N
N

N

HAL

open science

Quasilinear Lane-Emden equations with absorption and
measure data

Marie-Frangoise Bidaut-Véron, Hung Nguyen Quoc, Laurent Veron

» To cite this version:

Marie-Frangoise Bidaut-Véron, Hung Nguyen Quoc, Laurent Veron. Quasilinear Lane-Emden equa-
tions with absorption and measure data. 2012. hal-00768950v1

HAL Id: hal-00768950
https://hal.science/hal-00768950v1

Preprint submitted on 26 Dec 2012 (v1), last revised 15 Jan 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00768950v1
https://hal.archives-ouvertes.fr

Quasilinear Lane-Emden equations with
absorption and measure data

Marie-Frangoise Bidaut-Véron
Nguyen Quoc Hung
Laurent Véron

Laboratoire de Mathématiques et Physique Théorique,
Université Francois Rabelais, Tours, FRANCE

Contents

1 Introduction 2

2 Lorentz spaces and capacities 4
2.1 Lorentz spaces . . . . . . . . ..o e 4
2.2 Wolff potentials, fractional and n-fractional maximal operators 5
2.3 Estimates on potentials . . . . . ... ... L oL )
2.4 Approximation of measures . . . . . . . .. ... ... 16

3 Renormalized solutions 19
3.1 Classical results . . . . . . .. ... Lo 19
3.2 Applications . . . . . . ... 21

4 Equations with absorption terms 24
4.1 Thegeneral case . . . . . . . . . . . e 24
4.2 Proofs of Theorem 1.1 and Theorem 1.2 . . . . . .. ... ... ... 26

Abstract We study
2010 Mathematics Subject Classification. 35J92, 35R06, 46E30.
Key words: quasilinear elliptic equations, Wolff potential, maximal functions, Borel measures, Lorentz

spaces, Lorentz-Bessel capacities.

Abstract We study the existence of solutions to the equation —A,u + g(z,u) = p when
g(z,.) is a nondecreasing function and p a measure. We characterize the good measures, i.e.
the ones for which the problem as a renormalized solution. We study particularly the cases
where g(x,u) = |x|ﬁ lu|” ' u and g(z,u) = |:17|ﬁsgn(u)(eT|“‘A —1). The results state that a



measure is good if it is absolutely continuous with respect to an appropriate Lorentz-Bessel
capacities.

1 Introduction

Let Q € RY be a bounded domain containing 0 and ¢ : Q2 x R, — R be a Caratheodory
function. We assume that for almost all z € Q, r — g(z,r) is nondecreasing and vanishes
at 0. In this article we consider the following problem

—Apu+g(z,u) =p in Q
0 (1.1)

u in 00

where A, = div (|Vu|pf2 Vu), (1 < p < N), is the p-Laplacian and p a bounded measure.

A measure for which the problem admits a solution, in an appropriate class, is called a good
measure. When p = 2 and g(x,u) = g(u) the problem has been considered by Benilan and
Brezis [4] in the subcritical case case that is when any bounded measure is good. They prove
that such is the case if N > 3 and g satisfies

N

N2 ds < oo. (1.2)

JCCR e

The supercritical case, always with p = 2, has been considered by Baras and Pierre when
g(u) = |u|* "w and ¢ > 1. They prove that the corresponding problem to (1.1 ) admits a
solution (always unique in that case) if and only if the measure p is absolutely continuous
with respect to the Bessel capacity C2 o (¢ = ¢/(¢ — 1)). In the case p # 2 it is shown
by Bidaut-Véron [6] that if problem (1.1 ) with 8 = 0 and g(s) = |s|" 's (¢ > p—1 > 0)
admits a solution, then p is absolutely continuous with respect to any capacity C,

q+§fp+€
for any € > 0.

In this article we introduce a new class of Bessel capacities which are modelled on Lorentz
spaces L*7 instead of LY spaces. If G, is the Bessel kernel of order o« > 0, we denote by
L2%4(RN) the Besov space which is the space of functions ¢ = G * f for some f € L*4(RY)
and we set [|¢||, , , = [[flls, (a norm which is defined by using rearrangements). Then we

set
Cos,q(E) =f{||fll,,: f>0,Gaxf>1 onE} (1.3)

for any Borel set E. We say that a measure y in 2 is absolutely continuous with respect to
the capacity Co s,q if ,

VE C Q, E Borel , Co s 4(E) = 0= |u| (E) = 0. (1.4)

We also introduce the Wolff potential of a positive measure p € MM(RY) by

Wil = [ (%)_ & (15)

t



ifa >0, 1< s < a'!N. When we are dealing with bounded domains 2 C By and
€ M(Q), it is useful to introduce truncated Wolff potentials.

Wi i) = [ (%)% (16)

We prove the following existence results concerning

—Apu+ |z|7ﬁ g(u) =p in Q

1.7
u=~0 in 0N (17)

Theorem 1.1 Assume 1 <p < N,qgq>p—1and0< B < N and i is a bounded Radon
measure in §2.

1- If g(s) = |s|"" s, then (1.7 ) admits a renormalized solution if p is absolutely continuous
with respect to the capacity C

P N N
2- If g satisfies

Amg(s)s_q_lds < oo (1.8)

then (1.7 ) admits a renormalized solution if p is absolutely continuous with respect to the

capacity C
P y P Ng—(— 1><N EDE

Furthermore, in both case there holds

fKWiC;am @ [ ](z) Sulz) < KW2dlam @ [t (x) for almost all z € Q. (1.9)

In order to deal with exponential nonlinearities we introduce for 0 < o < N the fractional
maximal operator (resp. the truncated fractional maximal operator), defined for a positive
measure p by

M [p](z) = sup %, (resp Mo, rlu](z) = S %) ; (1.10)

and the n-fractional maximal operator (resp. the truncated n-fractional maximal operator)

M [pl(z) = sup tN( Q}E 8) (resp M glul(z) = S tN( a,(L 2;) (1.11)

where n > 0 and
b — (—Int)™" fo<t<i L1
() = (In2)=" ift >1 (1.12)

Theorem 1.2 Assume 1l <p < N,q>p—1,7>0 and A > 1. Then there exists C > 0
such that if a measure in Q, = puT — p~ can be decomposed as follows

pt=fi+u and p~ = fa+ v, (1.13)



where f; € L1 (Q) and v; € ML (Q) (5 =1,2), and if

(p—l))f)\—l)
p,2diam () [Vj < Ca (114)
Lo (Q)
there exists a renormalized solution to
—Apu + sgn(s) (eT‘SIA - 1) =/ in Q
! (1.15)
u=20 mn 0.

Our study is based upon delicate estimates on Wolff potentials and 7n-fractional maximal
operators which are developed in the first part of this paper.

