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1 Presentation
Let (X ,Y ) be an X ×R-valued random variable of distribution P where X de-
notes a metric space. We fix T > 0 and assume that |Y | ≤ T . Let µ be the distri-
bution of X . For x ∈X we set

f∗(x) := E(Y |X = x). (1.1)

Let L > 0 be fixed and F be a given class of functions f : X → R such that

sup
x∈X
| f (x)| ≤ L. (1.2)

Let (X1,Y1), . . . ,(Xn,Yn) be a sample of n independent and identically distributed
random variables with distribution P. The least-squares estimate fn of f∗ is defined
as any random element in F satisfying

fn ∈ argmin
f∈F

1
n

n

∑
i=1

(Yi− f (Xi))
2 .

Implicitly, it will be assumed that such an element exists. For any Borel probabil-
ity measure ν on X , and all ρ > 0, we denote H(ρ,F ,ν) the ρ-metric entropy of
F in L2(ν) (i.e. the logarithm of the minimal number of metric balls with radius
ρ that are needed to cover F in L2(ν)). We define

H(ρ,F ) := sup
ν

H(ρ,F ,ν), (1.3)

where the supremum is taken over all probability measures ν with finite support
in X .

Theorem 1.1. Let 0 < s < 2 and assume there exists A > 0 such that for all ρ > 0
we have H(ρ,F )≤ Aρ−s. Then, there exists a constant C depending only on s, A
and L such that for all ε ∈ (0,1] we have

E‖ fn− f∗‖2
µ ≤ (1+ ε) inf

f∈F
‖ f − f∗‖2

µ +Cε
− 2−s

2+s

(
b
n

) 2
2+s

+
C
ε

(
b
n

)
,

where b := (T +L)2 and where ‖.‖2
µ :=

∫
|.|2dµ .



2 Technical results
The outline of the proof follows Koltchinskii’s approach for bounding the excess
risk of empirical risk minimizers (for a detailed exposition of that topic, see e.g.
Koltchinskii, 2006, or Chapter 4 in Koltchinskii, 2011 and the references cited
therein).

Let ` be the loss function defined by

`(u,z) := (z−u)2.

For all f ∈ L2(µ), we denote `• f the function defined on X × [−T,T ] by

`• f (x,z) := `( f (x),z).

It may be easily verified that

‖ fn− f∗‖2
µ =

∫
(`• fn− `• f∗)dP

=

(∫
`• fn dP− inf

f∈F

∫
`• f dP

)
+ inf

f∈F
‖ f − f∗‖2

µ . (2.1)

The first term in parenthesis on the right side of (2.1) is usually referred to as
the estimation error and measures how well the estimate fn behaves compared to
the best possible approximation of f∗ in F . The second term, referred to as the
approximation error, measures how far f∗ is from its best possible approximation
in F . Hence, if for all g ∈F we denote its excess risk by

R(g) :=
∫

`•g dP− inf
f∈F

∫
`• f dP,

we obtain the so called bias-variance decomposition

E‖ fn− f∗‖2
µ = ER( fn)+ inf

f∈F
‖ f − f∗‖2

µ . (2.2)

Since R( fn) is a positive random variable, we have

ER( fn) =
∫ +∞

0
P
(
R( fn)> u

)
du,

so that finally, one may reduce the problem of finding a bound on the mean squared
error of fn to that of deriving bounds for the probabilities

P
(
R( fn)> u

)
, u > 0.



To achieve this task, we follow the lines devised in Koltchinskii (2006). For all
δ > 0, let F (δ ) be the δ -minimal set of the excess risk defined by

F (δ ) :=
{

f ∈F : R( f )≤ δ

}
.

For any class T of function defined on X ×R, denote

‖Pn−P‖T := sup
t∈T

∣∣∣∫ t d(Pn−P)
∣∣∣,

where Pn := n−1
∑

n
i=1 δ(Xi,Yi) stands for the empirical distribution of the sample

(X1,Y1), . . . ,(Xn,Yn). For all δ > 0, set finally

L (δ ) :=
{
(`• f − `•g) : f ,g ∈F (δ )

}
.

