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Abstract

In this supplement, we present an oracle inequality for the performance
of least-squares estimates in the context of bounded regression. The
proof follows the lines devised Koltchinskii (2006). Here, focus has been
put on keeping track of the dependence on some constants of the prob-
lem, which was crucial for the results of the paper Paris (2013a).
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1 Main result

Let X be a metric space, let P be a probability measure on X × R and let
(X, Y ) be an X ×R-valued random variable. The regression function f ? of Y
given X is defined for x ∈ X by

f ?(x) = E (Y |X = x) . (1.1)

In this supplement, we study the least-squares estimation of f ? based on a
given class F of real functions defined on X . For some L > 0, it will be
assumed that each f ∈ F satisfies

sup
x∈X
|f(x)| ≤ L. (1.2)

Let (X1, Y1), . . . , (Xn, Yn) be a sample of n i.i.d. random variables with
same distribution P as (X, Y ). The least-squares estimate fn of f ? based on
F is defined as any random element in F satisfying

fn ∈ arg min
f∈F

1

n

n∑
i=1

(Yi − f(Xi))
2 . (1.3)

Implicitly, it will be assumed that such an element exists. The performance of
fn will be measured in terms of the mean squared error

E‖fn − f ?‖2 = E
∫
X

(fn − f ?)2dµ, (1.4)

where µ stands for the distribution of X, and shown to be related to the metric
entropy of F . For any probability measureQ on X , and all u > 0, we recall that
the u-covering number of F in L2(Q), denoted N(u,F ,L2(Q)), is the minimal
number of metric balls with radius u that are needed to cover F in L2(Q).
Then, the u-metric entropy of F in L2(Q) is defined by H(u,F ,L2(Q)) =
lnN(u,F ,L2(Q)). We introduce

H (u,F) = sup
Q

H
(
u,F ,L2(Q)

)
, (1.5)

where the supremum is taken over all probability measures Q with finite sup-
port in X . As far as we know, the idea of considering a uniform version of the
metric entropy, such as H(.,F), goes back to Koltchinskii (1981) and Pollard
(1982). We are now in position to state the main result of this appendix.

Theorem 1.1 (Koltchinskii, 2006). Suppose that |Y | ≤ T and that there exist
two constants A > 0 and 0 < s < 2 such that, for all u > 0, H(u,F) ≤ Au−s.
Then, there exists a constant C depending only on s and A such that, for all
ε ∈ (0, 1],

E‖fn − f ?‖2 ≤ (1 + ε) inf
f∈F
‖f − f ?‖2 + Cε−

2−s
2+s

(
b

n

) 2
2+s

+
Cb

εn
,

where b = (T + L)2.
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A few remarks are in order. Theorem 1.1 provides an oracle inequality for
the performance of the least-squares estimate based on the class F . It shows
that up to some error term of order n−2/(2+s), the least-squares estimate fn
performs almost as well as if an oracle gave us the best possible approximation
of f ? in F . In particular, we deduce that when F is chosen such that the
approximation error vanishes, i.e., when

inf
f∈F
‖f − f ?‖2 = 0,

then the rate of convergence of fn towards f ? is precisely n−2/(2+s). Regression
estimation with respect to the mean squared error has been widely studied and
Theorem 1.1 is well known in essence. Important references on that subject
may be found in van de Geer (1999); Kohler (2000); Baraud (2002); Györfi
et al. (2002); Kohler et al. (2009) and Tsybakov (2009). The problem of the
approximation properties of the class F will not be discussed here and we refer
the reader to the papers by Cucker and Smale (2001) and DeVore et al. (2006)
for a thorough study of that topic.

2 Outline of the proof

Theorem 1.1 follows from a general bound for the excess risk of empirical risk
minimizers exposed in Koltchinskii (2006) and Koltchinskii (2011). In this
appendix, we have focused on keeping track of the dependence on the constant
T which was crucial in the proof of results in Paris (2013a). In this section we
describe the main arguments of the proof.