2 Lorentz spaces and capacities

2.1 Lorentz spaces

Let (X, %, a) be a measured space.If f : X — R is a measurable function, we set Sy(t) :=
{z € X : f(z) >t} and Af(t) = a(Sf(t)). The decreasing rearrangement f* of f is defined
by

fr(t) =inf{s > 0: Xs(s) < t}.
It is well known that (®(f))* = ®(f*) for any continuous and nondecreasing even function
®:R— R. We set

f**(t):%/otf*(T)dT vt > 0.

and, for 1 < s < oo and 1 < q < o0,

([Toars) <o

1f1lLsa = 0 (2.1)
supesst® f**(t) if g=o00
>0

It is known that L*9(X,a) is a Banach space when endowed with the norm ||| .,. Fur-
thermore there holds (see e.g. [12])

the left-hand side inequality being valid only if s > 1. Finally, if f € L%¢(RY) (with
1 < ¢ < 0o and « being the Lebesgue measure) and if {p,} C C5°(RY) is a sequence of
mollifiers f x p, — f and (fx,, *pn — f in L*9(RY). In particular Cg°(RY) is dense in
L*9(RN).

S

i i

< Fllgea <

2.2
La(R+,4dt) s—1 (22)

3
La(R+,4E)



2.2 Wolff potentials, fractional and 7n-fractional maximal operators

If D is either a bounded domain or whole RY, we denote by (D) (resp 9M’(D)) the set
of Radon measure (resp. bounded Radon measures) in D. Their positive cones are M4 (D)
and 9 (D) respectively. If 0 < R < oo and p € M4 (D) and R > diam (D), we define, for
a>0and 0 < s < a !N, the R-truncated Wolff-potential by

R . e
Wgs[u](ac) :/0 (%) % for a.e. z ¢ RV, (2.3)

If hyy(t) = min{(—1Int)~", (In2)~ "7}, the truncated n-fractional maximal operator is

By(x))
M’ r) = su 7M( ‘ for a.e. x € RV, 2.4
a,R[M]( ) O<t£)R tN_ahn(t) ( )

If R = oo, we drop it in expressions (2.3 ) and (2.4 ). In particular

H(By(x)) < Ny ()M g 1] (). (2.5)

We also define the G, the Bessel potential of a measure p by
Galil(@) = [ Gala = w)duly) vz € RY, (2.6)
R

where G, is the Bessel kernel of order o in R .

Definition 2.1 We denote by L**4(RY) the Besov space the space of functions ¢ = G * f
for some f € L>U(RYN) and we set 191l a,5.g = 1 ll.q If we set

Cosa(B) = mf{[fll,,: f20, Gax 21 onE}, (2.7)

then Cq 5,4 15 a capacity.

2.3 Estimates on potentials

In the sequel, we denote by |A| the N-dimensional Lebesgue measure of a measurable set
A and, if F,G are functions defined in RY, we set {F > a} := {z € RY : F(z) > a},
{G <b}:={r e RY : G(x) < b} and {F > a,G < b} := {F > a} N {G < b}. The following
result is an extension of [14, Th 1.1]

Proposition 2.2 Let 0<n<p—1,0<ap < N andr > 0. There exist co > 0 and eg > 0
depending on N,r,p,ca,n such that, for all R € (0,00], € € (0,¢0], A > 0 and u € M, (RY) |
there holds.

(W, > 30, (]

ap,R

W)™ <erbn B,

—1— % __p—1 R (28)
< coexp (— (ﬁ) apln2e pln) (W, [l > X} N B,

Furthermore, if n = 0, ¢y is independent of r.



Proof. Case R = co. Let A > 0; since W, p[u] is lower semicontinuous, the set
D =Dy, :={z € B, : Wa[u](z) > A}

is open. By Whitney covering lemma, there exists a countable set of closed cubes {Q;};
o o
such that D = U;Q;, Q; N Q; = 0 for i # j and

diam(Q;) < dist (Qs, D°) < 4 diam(Q;).

Let € > 0 and F. = {Waﬁp[ﬂ] > 3, (Mgp[u])ﬁ < e)\} N B,. We claim that there exist

c¢c=c¢(N,a,B,p,n) >0 and ¢ € (0,1) depending also on N, «, 8, p and 7 such that for any
Q € {Q;}; there holds

4(p—-1)

Take @ € {Q;}; such that QNF, # 0 and let g € D such that dist (z¢, Q) < 4diam(Q)
and W ,[u|(zg) < A For k € N, ry = 5diam(Q) and x € F. N Q, we have

2k+1r0 —i
w(B(x)\ P~T dt
L., (55) G-avs

k’l‘o

p—1—n T
[FenN@Q| <cexp|— (== e —napln2 | |Q| Ve € (0,¢€). (2.9)

where -
1 1
A/Qk%m p(Bu(x)\ 7 dt
Sk, tN—ap t
and - )
S [P (BT
2’“%7“0 tN—Otp t ’
142k
Since
p(By(x)) < NP Ry, (£) M, (x) <tV 7P Ry () (eX)P (2.10)
Then
2k + g N—a 1N 7T 2k +1pg
tYTPh, () (eN)P P=1 o dt 1 dt
< 1 — = p—1
B< /k . < N—ap - eA/k N WO I
2 ok 2 % To
142 142

Replacing hy(t) by its value we obtain B < ceX27F after a lengthy computation, where ¢
N—«a
depends only on N, ap and 7. Since § := (2’“2—i1) P*lp, then 1 —0 < ¢;27% where ¢; depends

N—ap
only on o1 , thus

(1-6)A< Clgk/wlr“ (U(Bt($)>pll dt

2kT0 tN—Ozp t
2o dt
< c12—m/ (hy (1)) 7T &
2’“7‘0 t

< 92 ke,



By a change of variables and using that for any z € F.NQ and t € [ro(1+ 2F), ro(1+ 251,
B s _(7) C Bi(zq), we get

142k

. 1 o
o /m(1+2k+1) M(B%)(x) dt _ /ro(1+2’““) (M(Bt(wQ)) 2T gt
T t T

o(142%) tN—ap - o(14+2%) tN—op t
Therefore
k:+1r _1 r k+1 _1
/2 " (BBU@)\TT ok / " p(Bi(xg) \ 7T dt
2krq tN—ap t - ro(14-2%) tN—ap t’

with ¢z = e3(N, «, p, ) > 0. This implies

1 1
> (p(By(x) \ 7T dt © ( u(Bi(zo) \ 7T dt
/TO < tN_tap — S 2eeA+ i tjvtfaf — < (L+cae), (2.11)

To

since W p[u](zg) < A If € € (0,¢; '], then

/ (u(&(m)) T,
tN—ap t

0

which implies, since x € Fr,

wi ) = [ (4 ) L

t
and finally
F.NQCE., (2.12)
where )
E. = {ac €Q: W [u)(x) > A, (M1, [u](2)) 7T < e)\} . (2.13)
Next we set mg = w, so that 27™r¢ < 271 if m > mg. Then
ro 7 dt o o dt
[ (e o] meyd
2= ™Mrg 2—Mrq
27momo o dt o o dt
Se)\/ (—lnt)F—Jre)\/ (In2)7=1—

< e 4 =D (n=mo)n2)'" 7T
< MoeA + -1 e

For the last inequality we have used ' TFT —pTET < (a— b)l_% valid for any a > b > 0.
Therefore,

