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Abstract

In this paper, we address the problem of regression estimation in the
context of a p-dimensional predictor when p is large. We propose a gen-
eral model in which the regression function is a composite function. Our
model consists in a nonlinear extension of the usual sufficient dimension
reduction setting. The strategy followed for estimating the regression
function is based on the estimation of a new parameter, called the re-
duced dimension. We adopt a minimax point of view and provide both
lower and upper bounds for the optimal rates of convergence for the
estimation of the regression function in the context of our model. We
prove that our estimate adapts, in the minimax sense, to the unknown
value d of the reduced dimension and achieves therefore fast rates of
convergence when d� p.

Index Terms – Regression estimation, dimension reduction, minimax
rates of convergence, empirical risk minimization, metric entropy.
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1 Introduction

1.1 The curse of dimensionality in regression

From a general point of view, the goal of regression is to infer about the
conditional distribution of a real-valued response variable Y given an X -valued
predictor variable X where X ⊂ Rp. In the statistical framework, one usually
focuses on the estimation of the regression function

r(x) = E(Y |X = x), (1.1)

based on a sample (X1, Y1), . . . , (Xn, Yn) of n independent and identically dis-
tributed random variables with same distribution P as the generic random
couple (X, Y ).

A major issue in regression, known as the curse of dimensionality, is basi-
cally that the rates of convergence of estimates of the regression function are
slow when the dimension p of the predictor variable X is high. For instance,
if r is assumed to be β-Hölder and if r̂ refers to any classical estimate (say
a kernel, a nearest-neighbors or a least-squares estimate), the mean squared
error E (r̂(X)− r(X))2 of r̂ converges to 0 at the rate n−2β/(2β+p), which gets
slower as p increases. To get a deeper understanding of the problem, one may
refer to the minimax point of view. First, we recall the definition of optimal
rates of convergence in the minimax sense. Given a set D of distributions P
of the random couple (X, Y ), υn is said to be an optimal rate of convergence
in the minimax sense for D if it is a lower minimax rate, i.e.,

lim inf
n→+∞

υ−2
n inf

r̂
sup
P∈D

E (r̂(X)− r(X))2 > 0,
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where the infimum is taken over all estimates based on our sample, and if there
exists an estimate r̂ such that

lim sup
n→+∞

υ−2
n sup

P∈D
E (r̂(X)− r(X))2 < +∞.

Then, in a word, when D is taken as the set of all distributions P of the random
couple (X, Y ) for which r is β-Hölder, the optimal rate of convergence for D is
υn = n−β/(2β+p) (for more details on optimal rates of convergence, we refer the
reader to Stone, 1982; Györfi et al., 2002; Kohler et al., 2009; Tsybakov, 2009).
Accordingly, there is no hope of constructing an estimate which converges at
a faster rate under the only general assumption that r is regular. Hence, the
only alternative to obtain faster rates is to exploit additional information on
the regression function.

1.2 A general model for dimension reduction in regres-
sion

In practice, when such additional information is available, it is often encoded
in regression models as so called structural assumptions on the regression func-
tion. Statistical procedures based on such models are usually referred to as
dimension reduction techniques. In the recent years, much attention has been
paid to dimension reduction techniques due to the increasing complexity of the
data considered in applications. Among popular models for dimension reduc-
tion in regression, one can mention for example the single index model (see,
e.g., Alquier and Biau, 2013, and the references therein), the additive regression
model or the projection pursuit model (see, e.g., Chapter 22 in Györfi et al.,
2002). Another important dimension reduction framework is called sufficient
dimension reduction. In this framework, one assumes that

E (Y |X) = E (Y |ΛX) and E (Y |ΛX = .) ∈ G, (1.2)

are satisfied for a matrix Λ ∈ Mp(R) of rank smaller than p, and a class G
of regular functions (see, e.g., Härdle and Stoker, 1989; Li, 1991; Cook, 1998,
and the references therein). The motivation for studying such a model is
that, provided the matrix Λ may be estimated, the predictor variable X may
be replaced by ΛX which takes its values in a lower dimensional space. Many
methods have been introduced in the litterature to estimate Λ among which we
mention average derivative estimation (ADE) (Härdle and Stoker, 1989), sliced
inverse regression (SIR) (Li, 1991), principal Hessian directions (PHD) (Li,
1992), sliced average variance estimation (SAVE) (Cook and Weisberg, 1991),
kernel dimension reduction (KSIR) (Fukumizu et al., 2009) and, more recently,
the optimal transformation procedure (Delyon and Portier, 2013). Discussions,
improvements and other relevant papers on that topic can be found in Cook
and Li (2002); Fung et al. (2002); Xia et al. (2002); Cook and Ni (2005); Yin
et al. (2008), and in the references therein. In the last years, little attention
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has been paid to measuring the impact of the estimation of Λ in terms of the
estimation of r. Recently, Cadre and Dong (2010) have used these methods
to show that, in the context of model (1.2), one could indeed construct an
estimate r̂ of the regression function such that

E (r̂(X)− r(X))2 = O
(
n−2/(2+rank(Λ))

)
,

when G is taken as a class of Lipschitz functions.

In the present article, we tackle the problem of dimension reduction for
regression by studying a model which consists in a nonlinear extension of (1.2)
and which is described as follows.

Our model – For a given class H of functions h : X → Rp and a given class
G of regular functions g : Rp → R, we assume that the two conditions

(i) E (Y |X) = E (Y |h(X)) and (ii) E(Y |h(X) = .) ∈ G, (1.3)

are satisfied for at least one function h ∈ H. In other words, denoting

F = {g ◦ h : g ∈ G, h ∈ H} , (1.4)

we assume that r ∈ F .

This model generalizes (1.2) in the sense that the functions h ∈ H need
not be linear nor regular. The motivation for such a generalization comes from
the fact that one may find a much lower dimensional representation h(X) of
X satisfying (i) by relaxing the linear requirement made in the usual suffi-
cient dimension reduction setting. In the existing literature, some nonlinear
extensions of the classical sufficient dimension reduction framework have been
introduced (see, e.g., Cook, 2007) and the estimation of a nonlinear h satisfy-
ing (i) has been studied for instance in Wu (2008); Wang and Yin (2008) and
Yeh et al. (2009). In this paper, and in the context of our model, we introduce
a statistical methodology for estimating the regression function which does not
require to estimate such a function h. Our dimension reduction approach is
done in the spirit of model selection and is based on the estimation of a new
parameter of our model, called the reduced dimension. We adopt a minimax
point of view and provide both upper and lower bounds for optimal rates of
convergence for the estimation of the regression function in the context of our
model. Our constructed estimate of r is shown to adapt to the unknown value
d of the reduced dimension in the minimax sense and achieves fast rates when
d << p, thus reaching the goal of dimension reduction.