2.1 Bias-variance decomposition

Let ` be the loss function defined by

`(u, y) = (y − u)2.

For all f ∈ L2(µ), we denote ` • f the function defined on X × [−T, T ] by

` • f(x, y) = `(f(x), y).

It may be easily verified that

E‖fn − f ?‖2 = EP (` • fn − ` • f ?)

= inf
f∈F
‖f − f ?‖2 + E

[
P (` • fn)− inf

f∈F
P (` • f)

]
. (2.1)

The first term on the right side of (2.1) is usually referred to as the approx-
imation error (or bias) and measures how far is f ? from its best possible ap-
proximation in F . The second term, referred to as the estimation error (or
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variance), measures how well the estimate fn behaves compared to the best
possible approximation of f ? in F . Hence, if for all g ∈ F we denote its excess
risk by

R(g) = P (` • g)− inf
f∈F

P (` • f) ,

we obtain the so called bias-variance decomposition

E‖fn − f ?‖2 = inf
f∈F
‖f − f ?‖2 + ER(fn). (2.2)

Since R(fn) is a positive random variable, we have

ER(fn) =

∫ +∞

0

P
(
R(fn) > u

)
du,

so that finally, one may reduce the problem of finding a bound on the mean
squared error of fn to that of deriving bounds for the probabilities

P
(
R(fn) > u

)
, u > 0.

2.2 A fixed-point argument

The main observation, made in particular in Koltchinskii (2006), is basically
that the excess risk of the least-squares estimate can be linked to the increments
of the empirical process in a specific way. To get into more details we will need
some notations. For all δ > 0, let F(δ) be the δ-minimal set of the excess risk
defined by

F(δ) = {f ∈ F : R(f) ≤ δ} ,

and set
L(δ) = {(` • f − ` • g) : f, g ∈ F(δ)} .

Let

Pn = n−1

n∑
i=1

δ(Xi,Yi)

be the empirical distribution of the sample (X1, Y1), . . . , (Xn, Yn). For any
class T of function defined on X × R, we denote

‖Pn − P‖T = sup
t∈T
|(Pn − P )t| .

We are now in position to state the fundamental observation.

Lemma 2.1. Let δ̂ = R(fn). Then,

δ̂ ≤ ‖Pn − P‖L(δ̂).
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This result motivates the following heuristic approach for bounding δ̂. Let
B(δ) be an explicit upper bound for ‖Pn − P‖L(δ) which holds uniformly for
all δ > 0 with high probability. Then, the largest solution to the fixed point
equation B(δ) = δ is an upper bound for δ̂ which holds with high probability.
This heuristic is made rigorous by the following general lemma.

Lemma 2.2. Let {V (δ) : δ ≥ 0} be nonnegative random variables such that
V (δ) ≤ V (δ′) for δ ≤ δ′. Let {B(δ, t) : δ ≥ 0, t ≥ 0} be real numbers such that

P (V (δ) ≥ B(δ, t)) ≤ e−t.

Let δ̂ be a nonnegative random variable, a priori upper bounded by a constant
δ̄ > 0, and such that δ̂ ≤ V (δ̂). Then, if for all t ≥ 0 we set

σt = inf

{
σ > 0 : sup

δ≥σ

B
(
δ, tδ

σ

)
δ

≤ 1

}
,

we obtain, for all t ≥ 0,

P
(
δ̂ ≥ σt

)
≤ e1−t.

Taking δ̂ = R(fn) (which is a priori upper bounded by (T +L)2) and denoting
V (δ) = ‖Pn − P‖L(δ), one would be in position to apply Lemma 2.2 if a set
{B(δ, t) : δ ≥ 0, t ≥ 0} of real numbers satisfying the requirements of the
lemma where available. The two following subsections are devoted to the
problem of finding such real numbers.