1
To et
p(Be(x)\» " dt _ 2(p—1) .
/2”7“0 < tN—ap 7= p—1-n" " A VmeN,m>my, (2.14)

7



p—1

p—1-m
where mg = <¢ Elﬂ) . Set
2—(In2) p-1

o= [ (oY

77:"”0

then ) )
Wi (@) < 2=l e Wl o)
20—=1) 4 =
S ooy T 2 e

i=m—+1
for all m > mg. We deduce that, for 5 > 0,

|E| < {x €qQ: i:%lgi(ac) > (1 - ;(pf_l)nmlpnle) )\}
< Hz €qQ: Z gi(x) > 27Al=m=1(1 _27F) <1 - Mml_vnle) )\H
i=m-+1 p—1-mn
< Z {:c €Q: gi(x) >27P0—m=(1 —27F) (1 - Mml_%e) )\}‘ .
i=m-+1 p—1-mn
(2.15)
Next we claim that
o €Q:aila) > 5}] < W) gmion ) (erp, (216)

To see that, we pick zg € Q and we use the Chebyshev’s inequality

e €Q: gile) > s} < — /Q|gi|p1da:

sp—1
—if1 1 p—1
sp—1 Q ro2-1 tN—ap t

L[ (B (@) _
/Q — A

— gp—1 (T027i)N7ap




Thanks to Fubini’s theorem, the last term A of the above inequality can be rewritten as
1 1
G (mzi)Nap/chNlBro2i+l<r>dﬂ<y>d$
1 1 / /
= — — N 1p, , i (dodu(y)
70270V Joup oo o
1 1

< : |Broa-i+1(2)] du(y)
sP=1 (pg2-1)N—-ap /(Q-i—BmQHl(O) ’

271PrgP u(Q + Brya-i+1(0))

<ci(N)

sp—1

<ci(N)

12 e i(Bro(1a-i41) (0)),

since Q + B, ya-i+1(0) C By (142-i+1)(20). Using the fact that pu(By(xq)) < 4N =P(eN)P~?
for all t > 0 and 9 = 5diam(Q), we obtain

1

sp—1

A < ep(N) 277 |Q (eX)™,

27i0‘pr8‘p(ro(1 + 27i+1))N70‘p(6)\)p71 < c3(N)

sp—1

which is (2.16 ). Consequently, (2.15 ) can be rewritten as

oo

B < o) _2ier(erQ)
St (2pmme (-2 (1 - 2ol 1= ) ) )
Y ! (2.17)
€ .
—map (B(p—1)—ap)(i-m—1)
< ea(NV)2 (1_ 2(_]01_1)m1p”16> |Q|i:;r12 :
p—1-7
If we choose § so that (5(p — 1) — ap < 0, we obtain from (2.12 )
p—1
—ma € *
[FeN Q| < |E| < cg27™meP < T — ) Q| Vm > m§ (2.18)
1-— mm r—le

where ¢5 = ¢5(N, o, 8,p,n) > 0. Put ¢g = %min{+,c§l}. For any € € (0,¢p) we
1+2r—1myg

choose m € N such that

1\ /1 P 1\ /1 e
b0 1 —1<m< (220 -1 . (2.19)
2(p—1) € 2(p—1) €

Then
p—1
€
<1
20— _1--1; ) =
<1p_p1_nm p—1¢

1\ 1 ey war —1-—
g-map < 9or=(5555)) 7 T T (A1) T gan g ap1n2<u
4(p—1)

and

~
3
|
=i
[}
|
s
|
-
|
3

piin - )
2



Combinbing this inequality with (2.18 ), we get (2.9 ).
In the case n = 0 we still have

oo

Wi, lul(x) < 2mex+ > gi(x).

i=m-+1
Accordingly (2.18 ) reads as

€

p—1
IF. N Q| < 527 moP ( ) Q] Vm > 25 1my.

1 —2me
If e = 2 min{l,c; '} and m € N satisfies e 7! —2 < m < ¢! — 1, we finally get
|F. N Q| < csexp (—ape ' In2), (2.21)

which ends the proof in the case R = co.

Case R < co. For A > 0, D = {z € B, : W[ (x) > A} is open. Using again Whitney
covering lemma, there exist a countable set of closed cubes Q := {Q;} such that U;Q; = D,
@iNQ; =0 for i # j and dist (Q;, D°) < 4diam(Qy). If Q € Q : is such that diam (Q) > &,
there exists a finite number ng of closed dyadic cubes {Pj,Q};?‘jl such that U?&Qj = Q,
PZQ OP;Q =0ifi+#jand £ < diam (Pjq) < &. Weset @' = {Q € Q:diam (Q) < £},
Q' = {Q € Q: diam (Q) > %} and

F = QIU{Pi,Qilg’L'SnQ,QGQ”}.

For € > 0 we denote again F, = {Wip[,u] > 3, (Mgp[,u])ﬁ < e)\} N B,. Let Q € F such
that F. N Q # () and ro = 5 diam (Q).

If dist (D°, Q) < 4diam(Q), that is if there exists zg € D° such that dist(zg,Q) <
4 diam (Q) and Wgﬁp(zQ) < )\, we find, by the same argument as in the case R = oo,
(2.11 ), that for any & € F. N Q there holds

/j (”(Bt(x)) ﬁ % < (14 cao)A (2.22)

tN—ap

If dist (D¢, Q) > 4diam (Q), we have % < diam (Q) < % since Q@ € F. Then, for all

x € FgeN @, there holds
n o
R _ p(Bi(x) \ =" di
wi e - [ (5F)T

(2.23)



Finally, if we take ¢ € (0,c¢; '], we derive
FnQl < [{o e @ Wik lu(@) > A M, pliul(x) < ex}]. (2.24)

The end of the proof is as in the case R = oc. 0

In the next result we list a series of equivalent norms concerning Radon measures.

Theorem 2.3 Assumea >0,0<p—1<g<o0,0<ap< N and0 < s < oo. Then
there exists a constant cg > 0 such that for any R € (0,00] and p € M4 (RY), there holds

&5 IWEI o vy < Mo Rl s e ) < €0 [IWE |y - (225)
For any R > 0, there exists c; > 0 such that for any p € My (RY),
G Wl oy < 1Gaplilll 52 52 gy < 7 WUl o uny - (226)
In (2.26 ), ||W§7p[u]||qus(RN) can be replaced by ”Mo‘pvR[“]HLﬁ’ﬁ(RN)‘
Proof. Step 1
IWE bl ey < 6 Mol o o (2.27)

For n € N*, set un, = 1p,pu. From Proposition 2.2 there exist constants C,a > 0 and
€0 € (0,1) such that forallm e N, A >0, >0,0 < R < oo and 0 < ¢ < ¢, there holds

{{WE ] > 38X, (M, glin) 7T <X} B (—act) [{WE un] > \} 1 B, .
(2.28)
Letting r — oo, it follows
[{WE lin] > 37 (M2, glin]) 77 < A}| < Coxp (—ae™) {WE Jua] > A} (2.29)
In the case 0 < s < 00 and 0 < ¢ < 0o, we have
[{WE lin] > 36} |7 < crexp (=ae™) [{WE, [ua] > }]* + M |[{ (ML, o)) 77 > et}

Multiplying by t*~! and integrating over (0, 00), we obtain

s dt = dt
| W E ] > 36} |F 5 < crexp (a7 /0 = [(WE, o] > 1)]F &

g\ e dt
+M/ t M pluin] > (et)? 1} =
By a change of variable, we derive
—s —1 S 2 dt
(37% — crexp (—ae™ 1)) t |{Wapun >t}}q7
0
M o g dt
<—— ¢ {M" n tH —.
S AR