Then, it may be easily verified that δ̂ := R( fn) satisfies

δ̂ ≤ ‖Pn−P‖L (δ̂ )
.

As a result, given an upper bound Un(δ ) for ‖Pn−P‖L (δ ) which holds with high
probability uniformly over all δ > 0, we can bound the excess risk R( fn) with
high probability by the largest δ > 0 satisfying δ ≤ Un(δ ). A powerful means
to derive such bounds for ‖Pn−P‖L (δ ) is Talagrand’s concentration inequality
(see Talagrand, 1996). Bousquet’s inequality is an important improvement of
Talagrand’s concentration inequality where constants are explicit (see Bousquet,
2002). Bousquet’s concentration inequality states that for all b > 0 and for any
class T of [−b,b]-valued functions, we have for all t > 0

P

(
‖Pn−P‖T ≥ E‖Pn−P‖T +

√
2t
n
(σ2(T )+4bE‖Pn−P‖T )+

2bt
3n

)
≤ e−t ,

where we have denoted

σ
2(T ) := sup

t∈T

(∫
t2dP−

(∫
t dP

)2
)
.

An application of Bousquet’s inequality in our context allows to derive the fol-
lowing result.



Lemma 2.1. For all δ > 0 and for all t > 0 we have

P

(
‖Pn−P‖L (δ ) ≥ 2E‖Pn−P‖L (δ )+4

√
b(δ +∆)

2t
n
+

8bt
3n

)
≤ e−t ,

where b := (T +L)2 and ∆ := inf f∈F ‖ f − f∗‖2
µ .

Proof – For all f ∈ F we have 0 ≤ ` • f ≤ b. Therefore, L (δ ) is a class of
[−b,b]-valued functions. Denoting V := ‖Pn−P‖L (δ ) and using the inequalities√

a+b≤
√

a+
√

b and 2
√

uv≤ u+ v, for u,v≥ 0, we obtain that

EV +

√
2t
n
(σ2(L (δ ))+4bEV )+

2bt
3n
≤ 2EV +σ(L (δ ))

√
2t
n
+

8bt
3n

.

As a result, we deduce from Bousquet’s inequality that

P

(
V ≥ 2EV +σ(L (δ ))

√
2t
n
+

8bt
3n

)
≤ e−t .

It remains only to prove that σ(L (δ ))≤ 4
√

b(δ +∆). To that aim, observe that
for any f ∈F we have∫

(`• f − `• f∗)2dP = E
(
(Y − f (X))2− (Y − f∗(X))2

)2

= E(2Y − f (X)− f∗(X))2 ( f (X)− f∗(X))2

≤ 4b E( f (X)− f∗(X))2

= 4b
∫
(`• f − `• f∗)dP

= 4b(R( f )+∆).

Then, for all f ,g ∈F (δ ), we have√∫
(`• f − `•g)2dP ≤

√∫
(`• f − `• f∗)2dP+

√∫
(`•g− `• f∗)2dP

≤ 4
√

b(δ +∆),

Finally, we have proved that

σ(L (δ ))≤ sup
t∈L (δ )

√∫
t2dP≤ 4

√
b(δ +∆).

The proof is complete. �



Lemma 2.2. Let 0 < s < 2 and assume there exists A > 0 such that for all ρ > 0
we have H(ρ,F )≤ Aρ−s. Then, there exists a constant C depending only on s, A
and L such that for all δ > 0 we have

E‖Pn−P‖L (δ ) ≤C

{√
b(δ +∆)(2−s)/4

√
n

∨ (δ +∆)−s/2

n

}
,

where b := (T +L)2 and ∆ := inf f∈F ‖ f − f∗‖2
µ .