2.3 Concentration

A powerful means to derive bounds for ‖Pn−P‖L(δ) is Talagrand’s concentra-
tion inequality (see Talagrand, 1996). Bousquet’s inequality is an important
improvement of Talagrand’s concentration inequality where constants are ex-
plicit (see Bousquet, 2002). Bousquet’s concentration inequality states that,
for all b > 0, for any class T of [−b, b]-valued functions and for all t > 0,

P

(
‖Pn − P‖T ≥ E‖Pn − P‖T +

√
2t

n
(σ2(T ) + 4bE‖Pn − P‖T ) +

2bt

3n

)
≤ e−t,

where we have denoted

σ2(T ) = sup
t∈T

(
P t2 − (P t)2) .

An application of Bousquet’s inequality in our context allows to derive the
following result.

Lemma 2.3. For all δ > 0 and for all t > 0 we have

P

(
‖Pn − P‖L(δ) ≥ 2E‖Pn − P‖L(δ) + 4

√
b(δ +D)

2t

n
+

8bt

3n

)
≤ e−t,

where b = (T + L)2 and D = inff∈F ‖f − f ?‖2.
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2.4 Bounding the supremum of the empirical process

The last step for constructing a set {B(δ, t) : δ ≥ 0, t ≥ 0} of real number
satisfying the requirements of Lemma 2.2 is to bound the expected supremum
of the empirical process

E‖Pn − P‖L(δ),

appearing in the bound of Lemma 2.3. The main tools for achieving this task
are the symmetrization principle combined to the bounds exposed in Giné and
Koltchinskii (2006) for the expected supremum of Rademacher processes. An
account of these results may also be found in Paris (2013b). The result we will
need is the following. In the sequel, the notation x∨y stands for the maximum
of x and y.

Lemma 2.4. Suppose there exist constants 0 < s < 2 and A > 0 such that,
for all u > 0, we have H(u,F) ≤ Au−s. Then, there exists a constant C
depending only on s and A such that, for all δ > 0,

E‖Pn − P‖L(δ) ≤ C

[√
b(δ +D)(2−s)/4
√
n

∨ b(δ +D)−s/2

n
∨ b(δ +D)−s/4

n

]
,

where b = (T + L)2 and D = inff∈F ‖f − f ?‖2.

We mention that an explicit value for C is available in the proof. We are now
in position to present the proof of Theorem 1.1 based on this outline.

3 Proof of Theorem A.1.1

First, let us prove that there exists a constant C > 0, depending only on s and
A, such that, for all t ≥ 0 and for all ε ∈ (0, 1],

P

(
R(fn) ≥ εD + Cε−

2−s
2+s

(
b

n

) 2
2+s

∨ Ct
ε

(
b

n

))
≤ e1−t, (3.1)

where b = (T + L)2 and D = inff∈F ‖f − f ?‖2. To that aim, let t > 0 and
ε ∈ (0, 1] be fixed. In the proof, C > 0 will denote a constant depending
only on s and A and which value may change from line to line. According to
Lemmas 2.2, 2.3 and 2.4, we obtain

P (R(fn) ≥ σn,t) ≤ e1−t,

where,

σn,t = inf

{
σ > 0 : sup

δ≥σ

Bn

(
δ, tδ

σ

)
δ

≤ 1

}
,
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with

Bn

(
δ,
tδ

σ

)
= C

[√
b(δ +D)(2−s)/4
√
n

∨ b(δ +D)−s/2

n
∨ b(δ +D)−s/4

n

]

+ C

[√
b(δ +D)

tδ

nσ
+
btδ

nσ

]
.