11



We choose € small enough so that 37% — c7 exp (—ae‘l) > 0 and we derive

R
||Wa,p[l’[’n]||Lq,s[RN] < c/6 HM&}?,R[MH]”Lﬁ,ﬁ(RN) )

and (2.27 ) follows by Fatou’s lemma. Similarly, we can prove (2.27 ) in the case s = co.
Step 2 We claim that

W0 ey 2 € Mgl oo (2.30)
For R > 0 we have for some cg = cg(N,a,p) > 0
2R =1
p(By(x)\ 7 dt
Wi lie) = Wi + [ (M)
a (2.31)

Thus

)

|{z: W2R ) > 2t} < [{=: Wﬁp[u](x) >t} + H:c : #Bar(@)) > cQtpl}

RN—ozp

with cg = cg . Consider {z;}72, C By such that By C Ur, Bi(zi). Thus Bar(z) C
U, Br (x + Rz;) for any 2 € RY and R > 0. Then

Hx  MBar(@) cQtp_lH < {x ; i M(Biﬁftf%))' > cQtP—l}

RNfap
i=1

{w By (@ Ra)) - egtr™! H

IN

RN—ap m

{x — Rz; : ME%B;;;(;)) > 091:;1 }’
{z H(By@) et H
' RN-ap — .
Br(x ﬁ
(%) < oW u)(z).

Hz : % > c9tpl}‘ <m|{z: WE [u(z) > ciat}].

IN

1Mz 1D

I
3

Moreover from (2.31 )

thus

This leads to

{z: W2 [u](z) > 2t}| < (m+ 1) [{o : WE [u](z) > c10t}

, (2.32)

12



where ¢12 = min{1, ¢11} depends only on N, o and p. This implies

R R
IWES I s 5 oy < 13 IWE I 255 v, - (2.33)
On the other hand, from the identity in (2.31 ) we derive that for any p € (0, R),
B,(z))\* !
W2 i) > W (o) = euasumgen (5200 )T (2:34)
from which follows )
WD (@) > era (MG [ () 7 (2.35)

Combining (2.33 ) and (2.35 ) we obtain (2.30 ) and then (2.25 ). Notice that the estimates
are independent of R and thus valid if R = oc.

Step 3 We claim that (2.26 ) holds. By the previous result we have also

cis HW& 2[#]‘

R
et sy S Mon il o gy < €15 [ Wil oy e

(2.36)
For R > 0, the Bessel kernel satisfies[18, V-3-1]
1p, (2)
1 Br i
15 B;EJ;) < Gap(r) <6 | —3—ap | T 01667% vz € RV,
i |77
where c15 depends also N, a,p and R. Therefore
1 Ipg
Br P — Ll N
C15 | |N7ap * 1 < Gaplp] < g W +cige” Z k Vo € RY. (2.37)

By integration by parts, we get

<| |§V€Rap> () = (N — ap)Wh () + PO o ()W (),

which implies
s HW% 2l }

PSR [ | S

|z ]

Furthermore e~ 2 < ¢;71p, * e~ 2 (x) where ¢17 depends on N and R, thus
>

L1 L]
ez xu<cyy (1BR *6_7) * 4= ci7e” 2 % (1BR *M) .
L R

2

Since
1y *u(z) = u(By(2)) < c1s Wik 5[] ()
where c1g3 depends N, o, p and R, we derive with c19 = c1gc17

. 1.
e” 2 xpu<cge 2 *W%g[u].
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Using Young inequality, we obtain

< ci19

_ Ll
e « W, ,[u]|

_ Ll
e 2 *H‘

Lpfl’pil(]RN) Lpfl’pil(]RN)

< cig HW%Q[M]’ (2.39)

I-1
e 2
L7oT 55T (RN) H ’ L1 (RN)

< g ||[WE .
20” apQ ]LFET'%(RN)

Since by integration by parts there holds as above

1oy 5 n(Bx ()
<|.|N2ap> *p(x) = (N — ap)W 3y ,[p(2) + +27° QPW < 021W%72[u](z),
we obtain
1
H( NBRap> 1 < ey HWQ Q[M]‘ PR (2.40)
| | L, =0 27 Lp—1"p-1
LP—1°'p-1(RN)

Thus

Gl s s o < 22 [ W ol o, (2.41)
follows by combining (2.37 ) and (2.40 ). Using (2.37 ) we obtain the claim. O

Remark. Proposition 5.1 in [17] is a particular case of the previous result.

Theorem 2.4 Let a > 0, p > 1,0 < n<p—1,0< ap < N andr > 0. Then
there exists co3 > 0, depending on «, p, n, N and r such that for any R € (0,00], 0 €

(0, (1’{(—;__%) " apn2), any x € By and r' such that By (z0) C B, there holds

1 5(W§,p[“50](1))p7;" dx < 2
[B2,0 exp , = %= o1 (2.42)
B2, M2, glusolll f< o (1’;(17{7)) T apln2 —§
=

where we have set By = B,/ (x¢), B2o = Baw (z0) and pp, = 1, p-

Proof. Let u € 9 (RY) such that M, rln,] (Bo) < oo. We apply Proposition 2.2-
L>(Bg
(2.8 ) with p = pp,, to = €5 ' M where
=1 po1 — |l pI
M :=¢ HMap,R[:u’Bo] Loo(RN) - HMap,R[MBO] L“(BO)’

t>topand e =t"'M < ¢y. Then
H{WE [us,] >3t} N B,|
(2.43)

< cp exp (— (Z(pl:l’;)ﬁ; apln2M - e v) {WE s, >t} NB,|.
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If # ¢ Byo and 7' > R then W [up,(z) = 0 while if 0 <7/ < R, then

R
R _ 1By (Be(x))\ dt _ N —ap 1 vear N —ap
Wil (o) = [ (P22 ) % < S g < S

Then, for any t > (eal + ]\;__Cfp) M, {Wﬁp [B,] >t} C Ba, consequently, for any such ,

p—1

\{VVipUua]>i%}f‘Bzo!S(mexp<—-(i@13)p1"<wﬂn2ﬂ4PplﬂtP“W)IBzoL
(2.44)

This can be written under the form

{Wapluse] >t} N Bz

Iﬁ% p—1 p—1
<o (= (st apmans ) e 91+ )
(2.45)

p—1
If 6 € (0, (1’;_(—;:{75) " apln2), we get by Fubibi’s theorem

[ e (3075 (W J2) T ) o
Ba o

_ 1 *® 1 __p=1  _p-1
= pflinéM pflfn/o t pflf'q 16Xp (6M pflfnfpflfn) ‘{W(Ij,p[:u’Bo] >f}ﬂBQ,0’dt

ap

) . 3(e;1+1\;il )M oo
= fl— OM p—1—1 e +
L 0 3(ep '+ =52 )M

=I+1I

Then

N=se) M

I<

—1
o1 6M7ﬁ |B | 3(60 +
= 2,0 ;

f%*l exp (5M7%t%) dt
-

N—ap

§(3(ep =1 )M)pfin
S |B2,0|/ eds
0
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It follows from (2.45 ) that