1.3 Organization of the paper

In Section 2, we describe our model in further details. We define the reduced
dimension d and describe our strategy for defining an estimate of the regression
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function which adapts to the unknown value of d. Our results are exposed in
Section 3 and proofs are postponed to Section 4.

2 Model and statistical methodology

2.1 The model

As mentioned in the introduction, we assume that the regression function r
belongs to the class F defined by

F = {g ◦ h : g ∈ G, h ∈ H} ,

where H is a class of functions h : X → Rp and G a class of functions g :
Rp → R that are taken as follows. First, for R > 0 fixed, we assume that every
function h ∈ H satisfies

‖h‖X = sup
x∈X
‖h(x)‖ < R, (2.1)

where ‖.‖ stands for the Euclidean norm in Rp. Then, for β > 0 and L > 0
fixed, the class G is taken as the class of β-Hölder functions with constant L.
In other words, G is the set of all functions g : Rp → R such that

‖g‖β = max
|s|≤bβc

sup
u
|∂sg(u)|+ max

|s|=bβc
sup
u6=u′

|∂sg(u)− ∂sg(u′)|
‖u− u′‖β−bβc

≤ L, (2.2)

where bβc stands for the greatest integer stricly smaller than β and where,
for every multi-index s = (s1, . . . , sp) ∈ Np, we have denoted |s| =

∑
i si and

∂s = ∂s11 · · · ∂
sp
p . A particular aspect of this model is that only functions in G

are assumed regular. Functions in H may well be nonlinear and nonregular.

For our study, we need to define the following set of distributions of the
random couple (X, Y ). Let µ be a fixed probability measure on X . Let τ > 0
and B > 0 be fixed. Then, we denote D the set of distributions P of (X, Y )
such that the three following conditions are satisfied:

(a) X is of distribution µ;
(b) Y satisfies the exponential moment condition

E exp (τ |Y |) ≤ B;

(c) The regression function r(.) = E(Y |X = .) belongs to F .

2.2 The reduced dimension

Roughly speaking, the reduced dimension associated to our model is the dimen-
sion of the lowest dimensional representation h(X) of X satisfying equations (i)
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and (ii). To be more specific, we need some notations. For all ` ∈ {1, . . . , p},
let

H` = {h ∈ H : dimS(h) ≤ `},

where S(h) denotes the subspace of Rp spanned by h(X ). Hence, if h ∈ H`,
the variable h(X) takes its values in an `-dimensional space. Then, set

F` = {g ◦ h : g ∈ G, h ∈ H`} .

We therefore obtain a nested family of subsets F1 ⊂ F2 ⊂ · · · ⊂ Fp = F and
the reduced dimension is defined as

d = min {` = 1, . . . , p : r ∈ F`} .

This parameter plays a fundamental role in our study and an important part of
our work is devoted to its estimation. Our first task will be to derive a tractable
representation of the reduced dimension, suitable for estimation purposes. We
shall use the following assumption. (Recall that µ denotes the distribution of
X.)

Assumption (A). For all ` ∈ {1, . . . , p}, the set F` is compact in L2(µ).

Let R` be the risk defined by

R` = inf
f∈F`

E(Y − f(X))2.

Since the F`’s are nested, the function ` ∈ {1, . . . , p} 7→ R` is nonincreasing.
Then, using Assumption (A), we deduce that

d = min {` = 1, . . . , p : R` = Rp} . (2.3)

(The proof of equation (2.3) may be found in Appendix A.1.) Consequently,
denoting

∆ = min {R` −Rp : R` > Rp} , (2.4)

with the convention min ∅ = +∞, we observe that, for all 0 ≤ δ < ∆,

d = min {` = 1, . . . , p : R` ≤ Rp + δ} . (2.5)

Note that ∆ > 0 and that, when d ≥ 2, ∆ corresponds to the distance from r
to Fd−1 in L2(µ). In other words, when d ≥ 2,

∆ = inf
f∈Fd−1

∫
X

(f − r)2 dµ. (2.6)

(The proof of equation (2.6) has been reported to Appendix A.1.)
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Based on the representation (2.5) of the reduced dimension, a natural es-
timate of d may be obtained as follows. For ` ∈ {1, . . . , p}, we introduce an
empirical counterpart of the risk R` defined by

R̂` = inf
f∈F`

1

n

n∑
i=1

[Yi1{|Yi| ≤ an} − f(Xi)]
2 ,

where an > 0 is a tuning parameter to be fixed later on. Then, for some δn > 0,
we define the estimate

d̂ = min
{
` = 1, . . . , p : R̂` ≤ R̂p + δn

}
. (2.7)

2.3 Estimation of the regression function

Our next task is to construct an estimate of the regression function which
achieves fast rates when d� p. In this paper, we reach this goal by using the
following strategy. First, for all ` ∈ {1, . . . , p}, we consider the least-squares
type estimate r̂` defined as any random element in F` satisfying

r̂` ∈ arg min
f∈F`

1

n

n∑
i=1

[Yi1{|Yi| ≤ Tn} − f(Xi)]
2 , (2.8)

where Tn > 0 is a truncation parameter to be tuned later on. Then, we define
our final estimate r̂ by

r̂ = r̂d̂, (2.9)

where d̂ has been defined in (2.7).

This strategy can be motivated as follows. Suppose that, for some known
` < p, the information that r belongs to F` where available. Then, since the
class F` is smaller than the whole class F , one would naturally be brought to
consider the estimate r̂` instead of the estimate r̂p as it involves a minimization
over a smaller class and therefore is expected to converge more rapidly as
the sample size n grows. In this respect, the idealized estimate r̂d appears
as the best choice one could possibly make as, by definition of the reduced
dimension, d is the smallest ` for which r belongs to F`. Now, since the value
of d is unknown, we simply replace it by our estimate d̂. In fact, by doing
so, we obtain an estimate r̂ which performance is not too far from that of the
idealized estimate r̂d as shown by the inequality

E (r̂(X)− r(X))2 ≤ E (r̂d(X)− r(X))2 + 4L2P
(
d̂ 6= d

)
. (2.10)

(This inequality is derived in the proof of Theorem 3.5.) In other words, the
performance of r̂ corresponds to that of r̂d up to the error term P(d̂ 6= d).
Therefore, we will study independently the performance of the estimates r̂`
and the performance of the estimate d̂ of the reduced dimension to obtain
finally the performance of r̂.
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3 Results

3.1 Performance of the estimates r̂`

In this subsection, we study the performance of the estimates r̂` from a mini-
max point of view. To that aim, we introduce the set D` of distributions P of
the random couple (X, Y ) for which the following conditions are satisfied:

(a) X is of distribution µ;
(b) Y satisfies the exponential moment condition

E exp (τ |Y |) ≤ B;

(c, `) The regression function r(.) = E(Y |X = .) belongs to F`.