If σn,t ≤ εD, then (3.1) is obvious. Therefore, equation (3.1) needs only to
proved for σn,t > εD. Fix σ > σn,t > εD. Then, for all δ ≥ σ,

√
b(δ +D)(2−s)/4
√
n

∨ b(δ +D)−s/2

n
∨ b(δ +D)−s/4

n

=

√
bδ(2−s)/4 (1 + D

δ

)(2−s)/4

√
n

∨
bδ−s/2

(
1 + D

δ

)−s/2
n

∨
bδ−s/4

(
1 + D

δ

)−s/4
n

≤
√
bδ(2−s)/4 (1 + 1

ε

)(2−s)/4

√
n

∨
bδ−s/2

(
1 + 1

ε

)−s/2
n

∨
bδ−s/4

(
1 + 1

ε

)−s/4
n

≤ 2

√
b

n

(
δ

ε

)(2−s)/4

∨ bδ
−s/2

n
∨ bδ

−s/4

n
.

Also, for all δ ≥ σ, √
b(δ +D)

tδ

nσ
≤
√

2btδ2

εnσ
.

As a result, for all σ > σn,t,

sup
δ≥σ

Bn

(
δ, tδ

σ

)
δ

≤ C

[ √
b

ε(2−s)/4σ(2+s)/4
√
n
∨ b

nσ(2+s)/2
∨ b

nσ(4+s)/4

]

+ C

[√
bt

εnσ
+

bt

nσ

]
=: h1(σ) + h2(σ).

By monotonicity, this implies

σn,t ≤ inf
{
σ > 0 : h1(σ) + h2(σ) ≤ 1

}
.

Since both h1 and h2 are nonincreasing, it may be easily verified that

inf
{
σ : h1(σ) + h2(σ) ≤ 1

}
≤ inf

{
σ : h1(σ) ≤ 1

2

}
∨ inf

{
σ : h2(σ) ≤ 1

2

}
,

where

inf
{
σ : h1(σ) ≤ 1

2

}
≤ C

ε(2−s)/(2+s)

(
b

n

)2/(2+s)

,

and

inf
{
σ : h2(σ) ≤ 1

2

}
≤ Cbt

εn
.
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Finally, for some constant C depending only on s and A,

σn,t ≤ C

[
1

ε(2−s)/(2+s)

(
b

n

)2/(2+s)

∨ bt

εn

]
,

which completes the proof of equation (3.1).

To complete the proof of Theorem 1.1, we proceed as follows. The bias-
variance decomposition

E‖fn − f ?‖2 = D + ER(fn)

shows that we only need to prove that

ER(fn) ≤ εD + Cε−
2−s
2+s

(
b

n

) 2
2+s

+
Cb

εn
.

According to (3.1), for all u > 0,

P (R(fn) ≥ u) ≤ C exp

(
−nε
Cb

[
u− εD − Cε−

2−s
2+s

(
b

n

) 2
2+s

])
.

Hence, denoting

Aε,n = εD + Cε−
2−s
2+s

(
b

n

) 2
2+s

,

we deduce that

ER(fn) =

∫ +∞

0

P (R(fn) ≥ u) du

=

∫ Aε,n

0

P (R(fn) ≥ u) du+

∫ +∞

Aε,n

P (R(fn) ≥ u) du

≤ Aε,n +

∫ +∞

Aε,n

P (R(fn) ≥ u) du

≤ Aε,n + C

∫ +∞

Aε,n

exp
(
−nε
Cb
{u− Aε,n}

)
du

= Aε,n + C

∫ +∞

0

exp
(
−nεu
Cb

)
du

= εD + Cε−
2−s
2+s

(
b

n

) 2
2+s

+
Cb

εn
.

This concludes the proof. �
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4 Proofs of the technical results

4.1 Proof of Lemma 2.1

Let ε > 0 be such that 0 < ε ≤ δ̂, and let f ′ be arbitrarily chosen in F(ε).
Then, we have

δ̂ = P (` • fn)− inf
f∈F

P (` • f)

≤ P (` • fn − ` • f ′) + ε

= (P − Pn) (` • fn − ` • f ′) + Pn (` • fn − ` • f ′) + ε.