1
IT < o3B3 6M ™77 | By

> p-1 e po1 _poa
a7 e (0 ()T ewiz) S
oo po1
Co |Bz,0|p

g\ '
(13”2(;_{7)) apln2—0

<

Combining the estimates on I and I, we derive

p—1 P B
/ exp (5Mp1n (WE [15o) () ) dz < ( 625p[1270| . (2.46)
Ba o

p—1-m ) pe apln2 — 9§

12(p—1)

which is the desired inequality. ([l

2.4 Approximation of measures

The next result is an extension of a classical result of Feyel and de la Pradelle [11]. This type
of result has been intensively used in the framework of Sobolev spaces since the pioneering
work of Baras and Pierre [3], but apparently it is new in the case of Bessel-Lorentz spaces.
We recall that a sequence of bounded measures {yu,} in € converges to some bounded
measure 4 in  in the narrow topology of M() if

lim [ ¢dp, = /qbdu Vo € Cp(Q2) := C(2) N L>(Q). (2.47)
Theorem 2.5 Assume Q is an open subset of RN. Leta > 0,1 < s <00, 1< ¢q < o
and p € M (Q). If p is absolutely continuous with respect to Cu sq in S, there exists
an increasing sequence {p,} C ML (Q) N (L*YRN))’, with compact support in Q which
converges to p weakly in the sense of measures. Furthermore, if p € Qﬁljr(Q), then p, — p
in the narrow topology.

Proof. Step 1. Assume that p has compact support. Let ¢ € L**9(RY) and & its Co,s,q
quasicontinuous representative. Since p is abolutely continuous with respect to Cy 5,4, We
can define the mapping

6 P@) = | &aula

where u|gq is the extension of p by 0 in Q°. By Fatou’s lemma, P is lower semicontinuous
on L*%4(RN). Furthermore it is convex and potitively homogeneous of degree 1. If Epi(P)
denotes the epigraph of P, i.e.

Epi(P) = {(¢,t) € L*I(RY) x R:t > P(¢)},
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it is a closed convex cone. Let € > 0 and ¢g € C°, ¢g > 0. Since (¢o, P(¢o) — €) ¢ Epi(P),
there exist £ € (L**4(RY))’, a and b in R such that

a+bt+P(p)<0  Y(b,t) € Epi(P), (2.48)

Since (0,0) € Epi(P), a < 0. Since (s¢,st) € Epi(P) for all s > 0, s~ta + bt + P(¢) < 0,
which implies

bt+ P(p) <0  V(¢,t) € Epi(P).
Finally, since (0,1) € Epi(P), b < 0. But if b = 0 we would have P(¢) < —a for all
¢ € L%9(RY). which would lead to £ = 0 and a > from (2.49 ), a contradiction. Therefore

b < 0. Then, we put 6(¢) = —&bd)) and derive that, for any (¢,t) € Epi(P), there holds
0(¢) < t, and in particular

() < P(¢) VYo L¥U(RY). (2.50)

Since ¢ < 0 = P(¢) = 0, 0 is a positive linear functional on L%*4(R¥). Furthermore

sup [0(¢)|= sup O(¢)<  sup  PO(¢) = P(1) = p(2).
¢ € CZ(RN) ¢ € CZ(RN) ¢ € CZ(RN)
el pee <1 AL <1 ¢llpe <1

By the Riesz representation theorem, there exists o € M, (RY) such that
0(p) = | ¢do Vo€ CZ(RY). (2.51)
RN

Inequality (2.50 ) implies 0 < ¢ < p|g. Therefore supp(c) C supp(u|a) = supp(p) and o
vanishes on Borel subsets of Cy 5 4 capacity zero, as p does it. From (2.49 ), we have

dodo = 0(do) > P(do) — €+ % > / dodp|a—e.
RN RN
This implies
0< | ¢od(p|a—0) <e. (2.52)
RN

It remains to prove that o € (L*%9(RY)). Let x € C*(RY), x > 0, with value 1 in
a neighborhood of on supp(n) and support in {z : dist (z, supp(n)) < 1}; then for any
FECEMRN), f>0, xGalf] € C§°(RY) and is nonnegative.

Golfldo = / XGalfldo = T(xGa[f]) = 0(Galf]) = 0((1 = X)Galf])) = 0(Galf]),

RN RN

since 1 — x vanishes on supp(y). This implies that for all f € C5°(RY), f > 0, there holds

/ Galf1do < 101l e aqrvyy Gl ooy (2.53)
]RN
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since § = —b~ and ¢ € (L“*9(R"))". Now, given f € L**4(RY), f > 0 and a sequence
of molifiers {p,}, (15, f) * pn € C(RY) and (1, f) * pp, — f in L%*9(RY). Furthermore,
there is a subsequence {n} such that lim,, oo Gal(1B, f)*pn](z) = Galf](z), Ca,s,q-quasi
everywhere. Using Fatou’s lemma anbd lower semicontinuity of the norm

G.[f]do <liminf,, o Gu[(1B,, f)* pn,Jdo
RN RN

<liminf,, e ||9||(La,s,q(RN))/ Ga[(ank f) * pny]

La,s,q(]RN)
<160 (oo znyy Gl 1l pomagny -

Therefore (2.53 ) can be rewritten under the form
/RNGa[f]dU SN0l ooy 1Galflllpo.samn Vfe L»RY), f > 0. (2.54)

Consequently o € ME (RY) N (L*4(RN))’ satisfies

/}RNGa[f]da

Step 2. We assume that y has no longer compact support. Set €2, = {x : dist (z,Q¢) > n~1},
then Q, C Q, C Q.41 C Q for n > ng such that Q,, # 0. Let {¢,} C C(RY) be an
increasing sequence such that ¢,, > 0, ¢, = 1 in a neighborhood of Q,, and supp(pin) C Q1.
and let v, = ¢, pu. For n > ng there is o, € 9313_ (RM) N (L**49(RN)) with 0 < 0, < v,, and

<10l ooy |Gl oy VS € L29(RY), (2.55)

1
£ Q%d(unan)z/ﬂnd(unan)[nd(uan)_

n

I we set u, = sup{o1, 02, ...,0,}, then {u,} is increasing and supp(pn) C Qpn41, and for any
f €€ L*9(RY), there holds

G [f]d,un
RN

< [ Gallran,
< g / Gallf[)don (2.56)

< <Z ”O—k”(LCVwSYQ(]RN))’> 1Al ooy -

k=1

Finally, let ¢ € C.(©2) and m € N* such that supp(¢) C Q,. For all n > m, we have

‘/bedﬂn/sﬁdu‘é‘/ﬂd(uun)

Thus p, — p weakly in the sense of measures.

1
P L Py

18



Step 3. Assume that p € 98 (Q). Then 4, (Q2) < p(2). Thus

pn(2) = pin(Qng) + Z Mn(ﬁkJrl \ Q)

k:no

Since the sequence {j,} is increasing and limy oo ftn (Qpr1 \ Q) = u(Qrr1 \ )by the
previous construction, we obtain by monotone convergence

Jim 11, (Q) = p(Q2n) + > Qi1 \ ) = p(Q)
k:no
Next we consider ¢ € Cy(2) := C(2) N L>°(Q), then
Vfbdﬂn /m\ \/ = i) 180 ey < () = () 8]y = O
Thus p,, — p in the narrow topology of measures. 0

As a consequence of Theorem 2.5 and Theorem 2.3 we obtain the following.

