step. Th&teay was modelled using a second-order autoregressive
model (17) withd: = (yi—1,¥t—2,1). Its parameters were estimated using partial forgettirtlg inypotheses formulated

in Section , where¥ is the exponential forgetting with factor 0.95. The resdiltrmdelling the first 500 samples is
depicted in Fig. 1. We can see, that after the learning pédapgroximately first 100 samples), the estimator statslize

and the model achieves a good performance.

CONCLUSION

The autoregressive model with partial forgetting withie fRao-Blackwellized particle filter was discussed. We
presented a hybrid filtering method, where a subset of paemis estimated using a particle filter. The rest of the
parameters are estimated conditionally linear. The ptedeaigorithm in its basic form performs well, however, ther

is a lot of space for further improvements, e.g., use of aptadaproposal in the particle filter.
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Figure 1: Results of the numerical experiment.
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