Proof – For simplicity, we assume that there exists f̄ ∈F such that∫
`• f̄ dP = inf

f∈F

∫
`• f dP.

From the proof of Lemma 2.1, it results that for all δ > 0 and for all functions
f ,g ∈F (δ ) we have ∫

(`• f − `•g)2dP≤ 16b(δ +∆).

Therefore, for all δ > 0, we have

E‖Pn−P‖L (δ ) ≤ 2Esup
{ ∣∣∣∫ (`• f − `• f̄ )d(Pn−P)

∣∣∣ : f ∈F (δ )

}
≤ 2θn (16b(δ +∆)) , (2.3)

where we have denoted

θn(δ ) :=Esup
{∣∣∣∫ (`• f − `• f̄ )d(Pn−P)

∣∣∣ : f ∈F ,
∫
(`• f − `• f̄ )2dP≤ δ

}
.

Let ε1, . . . ,εn be a sequence of independent Rademacher random variables (i.e.
P(εi = 1) = P(εi = −1) = 1/2) independent from our sample. Then, according
to the symmetrization inequality (see e.g. Theorem 2.1 in Koltchinskii, 2011) we
have

θn(δ )≤ 2E sup
t∈L̄ (δ )

∣∣∣∫ t dP◦n
∣∣∣, (2.4)

with

L̄ (δ ) :=
{
(`• f − `• f̄ ) : f ∈F ,

∫
(`• f − `• f̄ )2dP≤ δ

}
,



and ∫
t dP◦n :=

1
n

n

∑
i=1

εit(Xi,Zi).

Since for all functions f ,g ∈F we have∫
(`• f − `•g)2dP≤ 4b‖ f −g‖2

µ ,

we deduce that for all u > 0 and for all δ > 0 we have

H
(
u,L̄ (δ )

)
= H

(
u,
{
`• f :

∫
(`• f − `• f̄ )2dP≤ δ

})
≤ H

(
u,
{
`• f : f ∈F

})
≤ H

(
u

2
√

b
,F
)

≤ A
(

2
√

b
u

)s
.

Hence, Theorem 3.12 in Koltchinskii (2011) yields that we have

E sup
t∈L̄ (δ )

∣∣∣∫ t dP◦n
∣∣∣≤ K

{
bs/4δ (2−s)/4
√

n
∨ bs/2δ−s/2

n

}
, (2.5)

where K > 0 denotes a constant depending only on s, A and L. Combining (2.3),
(2.4) and (2.5) we deduce that for all δ > 0 we have

E‖Pn−P‖L (δ ) ≤C

{√
b(δ +∆)(2−s)/4

√
n

∨ (δ +∆)−s/2

n

}
,

where C > 0 denotes a constant depending only on s, A and L. This concludes the
proof. �

Lemma 2.3. Let V (u),u≥ 0 be non-negative random variables such that V (u)≤
V (u′) if u≤ u′ and B(u, t),u≥ 0, t ≥ 0 be real numbers such that

P(V (u)≥ B(u, t))≤ e−t .

Let û be a non-negative random variable a priori upper bounded by a constant
ū > 0 and such that û≤V (û). Then for all t ≥ 0 we have

P

(
û≥ inf

{
σ > 0 : sup

u≥σ

B
(
u, tu

σ

)
u

≤ 1

})
≤ 3e−t .



Proof – The bound is obvious if t ≤ 1. Therefore, we will assume t ≥ 1. The
proof will be divided in two steps.

Step 1. Let u j, j≥ 0 be a decreasing sequence of positive numbers with u0 = ū
and let t j, j ≥ 0 be a sequence of positive numbers. For all u≥ 0, denote

B̄(u) :=
+∞

∑
j=0

B
(
u j, t j

)
1
{

u j+1 < u≤ u j
}
,

and set
u∗ := sup{u≥ 0 : u≤ B̄(u)} .