Theorem 2.6 Letp—1<s3 <00, p—1<83<00,0<ap< N, R>0 and u € M. (Q).

If p is absolutely continuous with respect to the capacity C.,, 2, there exists an
s1—p+1l’sg—p

increasing sequence {pn} C My (Q) with compact support in Q which converges to p in the
weak sense of measures and such that Wap[un] € L*v52(RYN), for all n. Furthermore, if
ne 9313_( ), n converges to to p in the narrow topology.

Proof. By Theorem 2.5 there exists an increasing sequence {u,} of nonnegative measures

with compact support in €2, all elements of (L“*” ST S (RM))’, which converges weakly
top. Ifp e 9)?{1 (Q), the convergence holds in the narrow topology. Noting that for a positive
measure ¢ in RY,

Goplo] € L1 71 (RY) = o € (L7 7 mr w571 (RY))

it implies Gop[un] € L7 17°1(RY). Then, by Theorem 2.3, WE [u,] € L*52(RYN).
O

3 Renormalized solutions

3.1 Classical results

Although the notion of renormalized solutions is becoming more and more present in the
theory of quasilinear equations with measure data, it has not yet acquainted a popularity
which could avoid us to present some of its main aspects. If p € 9MP(Q), we denote by
pT and p~ respectively its positive and negative part. We denote by 9,(£2) the space of
measures in €2 which are absolutely continuous with respect to the cgfp-capacity defined on
a compact set K C Q by

c%p(K):inf{/Q|V|pd:C:¢21K,¢€C§°(Q)}. (3.1)
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We also denote M,(2) the space of measures in 2 with support on a set of zero cgp-capacity.
Classicaly, any p € 9°(Q) can be written in a unique way under the form p = pg + s where
po € Mo(2) NIMP(Q) and pus € M, (Q). We recall that any g € Mo(2) NMP(Q) can be
written under the form g = f — div g where f € L*(Q)) and g € Lp/(Q). Furthermore, if u
is positive, one can find such a decomposition with f > 0 (see [7]).

For k > 0 and s € R we set Ty(s) = max{min{s, k}, —k}. We recall that if u is a
measurable function defined and finite a.e. in Q, such that Ty (u) € Wy(€) for any k > 0,
there exists a measurable function v : @ — RY such that VT (u) = 1}, /<xv a.c. in Q and
for all £k > 0. We define the gradient Vu of u by v = Vu. We recall the definition of a
renormalized solution given in [10]

Definition 3.1 Let 1 = pig + p1s € MP(Q). A measurable function u defined in Q and finite
a.e. is called a renormalized solution of

—Apu =4 in

u=20 on 09, (3.2)
if Tr(u) € WaP(Q) for any k > 0, |[Vu["™" € L™(Q) for any 0 < r < 2=, and u has the
property that for any k > 0 there exist A\, \; € fmﬁ_(Q) N Mo (), respectively concentrated
on the sets u = k and u = —k, with the property that /\;: — uf, Ay — pg in the narrow

topology of measures, such that
[ v ede= [ gaue+ [oint - [ oar. (33)

{|u|<k} {lu|<k} Q Q

for every ¢ € Wy P(Q) N L>(Q).

Remark. If u is a renormalized solution of problem (3.2 ) and p € M (Q), then u > 0 in €.
Indeed, taking k > m > 0 and ¢ = T, (max{—u,0}), then 0 < ¢ < m and we have

/ [VulP % VuVds > / Ty (max{—u, 0})dpo + /Tm(max{—u, 0})dA!
{lul <k} {lul <k} )
f/Tm(max{—u,O})d/\;
Q
> —mA, (Q).

Thus
/ |VT,, (max{—u,0})[" <mA;(Q)
Q
Letting k — oo, we obtain VT, (max{—u,0}) =0 a.e., thus u > 0 a.e. in Q.
We recall the following important results, see [10, Th 4.1, Sec 5.1].
Theorem 3.2 1- Let {u,} be a sequence of measurable functions defined in Q and finite

a.e. such that, for every k > 0 and n € N, Ti(u,) € WP (Q), [Vun|"~" € L7(Q) for
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any 0 < r < 2= and , k_l/ VT (un)|” < M, for some constant M. Then, up to a

subsequence, {un,} and {Vu,} are Cauchy sequences in measure, {u,} converges a.e. to a
function u, finite a.e. in Q, such that Tj,(u) € Wy *(Q) for any k > 0. Furthermore Ty, (uy,)
converges to Ti,(u) weakly in Wy (Q), Vu, converges to Vu a.e., IVulP™' € L™(Q) for any
0<r<+5 and |Vun|P ™2 Vu, converges to |[Vul|P™> Vu in L"(S).
2- Let {1, } C IMP(Q) be a sequence such that sup,, |pn| () < oo and let {u,} be renormalized
solutions of
—Aptp = fin mn Q
Up =0 on 0.

Then, up to a subsequence, {u,} converges a.e. to a solution u of —Apu = p in the sense

of distributions in Q, and for every k > 0, k:_l/ VT (u)|” < M for some M.
Q

(3.4)

Finally we recall the following fundamental stability result of [10] which extends Theo-
rem 3.2-2.

Theorem 3.3 Let = pg + pf — p; € MY(Q), with po = f — divg € Mo(Q), uf,py €
MH(Q).  Assume there are sequences {f,} < LY(Q), {gn} C (X' ()N, {pn},{na} C
M8 () such that f, — f weakly in L'(Q), g, — g in LP () and div g, is bounded in
M (Q), pn — puf and n, — pg in the narrow topology. If pn = fn — div gn + pn — Mn and
Up, 18 a Tenormalized solution of (3.4 ), then, up to a subsequence, w, converges a.e. to a
renormalized solution u of (3.2 ). Furthermore Ty (un) — Ti(u) in Wy ().

3.2 Applications
We present below some interesting consequences of the above theorem.

Corollary 3.4 Let u € IM*(Q) with compact support in  and w € MP(Q). Let {fn} C
LY (Q) which converges weakly to f € LY(Q) and p, = 0, * pu where {n,} is a sequence of
mollifiers. If u, is a renormalized solution of

—Aptp = frn + tin +w mn Q
Uy =0 on 012, (3.5)
then, up to a subsequence, u, converges to a renormalized solution of
-Au=f+p+w in Q
u=0 on 0f2. (3.6)

Proof. We write w = h — div§ +w} —w] and p = h — divg + p — pg, with h,h € L'(Q),
g,G € (LY ()N, h, g, ut and p with support in a compact set K C . If the support of
7, is included in the ball B,-1 with Ny, for n > ng, h*n,, g*n, and us *n, have also their
support in a fixed compact subset of 2. Moreover h * 1, — h and g * 7, — g in L'(Q) and
(LP ()N respectively and div g * n, — div g in W' (Q). Therefore

fottintw=foth—div@G+grn,) +wf +ufn, —w; —ps xn,

is an approximation of the measure f + p+ w in the sense of Theorem 3.3. This implies the
claim. g
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Corollary 3.5 Let u; € 9)?{1((2), i=1,2, and {u;n} C imljr(ﬂ) increasing and converging
to pi in ML(Q). Let {fn} C LY(Q) which converges to some f weakly in L'(Q). Let
{pn} C IMP(Q) which converges to some p € M(Y) in the narrow topology. For any n € N
let u,, be a renormalized solution of