We deduce from the definition of fn that Pn (` • fn − ` • f ′) ≤ 0 which leads
to

δ̂ ≤ (P − Pn) (` • fn − ` • f ′) + ε

≤ ‖P − Pn‖L(δ̂) + ε.

Since this inequality holds for arbitrary ε > 0, the result follows by taking
ε ↓ 0. �

4.2 Proof of Lemma 2.2

The bound is obvious if t ≤ 1. Therefore, we will assume t > 1. The proof
will be divided into two steps.

Step 1. Let δj, j ≥ 0 be a decreasing sequence of positive numbers with
δ0 = δ̄ and let tj, j ≥ 0 be a sequence of positive numbers. For all δ ≥ 0,
denote

B̄(δ) =
+∞∑
j=0

B (δj, tj) 1 {δj+1 < δ ≤ δj} ,

and set
δ∗ = sup

{
δ ≥ 0 : δ ≤ B̄(δ)

}
.

The goal of this first step is to prove that

∀δ ≥ δ∗ : P
(
δ̂ ≥ δ

)
≤
∑
δj≥δ

e−tj .

Fix δ > δ∗. If for all j ≥ 0, we denote Ej =
{
V (δj) ≤ B̄(δj)

}
and

E =
⋂
δj≥δ

Ej,

it may be easily verified that

P(E) ≥ 1−
∑
δj≥δ

e−tj .
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On the event E, for all δ′ ≥ δ we have V (δ′) ≤ B̄(δ′) by monotonicity of V
and by definition of B̄. Thus, on the event {δ̂ ≥ δ} ∩ E we obtain

δ̂ ≤ V (δ̂) ≤ B̄(δ̂),

which implies that δ ≤ δ̂ ≤ δ∗. Since this contradicts δ > δ∗, we deduce that
{δ̂ ≥ δ} ⊂ Ec which implies that

P
(
δ̂ ≥ δ

)
≤
∑
δj≥δ

e−tj .

By continuity, this also holds for δ = δ∗.

Step 2. Fix σ > σt. Then, for all δ ≥ 0, let

B̄σ(δ, t) =
+∞∑
j=0

B

(
δ̄

2j
,
tδ̄

σ2j

)
1

{
δ̄

2j+1
< δ ≤ δ̄

2j

}
.

It may be easily verified that

B̄σ(σ, t)

σ
≤ sup

δ≥σ

B
(
δ, tδ

σ

)
δ

≤ 1,

which implies that

σ ≥ δ∗t = sup
{
δ ≥ 0 : δ ≤ B̄σ(δ, t)

}
.

Then, according to step 1, we deduce that

P
(
δ̂ ≥ σ

)
≤
∑
δ̄

2j
≥σ

e−
tδ̄

σ2j .

The sum on the right hand side may be bounded as follows. Let

j∗ = max

{
j ≥ 0 :

δ̄

2j
≥ σ

}
.

Then ∑
δ̄

2j
≥σ

e−
tδ̄

σ2j =

j∗∑
j=0

e−
tδ̄

σ2j ≤
+∞∑
j=0

e−t2
j

,

and

+∞∑
j=0

e−t2
j ≤ e−t +

+∞∑
j=1

(2j − 2j−1)e−t2
j ≤ e−t +

∫ +∞

1

e−tudu ≤ 2e−t.

Finally, we have proved that for all t ≥ 0 and for all σ > σt we have

P (û ≥ σ) ≤ e1−t.

The result follows by continuity. �
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4.3 Proof of Lemma 2.3

Let δ > 0 be fixed. For all f ∈ F we have 0 ≤ ` • f ≤ b. Therefore, L(δ) is a
class of [−b, b]-valued functions. Denote for simplicity V = ‖Pn − P‖L(δ) and

σ2 = σ2(L(δ)). Using the inequalities
√
a+ b ≤

√
a +
√
b and 2

√
uv ≤ u + v,

for u, v ≥ 0, we obtain that

EV +

√
2t

n
(σ2 + 4bEV ) +

2bt

3n
≤ 2EV + σ

√
2t

n
+

8bt

3n
.