Note that D` is a subset of the set D and that Dp = D. For any measure Q on
X , and any class C ⊂ L2(Q) of real (or vector-valued) functions, we recall that
the ε-covering number of C in L2(Q), denoted N(ε, C,L2(Q)), is the minimal
number of metric balls of radius ε in L2(Q) that are needed to cover C. The ε-
metric entropy of C in L2(Q) is defined by H(ε, C,L2(Q)) = ln N (ε, C,L2(Q)).
In this paper, we set

H(ε, C) = sup
Q

H
(
ε, C,L2(Q)

)
, (3.1)

where the supremum is taken over all probability measures Q with finite sup-
port in X . We are now in position to state our first result.

Theorem 3.1. Let ` ∈ {1, . . . , p} be fixed. Let α > 2 and set Tn = (lnn)α/2.
Suppose that β ≥ 1 and that β > `/2. Suppose, in addition, that there exist
C > 0 and 0 < s ≤ `/β such that, for all ε > 0,

H (ε,H`) ≤ Cε−s. (3.2)

Then,

lim sup
n→+∞

(
n

(lnn)α

)2β/(2β+`)

sup
P∈D`

E (r̂`(X)− r(X))2 < +∞. (3.3)

Remarks – An immediate consequence of Theorem 3.1 is that the optimal
rate of convergence associated to D` is upper bounded by(

(lnn)α

n

)β/(2β+`)

,

for all α > 2, which does not depend anymore on the dimension p of the pre-
dictor X. Here it is noticeable that, up to a logarithmic factor, we recover the
optimal rate n−β/(2β+`) corresponding to the case where X is `-dimensional
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and r is only assumed to be β-Hölder (see, e.g., Theorem 1 in Kohler et al.,
2009). Since H` ⊂ H, condition 3.2 may be satisfied (resp. satisfied for all `) if
there exist C > 0 and 0 < s ≤ `/β (resp. 0 < s ≤ 1/β) such that, for all ε > 0,
H(ε,H) ≤ Cε−s. This entropy condition allows for a large variety of classes H
in our model as shown in the next examples. Finally, we mention that if the
exponential moment condition (b) is replaced by a boundedness assumption
on Y , then a slight modification of the proof reveals that Theorem 3.1 holds
without the logarithmic factor.

Examples – 1. Parametric class. An first example where condition (3.2) is
fulfilled is the following. Consider the case where H is a parametric class of
the form

H =
{
hθ : θ ∈ Θ ⊂ Rk

}
, (3.4)

where Θ is bounded. Suppose that there exists a constant C > 0 such that for
all θ, θ′ ∈ Θ we have

‖hθ − hθ′‖X ≤ C|θ − θ′|, (3.5)

where |.| stands for the Euclidian norm in Rk. Then, for all ε > 0, H(ε,H) ≤
H(ε/C,Θ) where H(ε,Θ) stands for the logarithm of the minimal number of
Euclidean balls of radius ε that are needed to cover Θ. Since Θ is bounded, it
is included in a Euclidean ball of radius ρ for some ρ > 0. Therefore, it follows
from Proposition 5 in Cucker and Smale (2001) that, for all ε > 0,

H(ε,Θ) ≤ k ln(4ρ/ε).

As a result, there exists a constant C ′ > 0 such that, for all ε > 0,

H(ε,H) ≤ C ′ ln (1/ε) .

Hence, as H` ⊂ H, condition (3.2) is satisfied for all ` ∈ {1, . . . , p}.

2. Class of regular functions. In this second example, we show that condition
(3.2) may be satisfied when H is a general (possibly nonparametric) class of
regular functions. Suppose X is bounded, convex and with nonempty interior.
Suppose, in addition, that for some constants γ > 0 and M > 0, H is the
class of functions h : x ∈ X 7→ (h1(x), . . . , hp(x)) ∈ Rp such that, for each i,
‖hi‖γ ≤M . (Norm ‖.‖γ has been defined in (2.2).) Then, an easy application
of Theorem 9.19 in Kosorok (2008), shows that there exists a constant K > 0,
depending only on γ, on the diameter of X and on p such that, for all ` ∈
{1, . . . , p},

H (ε,H`) ≤ Kε−`/γ.

As a result, condition (3.2) is satisfied for all ` ∈ {1, . . . , p} in this case, pro-
vided γ ≥ β.

In our next result, we provide a lower bound for the optimal rate of con-
vergence associated to D` in order to assess the tightness of the upper bound
obtained in Theorem 3.1.

9



Theorem 3.2. Let ` ∈ {1, . . . , p} be fixed. Suppose that β > 0. Suppose, in
addition, that there exist h ∈ H` with dimS(h) = ` and a constant c > 0 such
that

µ ◦ h−1 ≥ c λh (. ∩B) . (3.6)

Here, λh denotes the Lebesgue measure in S(h) and B stands for the open
Euclidean ball in Rp with center the origin and radius R. Then,

lim inf
n→+∞

n2β/(2β+`) inf
r̂

sup
P∈D`

E (r̂(X)− r(X))2 > 0, (3.7)

where the infinimum is taken over all estimates r̂.

Remarks – Theorem 3.2 indicates that the optimal rate of convergence asso-
ciated to D` is lower bounded by n−β/(2β+`) which, up to a logarithmic factor,
corresponds to the upper bound found in Theorem 3.1. It is important to
mention that condition (3.6) is not restrictive. As an example, it is satisfied
if X = B, if the function h : (x1, . . . , xp) ∈ Rp 7→ (x1, . . . , x`, 0, . . . , 0) ∈ Rp

belongs to H and if µ has a density with respect to the Lebesgue measure
which is lower bounded by a positive constant on B. For the proof of Theorem
3.2, we have used results from Yang and Barron (1999).

3.2 Performance of d̂

Our second task is to study the behavior of the estimate d̂ of the reduced
dimension d introduced in (2.7). To that aim, we need to introduce a notation.
For all δ ≥ 0, we set

D(δ) = {P ∈ D : ∆ ≥ δ} .
When d ≥ 2, and according to the interpretation of ∆ given in (2.6), the set
D(δ) corresponds to the subset of all distributions P of (X, Y ) that are in D
and for which r satisfies

inf
f∈Fd−1

∫
X

(f − r)2 dµ ≥ δ.

As shown by the next result, for all δ > 0, the estimate d̂ performs uniformly
well over D(δ).

