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Abstract

Let (X ,Y ) be a random variable taking its values in X ×R, where X ⊂Rp.
We study the estimation of the regression function r(x) := E(Y |X = x) from
a minimax point of view, assuming that r belongs to a class of functions F
of the form

G ◦H :=
{

g◦h : g ∈ G , h ∈H
}
.

Here, G is a class of β -Hölder functions g : Rp → R and H a class of
functions h : X → Rp which need not be linear nor regular. We define the
reduced dimension as the smallest ` for which r = g◦h for some g ∈ G and
some h ∈H such that h(X ) spans a subspace of dimension `. In this con-
text, we construct an adaptive estimate which converges at a rate depending
only on the reduced dimension under entropy conditions on H .

Index Terms – Regression estimation, dimension reduction, minimax rates
of convergence, empirical risk minimization, metric entropy.

AMS 2000 Classification – 62H12, 62G08.
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1 Introduction
From a general point of view, the goal of regression is to infer about the condi-
tional distribution of a real-valued response variable Y given an X -valued predic-
tor variable X where X ⊂ Rp. In the statistical framework, one usually focuses
on the estimation of the regression function

r(x) := E(Y |X = x), (1.1)

based on a sample (X1,Y1), . . . ,(Xn,Yn) of n independent and identically distributed
random variables with same distribution P as (X ,Y ).

When addressing this task, the statistician considers a set of assumptions on
the underlying distribution of the observations based on some physical under-
standing of the phenomenon under study. Roughly speaking, this modelization
step consists in specifying a class D of distributions of the random variable (X ,Y )
for which the regression function r belongs to some class F of functions f :
X → R. Given such a regression model, one usually refers to optimal rates of
convergence in the minimax sense as benchmarks to assess the performance of a
particular estimate. In this context, optimal rates of convergence may be defined
as follows. The sequence (υn) is said to be an optimal rate of convergence in the
minimax sense if it is a lower minimax rate, i.e. if

liminf
n→+∞

υ
−2
n inf

r̂
sup
P∈D

E(X ,Y )∼P (r̂(X)−E(Y |X))2 > 0, (1.2)

where the infinimum is taken over all estimates r̂ based on our sample, and if there
exists an estimate r̂ such that

limsup
n→+∞

υ
−2
n sup

P∈D
E(X ,Y )∼P (r̂(X)−E(Y |X))2 <+∞. (1.3)

In (1.2) and (1.3), we have used the subscript (X ,Y ) ∼ P to stress that (X ,Y ) is
drawn from P. When no confusion may arise, we will omit it in the rest of the
paper.

A major problem, known as the curse of dimensionality, is that for most mod-
els used across the literature, the optimal rates of convergence depend on the di-
mension p of the predictor X . For instance, suppose F is the class of all [0,1]-
valued, β -Hölder functions defined on the open unit Euclidian ball in Rp. Then
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it can be shown that, under some technical conditions, the optimal rate of conver-
gence in this context is n−β/(2β+p) (see e.g. Theorem 3.2 in Györfi et al. (2002)
and Theorem 1 in Kolher et al. (2009)). Hence, when the dimension p is large,
the optimal rate of convergence is slow. To face this drawback when dealing with
high-dimensional data, one usually considers a model which encodes so called
structural assumptions in addition to reasonable regularity conditions, thus reduc-
ing the overall complexity of the model. Many such models have been studied and
proved effective in practice among which we mention additive regression models,
projection pursuit, single index models (see e.g. Chapter 22 in the book by Györfi
et al. (2002) and the references cited therein) and the body of theory and meth-
ods known as sufficient dimension reduction (see e.g. the foundational article of
Li (1991) which introduces the SIR method or the article of Cook and Li (2002)
which defines the important notion of central mean subspace).

In the present article we study a regression model with a structural assumption
inspired by sufficient dimension reduction methodology. Precisely, we assume
that the regression function belongs to a class F of the form

G ◦H :=
{

g◦h : g ∈ G , h ∈H
}
, (1.4)

where G denotes a class of functions g : Rp→ R and where H denotes a class
of functions h : X → Rp. In this context, having r ∈ F means that the two
conditions

(i) E(Y |h(X)) = E(Y |X), and (ii) E(Y |h(X) = .) ∈ G ,

are satisfied for at least one function h ∈ H . From a heuristic point of view,
the main interest here is that condition (i) should allow to replace the high dimen-
sional predictor X by a possibly low dimensional predictor h(X). In this approach,
it is expected that the rates of convergence depend on the dimension of h(X) rather
than on the dimension of X . Note that condition (i) generalizes the usual assump-
tion made in sufficient dimension reduction where one assumes that h is a matrix.
In the present paper the functions in H need not be linear nor regular. The class G
is a class of regular functions the construction of which is detailed in the next sec-
tion. In the classical sufficient dimension reduction context, a similar approach
has been successfully applied by Cadre and Dong (2010) to obtain fast rates of
convergence.