As a result, we deduce from Bousquet’s inequality that

P

(
V ≥ 2EV + σ

√
2t

n
+

8bt

3n

)
≤ e−t.

It remains only to prove that σ ≤ 4
√
b(δ +D). To that aim, observe that for

any f ∈ F we have

P (` • f − ` • f ?)2 = E
[(

(Y − f(X))2 − (Y − f ?(X))2)2
]

= E
[
(2Y − f(X)− f ?(X))2 (f(X)− f ?(X))2]

≤ 4b E (f(X)− f ?(X))2

= 4b P (` • f − ` • f ?)
= 4b(R(f) +D).

Then, for all f, g ∈ F(δ), we have√
P (` • f − ` • g)2 ≤

√
P (` • f − ` • f ?)2 +

√
P (` • g − ` • f ?)2

≤ 4
√
b(δ +D).

Finally, we have proved that

σ ≤ sup
t∈L(δ)

√
P t2 ≤ 4

√
b(δ +D).

The proof is complete. �

4.4 Proof of Lemma 2.4

For simplicity, we assume that there exists f̄ ∈ F such that

P
(
` • f̄

)
= inf

f∈F
P (` • f) .

From the proof of Lemma 2.3, it results that for all δ > 0 and for all functions
f, g ∈ F(δ) we have

P (` • f − ` • g)2 ≤ 16b(δ +D).

11



Therefore, for all δ > 0, we have

E‖Pn − P‖L(δ) ≤ 2E sup
{∣∣(Pn − P )(` • f − ` • f̄)

∣∣ : f ∈ F(δ)
}

≤ 2θn (16b(δ +D)) , (4.1)

where we have denoted

θn(δ) = E sup
{∣∣(Pn − P )(` • f − ` • f̄)

∣∣ : f ∈ F , P (` • f − ` • f̄)2 ≤ δ
}
.

Let σ1, . . . , σn be a sequence of independent Rademacher random variables
(i.e. P(εi = ±1) = 1/2) independent from our sample. Then, according to
the symmetrization inequality (see, e.g., Theorem 2.1 in Koltchinskii, 2011)
we have

θn(δ) ≤ 2E sup
t∈L̄(δ)

|P σ
n t| , (4.2)

with
L̄(δ) =

{
(` • f − ` • f̄) : f ∈ F , P (` • f − ` • f̄)2 ≤ δ

}
,

and

P σ
n t =

1

n

n∑
i=1

σit(Xi, Yi).

Since for all functions f, g ∈ F ,

P (` • f − ` • g)2 ≤ 4b‖f − g‖2,

we deduce that, for all u > 0 and for all δ > 0,

H
(
u, L̄(δ)

)
= H

(
u,
{
` • f : P (` • f − ` • f̄)2 ≤ δ

})
≤ H (u, {` • f : f ∈ F})

≤ H
(

u
2
√
b
,F
)

≤ A
(

2
√
b

u

)s
.

Hence, Theorem 3.12 in Koltchinskii (2011) (or Corollary B.2.2 in Paris, 2013b)
yields

E sup
t∈L̄(δ)

|P σ
n t| ≤ Cbs/4δ(2−s)/4

√
n

∨ 8C2b(2+s)/2δ−s/2

n
∨ Cb

(4+s)/4δ−s/4

3e2n
, (4.3)

where C = 576
√

2sA/(2−s). Combining (4.1), (4.2) and (4.3) we deduce that,
for all δ > 0,

E‖Pn − P‖L(δ) ≤
c1

√
b(δ +D)(2−s)/4
√
n

∨ c2b(δ +D)−s/2

n
∨ c3b(δ +D)−s/4

n
,

where c1 = 4C16(2−s)/4, c2 = 32C216−s/2 and c3 = 4C16−s/4/3e2. This con-
cludes the proof. �
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