Theorem 3.3. Suppose that Assumption (A) is satisfied. Suppose that β ≥ 1.
Suppose, in addition, that there exist C > 0 and 0 < s ≤ p/β such that, for all
ε > 0,

H (ε,H) ≤ Cε−s.

Then, if we take an = nu and δn = n−u
′

with

u > 0, u′ > 0 and (u+ u′)

(
2 +

p

β

)
+ 2u < 1,

the two following statements hold:
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(i) For all ϑ > 0,

lim
n→+∞

nϑ sup
P∈D

P
(
d̂ > d

)
= 0.

(ii) For all δ > 0 and for all ϑ > 0,

lim
n→+∞

nϑ sup
P∈D(δ)

P
(
d̂ < d

)
= 0.

Remarks – A straightforward consequence of Theorem 3.3 is that, provided
P ∈ D, the probability P(d̂ 6= d) converges to 0 faster than any power of 1/n.
Furthermore, for all δ > 0, the estimate d̂ behaves uniformly well over the set
D(δ) in the sense that, for all ϑ > 0, there exists a constant Cδ,ϑ > 0 such that

sup
P∈D(δ)

P
(
d̂ 6= d

)
≤
Cδ,ϑ
nϑ

.

The next result shows that, however, the performance of d̂ is not uniform over
the whole set D of distributions.

Theorem 3.4. Let D0 ⊂ D be any subset of D such that inf {∆ : P ∈ D0} = 0.
Then, under the conditions of Theorem 3.3,

lim
n→+∞

sup
P∈D0

P
(
d̂ < d

)
= 1.

3.3 Dimension adaptivity of r̂

Now we apply the results of the two previous subsections to show that the
estimate r̂ defined by

r̂ = r̂d̂,

adapts to the unknown value of the reduced dimension d.

Theorem 3.5. Let α > 2 and set Tn = (lnn)α/2. Suppose that Assumption
(A) is satisfied. Suppose that β ≥ 1 and that β > p/2. Suppose, in addition,
that for all ` ∈ {1, . . . , p}, there exist C > 0 and 0 < s ≤ `/β such that, for
all ε > 0,

H (ε,H`) ≤ Cε−s.

Then, if we take an = nu and δn = n−u
′

with

u > 0, u′ > 0 and (u+ u′)

(
2 +

p

β

)
+ 2u < 1,

we obtain, for all δ > 0,

lim sup
n→+∞

sup
P∈D(δ)

(
n

(lnn)α

)2β/(2β+d)

E (r̂(X)− r(X))2 < +∞.
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Remarks – (1) A first remark concerns the impact of this result in terms of
individual rates of convergence. Details of the proof of Theorem 3.5 reveal that,
provided P ∈ D, β > d/2, H(ε,Hd) ≤ Cε−s is satisfied for some 0 < s ≤ d/β
and H(ε,H) ≤ Cε−s

′
is satisfied for some 0 < s′ ≤ p/β, our estimate r̂ satisfies

E (r̂(X)− r(X))2 = O

(
(lnn)α

n

)2β/(2β+d)

.

In other words, from the point of view of individual rates of convergence, one
may impose less strict conditions. In particular, we observe that the regularity
parameter β of functions in G needs only to satisfy condition β > d/2, which
becomes less restrictive as the reduced dimension d gets smaller.

(2). This result is an improvement on three levels. First, in the context of
a high-dimensional predictor X, we have introduced a regression model with
a structural assumption that has been successfully exploited to construct an
estimate r̂ which achieves faster rates when d� p. Second, since the value of
d is unknown, our estimate r̂ is adaptive. Third, for all δ > 0, the adaptivity
of r̂ is uniform over the set D(δ) ⊂ D of distributions P in the sense that there
exists Cδ > 0 such that, for all P ∈ D(δ),

E (r̂(X)− r(X))2 ≤ Cδ

(
(lnn)α

n

)2β/(2β+d)

.

(3). Another important remark is the following. In the ideal situation where
the value of the reduced dimension d where known, we have seen that one may
not construct an estimate of r which converges at a rate faster than n−β/(2β+d)

since, according to Theorem 3.2,

lim inf
n→+∞

n2β/(2β+d) inf
r̂

sup
P∈Dd

E (r̂(X)− r(X))2 > 0.

In other words, without knowing the value of the reduced dimension, we have
constructed an estimate of r which, up to a logarithmic factor, converges at
the best possible rate that one could obtain knowing d.

(4). Details of the proof of Theorem 3.5 show that if the exponential moment
condition (b) is replaced by a boundedness assumption on Y , then a slight
adaptation allows to obtain the same result without the logarithmic factor.

(5). We conclude with a technical remark. The condition β > p/2 in Theorem
3.5 allows adaptation for all values of d ∈ {1, . . . , p}. We do not know whether
this result holds for β ≤ p/2. That being said, if adaptation is required only
for small dimensions, we have the following result. For all β ≥ 1 and all δ > 0,
let

D(δ, β) := D(δ) ∩ {P ∈ D : d ≤ `β} ,
where `β := [2β] − 1, and where [x] stands for the greatest integer smaller or
equal to x. Then, we readily obtain, for all α > 2,

lim sup
n→+∞

sup
P∈D(δ,β)

(
n

(lnn)α

)2β/(2β+d)

E (r̂(X)− r(X))2 < +∞.

12



4 Proofs

4.1 Proof of Theorem 3.1

Lemma 4.1. Let ` ∈ {1, . . . , p} be fixed. Suppose that β ≥ 1. Then, for all
ε > 0,

H (ε,F`) ≤ sup
h∈H`

H
(
ε
2
,G ◦ h

)
+H

(
ε

2L
,H`

)
.

Proof – Let ε > 0 be fixed and let Q be any probability measure with support
in X . We denote

N = N
(
ε

2L
,H`,L2(Q)

)
,

and choose an ε
2L

-covering {h1, . . . , hN} ofH` in L2(Q) of minimum cardinality.
For all i ∈ {1, . . . , N}, let

Ni = N
(
ε
2
,G ◦ hi,L2(Q)

)
,

and let {gi1 ◦ hi, . . . , giNi ◦ hi} be an ε
2
-covering of G ◦ hi = {g ◦ hi : g ∈ G} in

L2(Q). Then, let g ∈ G and h ∈ H` be chosen arbitrarily. By definition, there
exists i ∈ {1, . . . , N} and j ∈ {1, . . . , Ni} such that√∫

‖h− hi‖2dQ ≤ ε
2L

and

√∫ (
g ◦ hi − gij ◦ hi

)2
dQ ≤ ε

2
.