*Apun = fn + Hn,1 — HUn,2 + pn in € (3 7)
Up =0 on 0. ’
Then, up to a subsequence, u, converges a.e. to a renormalized solution of problem
“Apu=f+p—p2+p in §) (3.8)
u=20 on 0f. ’

The proof of this results is based upon two lemmas

Lemma 3.6 For any p € Mo(Q) NINE_(Q) there exists f € L1(Q) and h € W=12(Q) such
that u= f + h and

1) + lgllw—10r ) + 19l () < 5r(€2). (3.9)

Proof. Following [9] and the proof of [7, Th 2.1], one can write 1 = ¢y where y € W1 (Q)N
M% () and ¢ € L(Q,7). Let {K,}nen, be an increasing sequence of compact subsets of
Q such that U, K,, = Q. We define the sequence of measures {v, }nen, by

Up =Tn(1k, &)y — Tn-1(1k, @)y forn>2
vi =Ti(1k, ¢)7.

Since v, > 0, then Z v, = pu with strong convergence in 9M°(Q), vk llons () = v&(€2) and
k=1

Z [Vkllops () = 1(82). If {nn} is a sequence of mollifiers, ¢n = in * 1 € CZ°(Q), ¢ > 0,
k=1

we may assume that
||¢n - Vn”w—l,p’(Q) S 2_nM(Q)

Set fn = Z¢k’ then ||fn||L1(Q) < Z||¢k||L1(Q) < ZHVk”mb(Q) < (). If we define
k=1 k=1

k=1
n

f = lim, o fn, then f € LY(Q) with [fll oy < n(€2). Set hyp = Z(Vk — ¢i), then
k=1

hn € W12 (Q) N M (Q), [l -157 (@) < 20(€2) and hy, converges strongly in w12’ (Q)

to some h which satisfies [|Ally -1 (q) < 20(Q2). Since p = f 4+ h and [|Allgp o) < 20(2),

the result follows. O

Lemma 3.7 Let p € MY (Q). If {un} C ME(Q) is an increa(?ing sequence which converges
to pu in MP(Q), there exist F,,, F € LY(Q) and G,,,G € W=1P (Q) such that

,U/n:,U/nO""Mns:Fn'*'Gn"'Mns and N:MO+N52F+G+M55
such that F, — F in LY(Q), G, — G in W=7 (Q) and in MO(Q) and i, s — ps in M),

and
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[Fnll 1) + 1Gallw-10 @) + 1Gallans ) + 110 slone @) < 61(82). (3.10)
Proof. Since {pn,} is increasing {in o} and {un s} share this property. Clearly

l[pe— Hn”mb(gz) = [0 — gmnOHQ:nb(Q) + lps = gmnSHDT(b(Q) )

thus pino — po and pn s — ps in MP(Q). Furthermore [t sllope 0y < 1s(2) < p(€2). Set
oo =0and fino0 = ttno — tn-10 for n € N,. From Lemma 3.6, faor any n € N, one can find
fn € LX), hyy € WL (Q) N ONP(Q) such that fino = fn + hyn and

1fnllLr) + hnllw -1 ) + [1Bnllge ) < 5fino(€2).

If we define F,, = ka and G,, = th, then p,o = F, + G, and the convergence

k=1 k=1
statements hold. Furthermore

[Enllpr ) + 1Gnllw -1 @) + [|Gnllons ) < 5o (€2).
Therefore (3.10 ) holds. O

Proof of Corollary 3.5. We set vy, = fp, + fin,1 — fin2 + pn and v = f 4+ p1 — po + p. From
Lemma 3.7 we can write

Vn:fn+F1n*F2n+G1n*G2n+,Uf1ns*H2n5+pn

and

v=f+F —-F+G —Ga+prs — plas + p,
and the convergence properties listed in the lemma hold. Therefore we can apply Theo-
rem 3.3 and the conclusion follows. O

In the next result we prove the main pointwise estimates on renormalized solutions.

Theorem 3.8 Let ) be a bounded domain of RYN. Then there exists a constant cas, depen-
dent on p and Q such that if ; € M°(Q) and u is a renormalized solution of problem (3.2 )
there holds _ _

*CQQW?ﬁ;ﬁamQ[Hi] <ufz) < CQQWi?amQ[uﬂ a.e. in S (3.11)

Proof. We claim the there exists renormalized solutions u; and wus of problem (3.2 ) with
respective data u™ and pu~ such that

—us <u<u a.e. in Q. (3.12)

We use the decomposition p = put — u= = (ug — p) — (g — p5). We put ug, = Ti(u),
Mk = 1ju)<kitro + )\;: — AL, Vg = 1{|u‘<k},u8_ + )\;:. Since p € Mo(Q), problem (3.2 ) with
data py admits a unique renormalized solution (see [7]), and clearly uy is such a solution.
Since v, € Mo(Q2), problem (3.2 ) with data v, admits a unique solution wuy; which is
furthermore nonnegative and dominates uy a.e. in . From Corollary 3.5, {uy 1} converges
a.e. in  to a renormalized solution u; of (3.2 ) with data ™ and u < u;. Similarly —u < us
where us is a renormalized solution of (3.2 ) with x~. Finally, from [17, Th 6.9] there is a
positive constant cso dependent only on p and 2 such that

up(z) < CQQW?;l)iamQ[‘LLJr] and wug(x) < CQQW?jjamQ[Mi] a.e. in Q. (3.13)

This implies the claim. O
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4 Equations with absorption terms

4.1 The general case

Let g : QxR +— R be a Caratheodory function such that the map s — g(x, s) is nondecreasing
and odd for almost all x € Q). If U is a function defined in 2 we define the function go U in
Q by

goU(z) =g(x,U(x)) for almost all z € 2.

We consider the problem

—Apu+gou=p in Q

u=0 in 0Q. (4.14)
where p € MP(Q). We say that u is a renormalized solution of problem (4.14 ) if gou € LY(Q)
and w is a renormalized solution of

—-Apu=p—gou in Q

u=20 in 0. (4.15)
Theorem 4.1 Let pu; € Qﬁi(ﬂ), 1 = 1,2, such that there exist nondecreasing sequences
{pin} C M8 (Q), with compact support in 2, converging to ji; and go (CQQW%%iamQ[Hi7n]) €
Ll(Q) with the same constant cos as in Theorem 3.8. Then there exists a renormalized
solution of

—Apu+gou = — 2 in
u=20 in 09, (4.16)
such that 4 .
7022W%7‘Zlam9[‘u2] <u(z) < CQQW%_’?}amQ[Ml] a.e. in ). (4.17)

Lemma 4.2 Assume g belongs to L (Q x R), besides the assumptions of Theorem 4.1. Let
Ai € sm{; (Q) (i=1,2), with compact support in ). Then there exists renormalized solutions
u, u;, v; (i =1,2) to problems

—Apu+gou=2A — A in
u=20 in 082, (4.18)
—Apu; +gou; =N m
ui =0 in 9, (4.19)
7A:D’Ui = )\z in
v =0 in 00, (4.20)
such that
—c W15 " o] (@) < —va(a) < —ua(w) < u(2) o)