The goal of this first step is to prove that

∀u≥ u∗ : P(û≥ u)≤ ∑
u j≥u

e−t j .

Fix u > u∗. If for all j ≥ 0, we denote E j :=
{

V (u j)≤ B̄(u j)
}

and

E :=
⋂

u j≥u
E j,

it may be easily verified that

P(E)≥ 1− ∑
u j≥u

e−t j .

On the event E, for all u′ ≥ u we have V (u′)≤ B̄(u′) by monotonicity of V and by
definition of B̄. Thus, on the event {û≥ u}∩E we obtain

û≤V (û)≤ B̄(û),

which implies that u ≤ û ≤ u∗. Since this contradicts u > u∗, we deduce that
{û≥ u} ⊂ Ec which implies that

P(û≥ u)≤ ∑
u j≥u

e−t j .

By continuity, this also holds for u = u∗.



Step 2. Denote

σt := inf

{
σ > 0 : sup

u≥σ

B
(
u, tu

σ

)
u

≤ 1

}
,

and fix σ > σt . Then, for all u≥ 0, let

B̄σ (u, t) :=
+∞

∑
j=0

B
(

ū
2 j ,

tū
σ2 j

)
1
{

ū
2 j+1 < u≤ ū

2 j

}
.

It may be easily verified that

B̄σ (σ , t)
σ

≤ sup
u≥σ

B
(
u, tu

σ

)
u

≤ 1,

which implies that

σ ≥ u∗t := sup{u≥ 0 : u≤ B̄σ (u, t)} .

Then, according to step 1, we deduce that

P(û≥ σ)≤ ∑
ū

2 j≥σ

e−
tū

σ2 j .

The sum on the right hand side may be bounded as follows. Let

j∗ := max
{

j ≥ 0 :
ū
2 j ≥ σ

}
.

Then

∑
ū

2 j≥σ

e−
tū

σ2 j =
j∗

∑
j=0

e−
tū

σ2 j ≤
+∞

∑
j=0

e−t2 j

and
+∞

∑
j=0

e−t2 j
≤ e−t +

+∞

∑
j=1

(2 j−2 j−1)e−t2 j
≤ e−t +

∫ +∞

1
e−tudu≤ 2e−t .

Finally, we have proved that for all t ≥ 0 and for all σ > σt we have

P(û≥ σ)≤ 3e−t .

The result follows by continuity. �



Lemma 2.4. Let 0 < s < 2 and assume there exists A > 0 such that for all ρ > 0
we have H(ρ,F )≤ Aρ−s. Then, there exists a constant C > 0 depending only on
s, A and L such that for all t ≥ 0 and for all ε ∈ (0,1] we have

P

(
R( fn)≥ ε inf

f∈F
‖ f − f∗‖2

µ +

{
Cε
− 2−s

2+s

(
b
n

) 2
2+s

∨Ct
ε

(
b
n

)})
≤ 3e−t , (2.6)

where b := (T +L)2.

Proof – Let t > 0 and ε ∈ (0,1] be fixed. In the proof, C > 0 will denote a
constant depending only on s, A and L which value may change from line to line.
According to Lemmas 2.1, 2.2 and 2.3 we have that

P(R( fn)≥ σn,t)≤ 3e−t ,

where,

σn,t := inf

σ > 0 : sup
δ≥σ

Bn

(
δ , tδ

σ

)
δ

≤ 1

 ,

with

Bn

(
δ ,

tδ
σ

)
:=C

{√
b(δ +∆)(2−s)/4

√
n

∨ (δ +∆)−s/2

n

}
+C

{√
b(δ +∆)

tδ
nσ

+
btδ
nσ

}
.