Therefore,√∫ (
g ◦ h− gij ◦ hi

)2
dQ

≤

√∫
(g ◦ h− g ◦ hi)2 dQ+

√∫ (
g ◦ hi − gij ◦ hi

)2
dQ

≤

√∫
(g ◦ h− g ◦ hi)2 dQ+

ε

2
.

According to the mean value Theorem, each g ∈ G is L-Lipschitz. As a conse-
quence, √∫ (

g ◦ h− gij ◦ hi
)2

dQ ≤

√∫
(g ◦ h− g ◦ hi)2 dQ+

ε

2

≤ L

√∫
‖h− hi‖2dQ+

ε

2

≤ ε. (4.1)
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Hence, by denoting |A| the cardinality of a set A, we have obtained

N
(
ε,F`,L2(Q)

)
≤

∣∣{gij ◦ hi : i ∈ {1, . . . , N}, j ∈ {1, . . . , Ni}
}∣∣

=
N∑
i=1

Ni

≤ sup
h∈H`

N
(
ε
2
,G ◦ h,L2(Q)

)
N
(
ε

2L
,H`,L2(Q)

)
.

Therefore,

H
(
ε,F`,L2(Q)

)
≤ ln

(
sup
h∈H`

N
(
ε
2
,G ◦ h,L2(Q)

))
+H

(
ε

2L
,H`,L2(Q)

)
= sup

h∈H`
H
(
ε
2
,G ◦ h,L2(Q)

)
+H

(
ε

2L
,H`,L2(Q)

)
,

by continuity. Taking the supremum over all probability measures Q with fi-
nite support in X , we obtain the expected result. �

Lemma 4.2. Let ` ∈ {1, . . . , p} be fixed. Suppose that β ≥ 1. Suppose, in
addition, that there exist C > 0 and 0 < s ≤ `/β such that, for all ε > 0,
H (ε,H`) ≤ Cε−s. Then, there exist a constant A > 0 depending only on `, β,
L and R such that, for all ε > 0,

H (ε,F`) ≤ Aε−`/β.

Proof – Let ` ∈ {1, . . . , p} be fixed. According to Lemma 4.1, we only need
to prove that there exist a constant A > 0, depending only on `, β, L and R,
such that, for all ε > 0,

sup
h∈H`

H (ε,G ◦ h) ≤ Aε−`/β.

To that aim, fix a probability measure Q with support in X and fix h ∈ H`.
For all g ∈ G, let gh be the restriction of g to S(h) ∩ B, where B denotes
the open Euclidean ball in Rp with center the origin and radius R. Then, set
Gh = {gh : g ∈ G}. From the transfer theorem, for all ε > 0,

H
(
ε,G ◦ h,L2(Q)

)
= H

(
ε,Gh,L2(Q ◦ h−1)

)
,

where, for any Borel set A ⊂ S, Q ◦ h−1(A) := Q(h−1(A)). Since S(h) is
a vector space of dimension `′ ≤ `, S(h) ∩ B may be identified to the open
Euclidean ball B`′ in R`′ with center the origin and radius R. Also, Q ◦ h−1

may be seen as of support in B`′ and Gh as a subset of

G`′ = {g : B`′ → R : ‖g‖β ≤ L} ,

14



where ‖.‖β is defined as in (2.2) with the appropriate Euclidean norm. Ac-
cording to Theorem 9.19 in Kosorok (2008), there exist a constant K > 0
depending only on `′, β, R, and L such that, for all ε > 0,

sup
D
H
(
ε,G`′ ,L2(D)

)
≤ Kε−`

′/β,

where the supremum is taken over all probability distributions D in R`′ . Since
`′ ≤ `, and since supDH (ε,G`′ ,L2(D)) is equal to 0 for ε sufficiently large, we
deduce finally that there exist a constant K ′ > 0 depending only on `, β, R,
and L such that, for all ε > 0,

sup
D
H
(
ε,G`′ ,L2(D)

)
≤ K ′ε−`/β,

where the supremum is taken over all probability distributions D in R`′ . Hence,
we deduce that, for all ε > 0,

H
(
ε,G ◦ h,L2(Q)

)
≤ K ′ε−`/β.

Since the result holds uniformly for all h ∈ H` and for all Q with support in
X , we deduce finally that, for all ε > 0,

sup
h∈H`

H (ε,G ◦ h) ≤ K ′ε−`/β,

which completes the proof. �

Proof of Theorem 3.1 – Let ` ∈ {1, . . . , p} be fixed and let P ∈ D`. In the
proof, C > 0 will denote a constant depending only on `, β, R and L, and
which value may change from line to line. We denote

rn(x) = E (Y 1 {|Y | ≤ Tn} |X = x) .

Then,

E (r̂`(X)− r(X))2 ≤ 2E (r̂`(X)− rn(X))2 + 2E (rn(X)− r(X))2 . (4.2)

Using Theorem A.1 of the Appendix with ε = 1, Z = Y 1 {|Y | ≤ Tn} and
Lemma 4.2, we deduce that there exist a constant C > 0 such that

E (r̂`(X)− rn(X))2

≤ 2 inf
f∈F`

E (f(X)− rn(X))2 + C

(
(Tn + L)2

n

)2β/(2β+`)

+ C

(
(Tn + L)2

n

)
≤ 2E (rn(X)− r(X))2 + C

(
(Tn + L)2

n

)2β/(2β+`)

+ C

(
(Tn + L)2

n

)
,
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where, in the second inequality, we have used the fact that r ∈ F`. Since
Tn → +∞ and T 2

n/n → 0 as n goes to +∞, we deduce that there exist a
constant C > 0 such that

E (r̂`(X)− rn(X))2 ≤ 2E (rn(X)− r(X))2 + C

(
T 2
n

n

)2β/(2β+`)

. (4.3)

Hence, invoking (4.2) and (4.3),

E (r̂`(X)− r(X))2 ≤ 6E (rn(X)− r(X))2 + C

(
T 2
n

n

)2β/(2β+`)

. (4.4)

Using Jensen’s inequality and Cauchy-Schwarz’s inequality, we obtain

E (rn(X)− r(X))2 = E
[
E (Y 1{|Y | ≤ Tn}|X)− E (Y |X)

]2
= E

[
E (Y 1{|Y | > Tn}|X)

]2
≤ E

(
Y 21{|Y | > Tn}

)
≤
√
EY 4

√
P (|Y | > Tn). (4.5)

Then, using the fact that, for all u ∈ R,

(τu)4

4!
≤ eτ |u|,

we deduce from the exponential moment condition (b) that

EY 4 ≤ 4!