<up(xz) <wvi(z) < C22Wiiiam “@ [A](@)

for almost all x € Q2.
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Proof. Let {pn} be a sequence of mollifiers, A\;,, = pn * As, (i = 1,2) and A\, = A, — Ao -
Then A, A2, and A, are bounded with compact support in  (for n > ng) and by
minimization there exist unique solutions in W, () to problems

—Apty +gou, = A, in Q
Uy =0 in 09,
—ApUin + g% n = Nin in
Ui =0 in 99,
—Ap’l)i,n = )‘iﬂl in Q
Vin = 0 in GQ,

and by the maximum principle, they satisfy
—v9n(2) < —uz () < up(x) <upn(z) <via(e), YoeQ, Vo> no. (4.22)

Since the \; are bounded measure and g € L>°(Q) x R) the the sequences of measures
{Mn—Aon—goun}t, {Ain—gouin}and {\;,} are uniformly bounded in 9P (). Thus, by
Theorem 3.2 there exists a subsequence, still denoted by the index n such that {u,}, {uin},
{vi,n} converge a.e. in  to functions {u}, {u;}, {v;} (i =1,2) when n — oo. Furthermore
gou, and g o u;, converge in L'(2) to g ou and g o u; respectively. By Corollary 3.4,
we can assume that {u}, {u;}, {v;} are renormalized solutions of (4.18 )-(4.20 ), and by
Theorem 3.8, v;(x) < cpa Wi 4™ 2[);], ae. in Q. Thus we get (4.21). O

Lemma 4.3 Let g satisfy the assumptions of Theorem 4.1 and let \; € M’ (Q) (i = 1,2),
with compact support in Q such that g o (CQQWiijam ) [)\l]) € LY(Q), where coa is the

constant of Theorem 4.1. Then there exist renormalized solutions w, u; of the problems
(4.18 )-(4.19 ) such that

—ean W H D) (2) < —ua(2) < ule) < ui(@) < WL ] (2) (4.23)

for almost all x € Q). Furthermore, if w;, 6; have the same properties as the \; and satisfy
w; < N\ < 6;, one can find solutions u,,, and ug, of problems (4.19 ) with right-hand respective
side w; and 0;, such that u,, < u; < ug,.

Proof. From Lemma 4.2 There exist renormalized solutions uy,, u;, to problems

—Apuy +Th(goun) = A1 — X2 in Q
Up =0 on 0,
and
—Aptin +Tn(gouin) =N in Q
Uiy =0 on 012,

i =1,2, and they satisfy

—en WS D) (@) < —uzn(2) < n(2) < urn (@) < Wi 5" D). (424)
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As in Lemma 4.2 one can choose a subsequence, still denoted by the index m such that
{Un, U1,n,u2,n} converges a.e. in  to {u,uq,us} for which (4.24 ) is satisfied a.e. in €.

Since go (CQQWime @) [/\1]) € LY(Q) we derive from (4.24 ) and the dominated convergence

theorem that T}, (gou,) — gou and T}, (gou; ) — gou; in L1 (). It follows from Theorem 3.3
that u and u; are respective solutions of (4.18 ), (4.19 ). The last statement follows from
the same assertion in Lemma 4.2. O

Proof of Theorem 4.1. From Lemma 4.3, there exist renormalized solutions u,, u;, to
problems

_Apun +goun = Uin — H2n in Q
Uy =0 on 01},
and )
—ApUin + GO Ui = lin in
Ui =0 on 012,

i = 1,2 such that {u;,} is nonnegative and increasing and they satisfy

—eas Wi B D 15](2) < —ug () < un(2) < ugn(@) < caW 5" P )(z)  (4.25)

a.e. in Q. As in the proof of Lemma 4.3, up to the same subsequence, {u1,n}, {u2,}
and {u,} converge to uj, uz and u a.e. in §. Since g o u;, are increasing, positive and

g o U pdr < p;n () < (), it follows from the monotone convergence theorem that
Q

{g ou;n} converges to g ow; in L*(). Finally, since |gou,| < gous + gous, {gouy,}
converges to gou in L*(2) by dominated convergence. Applying Corollary 3.5 we conclude
that v is a renormalized solution of (4.16 ) and that (4.17 ) holds. O

4.2 Proofs of Theorem 1.1 and Theorem 1.2

We are now in situation of proving the two theorems stated in the introduction.

Proof of Theorem 1.1. 1- Since pu is absolutely continuous with respect to the capacity
, uT and p~ share this property. By Theorem 2.6 there exist two

P NG DY T
increasing sequences {u1,} and {p1,,} of positive bounded measures with compact sup-
port in Q which converge to u™ and p~ respectively and which have the property that

WL [1in] € L%’q(RN), for i = 1,2 and all n € N. Furthermore, with R = diam (Q),
00 « . q
[ e Witlsal@) do < [ () 0 (Wiklen))” ) "
RN 0
1 * q
<ef = ((Wiklne))" ©)"
0

< ¢ Wil

(4.26)

Ngq
N-8 ’Q(RN)

< Q.
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Then the result follows from Theorem 4.1.

2- Because p is absolutely continuous with respect to the capacity C Ng 1
P Ng=Gp-D(N=-8)"

pt and p~. Applying again Theorem 2.6there exist two increasing sequences {u1,,} and
{p1,n} of positive bounded measures with compact support in € which converge to p and

, SO are

1~ respectively and such that Wfp[ui,n] € LNN_*qﬂ’l(RN ). This implies in particular

(W2, () (0) < et ™ 5o, Ve 0, (4.27)

for some ¢ > 0. Therefore, by Theorem 2.3,

/RN ﬁg (c2 W3R 115 0] (2)) da < /

0

() O (e (W3Slesn)" 0)

12l q

< [ o (o (WES) 1))

l 4 (4.28)
S/ —9g (ccmt Ngq )dt
0. tN
< g(t)t—a=tdt
< 00,
where a > 0 depends on ||, ccaa, N, 8, ¢. Thus the result follows by Theorem 4.1. O

Proof of Theorem 1.2. Again we take R = diam (). We define y; , = T, (1q, fi) + 1, Vi
(i = 1,2). Then {1} and {u2,} are increasing sequences of elements of MY (€2) with
compact support, and they converge to u* and u~ respectively. Since for any ¢ > 0 there
exists C¢ > 0 such that

(W2E[T, (10, i) + 1o,1]) < ConvT + (14 €) (W2 L))", (4.29)
a.e. in €, it follows
A A
exp (T (W%Z[Tn(lgn fi) + 1q, 1/1]) ) < Cepexp (T(l +e€) (W%z[m]) ) ) (4.30)
If there holds

pln2 )p*l
. , (4.31)
L (Q) (7(18/\K)’\

we can choose € > 0 small enough so that

(p=1)(3=1)
p,2R vi]

apln?2

(p=1H)(A=1)

(B Vi @

7(1+€)K* <

L>=(Q)

Hence, by Theorem 2.4 with n = w, exp (T(l +¢€) (KW%Z[W])/\) € L'(Q), which

implies

. A
exp (T (KW%Z[Tn(lgn fi) + 1q, yi]))\) = exp (T (KW?flgam ) [,uln]) ) € LI(Q).

27



We conclude by Theorem 4.1. O
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