If σn,t ≤ ε∆, then the bound is obvious. Therefore, we need only to prove the
result for σn,t > ε∆. Fix σ > σn,t > ε∆. Then for all δ ≥ σ we have

√
b(δ +∆)(2−s)/4

√
n

∨ (δ +∆)−s/2

n

=

√
bδ (2−s)/4 (1+ ∆

δ

)(2−s)/4

√
n

∨
δ−s/2 (1+ ∆

δ

)−s/2

n

≤
√

bδ (2−s)/4 (1+ 1
ε

)(2−s)/4

√
n

∨ δ−s/2

n

≤ 2

√
b
n

(
δ

ε

)(2−s)/4

∨ δ−s/2

n

Also, for all δ ≥ σ , we have√
b(δ +∆)

tδ
nσ
≤
√

2btδ 2

εnσ
.



Hence, we obtain that

sup
δ≥σ

Bn

(
δ , tδ

σ

)
δ

≤ C

{ √
b

ε(2−s)/4σ (2+s)/4√n
∨ 1

nσ (2+s)/2

}
+C

{√
bt

εnσ
+

bt
nσ

}
=: h1(σ)+h2(σ).

We deduce by monotonicity that

σn,t ≤ inf
{

σ > 0 : h1(σ)+h2(σ)≤ 1
}
.

For any two non-increasing functions h1,h2 : R+→ R+ it may be easily verified
that

inf
{

σ : h1(σ)+h2(σ)≤ 1
}
≤ inf

{
σ : h1(σ)≤ 1

2

}
∨ inf

{
σ : h2(σ)≤ 1

2

}
.

In our case we have

inf
{

σ : h1(σ)≤ 1
2

}
≤ C

ε(2−s)/(2+s)

(
b
n

)2/(2+s)

,

and
inf
{

σ : h2(σ)≤ 1
2

}
≤ Cbt

εn
.

Finally, for some constant C depending only on s, A and L we obtain

σn,t ≤C

{
1

ε(2−s)/(2+s)

(
b
n

)2/(2+s)

∨ bt
εn

}
.

The proof is complete. �

Proof of Theorem 1.1

Let ε ∈ (0,1]. According to the bias-variance decomposition (2.2), we need only
to prove that for a constant C > 0 depending only on s, A and L we have

ER( fn)≤ ε inf
f∈F
‖ f − f∗‖2

µ +Cε
− 2−s

2+s

(
b
n

) 2
2+s

+
C
ε

(
b
n

)
.



To that aim, note that (2.6) implies that there exists a constant C > 0 depending
only on s, A and L such that for all t > 0 we have

P

(
R( fn)≥ ε inf

f∈F
‖ f − f∗‖2

µ +Cε
− 2−s

2+s

(
b
n

) 2
2+s

+
Ct
ε

(
b
n

))
≤ 3e−t .

Therefore, for all u > 0, we obtain that

P(R( fn)≥ u)≤ 3exp

(
− nε

Cb

{
u− ε inf

f∈F
‖ f − f∗‖2

µ −Cε
− 2−s

2+s

(
b
n

) 2
2+s
})

.

Using the last inequality and bounding by 1 the probability P(R( fn)≥ u) for all
u > 0 satisfying

u≤ A(ε,n) := ε inf
f∈F
‖ f − f∗‖2

µ +Cε
− 2−s

2+s

(
b
n

) 2
2+s

,

we deduce that

ER( fn) =
∫ +∞

0
P(R( fn)≥ u)du

=
∫ A(ε,n)

0
P(R( fn)≥ u)du+

∫ +∞

A(ε,n)
P(R( fn)≥ u)du

≤ A(ε,n)+
∫ +∞

A(ε,n)
P(R( fn)≥ u)du

≤ A(ε,n)+
∫ +∞

A(ε,n)
3exp

(
− nε

Cb
{u−A(ε,n)}

)
du

= A(ε,n)+
∫ +∞

0
3exp

(
−nεu

Cb

)
du

= ε inf
f∈F
‖ f − f∗‖2

µ +Cε
− 2−s

2+s

(
b
n

) 2
2+s

+
3Cb
nε

.

This concludes the proof. �
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