τ 4
Eeτ |Y | ≤ 24B

τ 4
. (4.6)

Using Markov’s inequality and the exponential moment condition (b), we ob-
tain

P (|Y | > Tn) = P
(
eτ |Y | > eτTn

)
≤ Be−τTn . (4.7)

Combining (4.6) and (4.7) we deduce from (4.5) that

E (rn(X)− r(X))2 ≤
√

24B

τ 2
e−τTn/2. (4.8)

Equations (4.4) and (4.8) imply

E (r̂`(X)− r(X))2 ≤ 6
√

24B

τ 2
e−τTn/2 + C

(
T 2
n

n

)2β/(2β+`)

. (4.9)

Since the constants involved on the right hand side of (4.9) do not depend on
P ∈ D`, we deduce that there exist a constant C > 0 such that

sup
P∈D`

E (r̂`(X)− r(X))2 ≤ 6
√

24B

τ 2
e−τTn/2 + C

(
T 2
n

n

)2β/(2β+`)

.
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Since α > 2, the choice of Tn = (lnn)α/2 leads to

e−τTn/2 �
n→+∞

(
T 2
n

n

)2β/(2β+`)

=

(
(lnn)α

n

)2β/(2β+`)

.

Then, it follows that

lim sup
n→+∞

(
n

(lnn)α

)2β/(2β+`)

sup
P∈D`

E (r̂`(X)− r(X))2 < +∞,

which completes the proof. �

4.2 Proof of Theorem 3.2

Let ` ∈ {1, . . . , p} be fixed. Let D◦` be the class of distributions P of (X, Y )
such that X is of distribution µ and such that

Y = f(X) + ξ,

where f ∈ F` and where ξ is independent from X and with distribution
N (0, σ2). It may be easily verified that the exponential moment condition
(b) holds in this context so that D◦` ⊂ D`. Therefore,

inf
r̂

sup
P∈D◦`

E (r̂(X)− r(X))2 ≤ inf
r̂

sup
P∈D`

E (r̂(X)− r(X))2 .

As a result, in order to prove Theorem 3.2, we need only to prove that

lim inf
n→+∞

n2β/(2β+`) inf
r̂

sup
P∈D◦`

E (r̂(X)− r(X))2 > 0. (4.10)

According to Theorem 6 in Yang and Barron (1999), inequality (4.10) is
satisfied provided there exist a lower bound N(ε) for the covering number
N (ε,F`,L2(µ)) such that any solution εn of

lnN(ε) = nε2,

is of order n−β/(2β+`). To obtain such a lower bound, let h ∈ H` be satisfying
the conditions of Theorem 3.2. Then, Gh = {g ◦h : g ∈ G} ⊂ F`, which implies
that, for all ε > 0,

N
(
ε,F`,L2(µ)

)
≥ N

(
ε,Gh,L2(µ)

)
. (4.11)

The right hand side of inequality (4.11) may be lower bounded as follows. For
all g ∈ G, let gh be the restriction of g to S(h) ∩ B, where B stands for the
open Euclidean ball in Rp with center the origin and radius R. (Note that,
with this notation, Gh = {gh : g ∈ G}.) Then, for all g, g′ ∈ G, we have∫

(g ◦ h(x)− g′ ◦ h(x))2µ(dx) =

∫
(gh(u)− g′h(u))2µ ◦ h−1(du)

≥ c

∫
(gh(u)− g′h(u))2λh(du), (4.12)
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where in (4.12) we have used (3.6). Hence, for all ε > 0,

N
(
ε,
{
g ◦ h : g ∈ G

}
,L2(µ)

)
≥ N

(
ε
c
,Gh,L2(λh)

)
. (4.13)

Now, let us identify S(h)∩B to the open Euclidean ball in R` with center the
origin and radius R`, and λh to the Lebesgue measure in R`. Then, according
to Corollary 2.4 of chapter 15 in Lorentz et al. (1996), there exist a constant
c′ > 0 such that, for all ε > 0,

lnN
(
ε
c
,Gh,L2(λh)

)
≥ c′ε−`/β. (4.14)

Combining (4.11), (4.13) and (4.14), we obtain

lnN
(
ε,F`,L2(µ)

)
≥ c′ε−`/β =: lnN(ε).

It may be easily verified that the solution εn of c′ε
−`/β
n = nε2

n is given by a
constant times n−β/(2β+`), and this concludes the proof. �

4.3 Proof of Theorem 3.3

Lemma 4.3. Suppose that β ≥ 1. Suppose, in addition, that there exist C > 0
and 0 < s ≤ p/β such that, for all ε > 0, H (ε,H) ≤ Cε−s. Take an = nu and
δn = n−u

′
with

u > 0, u′ > 0 and (u+ u′)

(
2 +

p

β

)
+ 2u < 1.

Then, for all ` ∈ {1, . . . , p} and for all ϑ > 0,

lim
n→+∞

nϑ sup
P∈D

P
(∣∣∣R̂` −R`

∣∣∣ ≥ δn

)
= 0.

Proof – Let
R̄` = inf

f∈F`
E (Y 1{|Y | ≤ an} − f(X))2 .

Then,

|R̂` −R`| ≤ |R̂` − R̄`|+ |R̄` −R`|

≤ sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(Yi1{|Yi| ≤ an} − f(Xi))
2 − E (Y 1{|Y | ≤ an} − f(X))2

∣∣∣∣
+ sup

f∈F

∣∣E (Y 1{|Y | ≤ an} − f(X))2 − E (Y − f(X))2
∣∣ . (4.15)

Using Cauchy-Schwarz’s inequality, for all f ∈ F ,∣∣E (Y 1{|Y | ≤ an} − f(X))2 − E (Y − f(X))2
∣∣

= |E [(Y 1{|Y | ≤ an}+ Y − 2f(X)) (Y 1{|Y | ≤ an} − Y )]|
≤ E [|Y 1{|Y | ≤ an}+ Y − 2f(X)| |Y 1{|Y | > an}|]

≤
√

E (Y 1{|Y | ≤ an}+ Y − 2f(X))2
√

EY 21{|Y | > an}. (4.16)
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Using the fact that, for all u ∈ R and for every positive integer k,

(τu)k

k!
≤ eτ |u|,

we deduce from the exponential moment condition (b) that, for every positive
integer k,

EY k ≤ k!

τ k
Eeτ |Y | ≤ k!B

τ k
. (4.17)

Then, using Minkowski’s inequality and the fact that all functions f ∈ F are
bounded by L, we deduce that√

E (Y 1{|Y | ≤ an}+ Y − 2f(X))2 ≤ 2
√
EY 2 + 2

√
Ef(X)2

≤ 2

√
2

τ 2
Eeτ |Y | + 2L

≤ 2

√
2B

τ 2
+ 2L. (4.18)

Using Markov’s inequality, and the exponential moment condition (b), we ob-
tain

P (|Y | > an) = P
(
eτ |Y | > eτan

)
≤ Be−τan . (4.19)

Then, using Cauchy-Schwarz’s inequality and equations (4.17) and (4.19), we
deduce that

EY 21 {|Y | > an} ≤
√
EY 4

√
P (|Y | > an)

≤
√

4!

τ 4
Eeτ |Y |

√
P
(
eτ |Y | > eτan

)
≤ B

√
24

τ 4
e−τan/2. (4.20)

Hence, combining (4.16), (4.18) and (4.20) yields

sup
f∈F

∣∣E (Y 1{|Y | ≤ an} − f(X))2 − E (Y − f(X))2
∣∣

≤
√(

2
√

2B
τ

+ 2L
)√(

B
√

24
τ2

)
e−τan/4

=: Ue−τan/4.

Therefore, denoting letting κn = δn − Ue−τan/4 and

F̄an =
{

(x, y) 7→ (y1{|y| ≤ an} − f(x))2 : f ∈ F
}
,
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we deduce from (4.15) and Theorem 9.1 in Györfi et al. (2002) that there exist
a universal constant C > 0 such that

P
(
|R̂` −R`| ≥ δn

)
≤ P

(
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(Yi1{|Yi| ≤ an} − f(Xi))
2 − E (Y 1{|Y | ≤ an} − f(X))2

∣∣∣∣ ≥ κn

)

≤ CE
[
N
(
κn
C
, F̄an ,L1(Pn)

)]
e
− nκ2n
C(an+L)4 . (4.21)

Here, Pn = n−1
∑n

i=1 δ(Xi,Yi) denotes the empirical distribution associated with
the sample (X1, Y1), . . . , (Xn, Yn) andN(ε, C,L1(Q)) denotes the minimal num-
ber of metric balls of radius ε in L1(Q) that are needed to cover C. For all
f, f ′ ∈ F we have

1

n

n∑
i=1

∣∣∣(Yi1{|Yi| ≤ an} − f(Xi))
2 − (Yi1{|Yi| ≤ an} − f ′(Xi))

2
∣∣∣

=
1

n

n∑
i=1

|2Yi1{|Yi| ≤ an} − f(Xi)− f ′(Xi)||f(Xi)− f ′(Xi)|

≤ 2(an + L)

n

n∑
i=1

|f(Xi)− f ′(Xi)|

≤ 2(an + L)

{
1

n

n∑
i=1

(f(Xi)− f ′(Xi))
2

}1/2

.

Therefore, we obtain

N
(
κn
C
, F̄an ,L1(Pn)

)
≤ N

(
κn

2C(an+L)
,F ,L2(µn)

)
,

where µn = n−1
∑n

i=1 δXi . Hence, we deduce from (4.21), from the entropy
condition

H (ε,H) ≤ Cε−p/β,

and from Lemma 4.2 that there exist a universal constant C > 0 such that

P
(
|R̂` −R`| ≥ δn

)
≤ C exp

[(
C(an + L)

κn

)p/β
− nκ2

n

C(an + L)4

]
. (4.22)

Hence, since C > 0 is universal,

sup
P∈D

P
(
|R̂` −R`| ≥ δn

)
≤ C exp

[(
C(an + L)

κn

)p/β
− nκ2

n

C(an + L)4

]
.

Now recall that an = nu, that δn = n−u
′

and that κn = δn − Ue−τan/4. Then,
it may be easily observed that, provided

(u+ u′)

(
2 +

p

β

)
+ 2u < 1,
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we obtain, for all ϑ ≥ 0,

lim
n→+∞

nϑ sup
P∈D

P
(
|R̂` −R`| ≥ δn

)
= 0.

This completes the proof. �

Proof of Theorem 3.3 – Let P ∈ D. Since the function ` 7→ R̂` is nonin-
creasing, for all integer q ∈ {1, . . . , p} and all n ≥ 1 we have

min
{
` = 1, . . . , p : R̂` − R̂p ≤ δn

}
≤ q ⇔ R̂q − R̂p ≤ δn. (4.23)

Therefore, using the fact that Rd = Rp, we obtain

P
(
d̂ > d

)
= P

(
min

{
` = 1, . . . , p : R̂` − R̂p ≤ δn

}
> d
)

= P
(
R̂d − R̂p > δn

)
= P

((
R̂d −Rd

)
+
(
Rp − R̂p

)
> δn

)
≤ P

(
|R̂d −Rd| ≥ δn

2

)
+ P

(
|R̂p −Rp| ≥ δn

2

)
.

Using Lemma 4.3, we deduce that for all ϑ > 0 we have

lim
n→+∞

nϑ sup
P∈D

P
(
|R̂d −Rd| ≥ δn

2

)
= 0,

and
lim

n→+∞
nϑ sup

P∈D
P
(
|R̂p −Rp| ≥ δn

2

)
= 0,

which gives

lim
n→+∞

nϑ sup
P∈D

P
(
d̂ > d

)
= 0. (4.24)

Now let δ > 0 be fixed, let P ∈ D(δ) and assume d ≥ 2. Using the fact that
Rd−1 − Rp = ∆ ≥ δ and provided n is large enough to have δ − δn ≥ δn, we
obtain that

P
(
d̂ < d

)
= P

(
min

{
` = 1, . . . , p : R̂` − R̂p ≤ δn

}
≤ d− 1

)
= P

(
R̂d−1 − R̂p ≤ δn

)
= P

((
R̂d−1 −Rd−1

)
+ ∆ +

(
Rp − R̂p

)
≤ δn

)
≤ P

((
Rd−1 − R̂d−1

)
+
(
R̂p −Rp

)
≥ δ − δn

)
≤ P

((
Rd−1 − R̂d−1

)
+
(
R̂p −Rp

)
≥ δn

)
≤ P

(
|R̂d−1 −Rd−1| ≥ δn

2

)
+ P

(
|R̂p −Rp| ≥ δn

2

)
.
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From the same argument as in the beginning of the proof, we have

lim
n→+∞

nϑ sup
P∈D(δ)

P
(
d̂ < d

)
= 0,

which concludes the proof. �

4.4 Proof of Theorem 3.4

Since we have
inf
{

∆ : P ∈ D0

}
= 0,

for all ε > 0 there exists P (ε) ∈ D0 such that ∆P (ε) ≤ ε. For all n ≥ 1 let
Qn = P (δn/2). Now assume that the sample (X1, Y1), . . . , (Xn, Yn) is drawn
from Qn. Then, as in the proof of Theorem 3.3, we obtain

P
(
d̂ < d

)
= P

(
min

{
` = 1, . . . , p : R̂` − R̂p ≤ δn

}
≤ d− 1

)
= P

(
R̂d−1 − R̂p ≤ δn

)
= P

((
R̂d−1 −Rd−1

)
+ ∆Qn +

(
Rp − R̂p

)
≤ δn

)
≥ P

((
R̂d−1 −Rd−1

)
+ δn

2
+
(
Rp − R̂p

)
≤ δn

)
= P

((
R̂d−1 −Rd−1

)
+
(
Rp − R̂p

)
≤ δn

2

)
≥ 1− P

((
R̂d−1 −Rd−1

)
+
(
Rp − R̂p

)
≥ δn

2

)
≥ 1− P

(
|R̂d−1 −Rd−1| ≥ δn

4

)
− P

(
|R̂p −Rp| ≥ δn

4

)
.

According to Lemma 4.3, we know that

lim
n→+∞

n P
(
|R̂d−1 −Rd−1| ≥ δn

4

)
= 0 and lim

n→+∞
n P

(
|R̂p −Rp| ≥ δn

4

)
= 0.

As a result, there exists an integer n0 such that for all n ≥ n0 we have

P
(
|R̂d−1 −Rd−1| ≥ δn

4

)
≤ 1

2n
and P

(
|R̂p −Rp| ≥ δn

4

)
≤ 1

2n
.

Therefore, for all n ≥ n0, we have

sup
P∈D0

P
(
d̂ < d

)
≥ P(X,Y )∼Qn

(
d̂ < d

)
≥ 1− 1

n
,

which concludes the proof. �
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4.5 Proof of Theorem 3.5

Let δ > 0 and P ∈ D(δ). We have

E (r̂(X)− r(X))2 = E
[
1
{
d̂ 6= d

}
(r̂(X)− r(X))2

]
+ E

[
1
{
d̂ = d

}
(r̂(X)− r(X))2

]
. (4.25)

Since both r̂ and r belong to F , they are bounded by L and therefore we have

E
[
1
{
d̂ 6= d

}
(r̂(X)− r(X))2

]
≤ 4L2P

(
d̂ 6= d

)
. (4.26)

Then, we observe that

E
[
1
{
d̂ = d

}
(r̂(X)− r(X))2

]
= E

[
1
{
d̂ = d

}
(r̂d(X)− r(X))2

]
≤ E (r̂d(X)− r(X))2 . (4.27)

Hence, denoting for simplicity

υn,` =

(
(lnn)α

n

)β/(2β+`)

,

for all ` ∈ {1, . . . , p}, we deduce from (4.25), (4.26) and (4.27) that

υ−2
n,d E (r̂(X)− r(X))2 ≤ 4L2 υ−2

n,d P
(
d̂ 6= d

)
+ υ−2

n,d E (r̂d(X)− r(X))2 . (4.28)

According to the proof of Theorem 3.1, there exists a constant C > 0 depending
only on τ , B, β, R and L such that

υ−2
n,d E (r̂d(X)− r(X))2 ≤ C. (4.29)

In particular, since this constant C does not depend on P ∈ D, we obtain

sup
P∈D(δ)

υ−2
n,d E (r̂d(X)− r(X))2 ≤ C. (4.30)

Then, we deduce from Theorem 3.3 that

sup
P∈D(δ)

υ−2
n,d P

(
d̂ 6= d

)
≤ υ−2

n,1 sup
P∈D(δ)

P
(
d̂ 6= d

)
→

n→+∞
0. (4.31)

Finally, it follows from (4.28), (4.30) and (4.31) that there exists a constant
depending only on τ , B, β, R and L such that

lim sup
n→+∞

sup
P∈D(δ)

υ−2
n,d E (r̂(X)− r(X))2 ≤ C,

which concludes the proof. �
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A Appendix

A.1 Reduced dimension d and parameter ∆

In this appendix, we prove equations (2.3) and (2.6). First, observe that since
F` is compact in L2(µ) and since r ∈ F ,

r ∈ F` ⇔ inf
f∈F`

E (f(X)− r(X))2 = 0

⇔ inf
f∈F`

E (Y − f(X))2 − E (Y − r(X))2 = 0

⇔ inf
f∈F`

E (Y − f(X))2 − inf
f∈F

E (Y − f(X))2 = 0

⇔ R` = Rp.

Therefore, since the function ` ∈ {1, . . . , p} 7→ R` is nonincreasing, we deduce
that

d := min {` = 1, . . . , p : r ∈ F`}
= min {` = 1, . . . , p : R` = Rp} ,

which proves equation (2.3). Using (2.3), and the fact that r ∈ F , we obtain

∆ = min {R` −Rp : R` > Rp}
= Rd−1 −Rp

= inf
f∈Fd−1

E (Y − f(X))2 − inf
f∈F

E (Y − f(X))2

= inf
f∈Fd−1

E (Y − f(X))2 − E (Y − r(X))2

= inf
f∈Fd−1

E (f(X)− r(X))2

= inf
f∈Fd−1

∫
X

(f − r)2 dµ,

which proves (2.6).

A.2 Performance of least-squares estimates

Let X be a metric space, let P be a probability measure on X × R and let
(X,Z) be an X × R-valued random variable. The regression function f ? of Z
given X is defined for x ∈ X by

f ?(x) := E (Z|X = x) . (A.1)

In this appendix, we study the performance of the least-squares estimation of
f ? based on a given class F of real functions defined on X . For some L > 0,
it will be assumed that each f ∈ F satisfies

sup
x∈X
|f(x)| ≤ L. (A.2)
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Let (X1, Z1), . . . , (Xn, Zn) be a sample of n i.i.d. random variables with
same distribution P as (X,Z). The least-squares estimate fn of f ? based on
F is defined as any random element in F satisfying

fn ∈ arg min
f∈F

1

n

n∑
i=1

(Zi − f(Xi))
2 . (A.3)

Implicitly, it will be assumed that such an element exists. The performance of
fn will be measured in terms of the mean squared error

E‖fn − f ?‖2 := E
∫
X

(fn − f ?)2dµ, (A.4)

where µ stands for the distribution of X, and shown to be related to the metric
entropy of F . We are now in position to state the main result of this appendix.

Theorem A.1 (Koltchinskii, 2006). Suppose that |Z| ≤ T and that there exist
two constants A > 0 and 0 < s < 2 such that, for all u > 0, H(u,F) ≤ Au−s.
Then, there exists a constant C depending only on s and A such that, for all
ε ∈ (0, 1],

E‖fn − f ?‖2 ≤ (1 + ε) inf
f∈F
‖f − f ?‖2 + Cε−

2−s
2+s

(
b

n

) 2
2+s

+
Cb

εn
,

where b := (T + L)2.

A detailed proof of Theorem A.1 may be found in the supplementary ma-
terial.
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