From a technical point of view, the impact of dimensionality on rates of con-
vergence can be explained as follows. A first important fact is that optimal rates
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of convergence usually depend on a measure of the complexity of F . Suppose
that the marginal distribution µ of X is fixed and that the complexity of F is mea-
sured in terms of the ε-metric entropy of F in L2(µ) denoted H(ε,F ,µ) (i.e.
the logarithm of the minimal number of L2(µ)-balls of radius ε that are needed
to cover F ). Then, if there exists c > 0 such that H(ε,F ,µ)≥ cε−s, the optimal
rates of convergence are lower bounded by n−1/(2+s) under some technical as-
sumptions (see e.g. Theorem 6 in Yang and Barron (1999)). Suppose this time the
complexity of F is measured in terms of H(ε,F ) := supH(ε,F ,Q), where the
supremum is taken over all probability measures with finite support in X . Then
if there exists C > 0 such that H(ε,F )≤Cε−s, the optimal rates of convergence
are upper bounded by n−1/(2+s) under some technical assumptions (see Appendix
A). The second important fact is that the value of the exponent s usually depends
on the dimension p of the predictor X . For example, when F is the class of all
[0,1]-valued, β -Hölder functions defined on the open unit Euclidian ball in Rp,
the typical value for the exponent s is p/β which explains that the optimal rate in
this context is n−1/(2+s) = n−β/(2β+p). In the case of a model as defined in (1.4),
we will use the composite structure to get bounds on the entropy of F which de-
pend only the regularity of the functions in G and the entropy of H .

The paper is organized as follows. In Section 2, we describe precisely our
model and the assumptions made on the classes G and H . In Section 3, we fix
an integer ` ∈ {1, . . . , p} and derive bounds for the optimal rates in the context of
our composite model when all functions h ∈H satisfy dimS(h) ≤ ` where S(h)
denotes the subspace of Rp spanned by h(X ). In Section 4 we present our main
result, namely Theorem 4.3, which studies the general case where no restriction
is made on the dimension of S(h) for h ∈H . In this case, using the results of
Section 3, we construct an estimate r̂ of the regression function which adapts to
the reduced dimension d defined as the smallest ` for which one has r = g◦h for
some g ∈ G and some h ∈H with dimS(h) ≤ `. More precisely, we prove that
uniformly over a certain class of distributions, our estimate converges to r at a rate
depending only on the reduced dimension d. Furthermore, this rate corresponds
to the rate one would obtain if the true value of the reduced dimension where
known as exposed in Section 3. We have reported in the appendix a useful result
concerning rates of convergence for least-squares estimates in the case of bounded
regression. The proof follows from the lines devised in Koltchinskii (2006) and is
available in the supplementary material.
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2 Definition of the model
Let (X ,Y ) be an X ×R-valued random variable of distribution P where X ⊂Rp.
We denote µ the distribution of X and for x ∈X we set

r(x) := E(Y |X = x). (2.1)

Let F be a class of functions f : X → R of the form

F := G ◦H :=
{

g◦h : g ∈ G , h ∈H
}
,

where G and H are taken as follows. Let R > 0. For all h ∈H we assume that

‖h‖X := sup
x∈X
‖h(x)‖< R, (2.2)

where ‖.‖ stands for the Euclidean norm in Rp. Let B be the open Euclidean ball
in Rp with center the origin and radius R. Let β > 0. We denote C bβc(B) the
space of bβc-times continuously differentiable functions from B to R, where bβc
stands for the greatest integer strictly smaller than β . For all g in C bβc(B) we set

‖g‖β := max
|s|≤bβc

‖∂ sg‖∞ + max
|s|=bβc

sup
u6=u′

|∂ sg(u)−∂ sg(u′)|
‖u−u′‖β−bβc , (2.3)

where for every multi-index s = (s1, . . . ,sp)∈Np, we have denoted |s| :=∑i si and
∂ s := ∂

s1
1 · · ·∂

sp
p . For L > 0, the class G is defined by

G :=
{

g ∈ C bβc(B) : ‖g‖β ≤ L
}
. (2.4)

In the sequel, we suppose that the distribution P of (X ,Y ) belongs to the fol-
lowing class of distributions.

Class D of distributions. Let τ > 0 and B > 0 be fixed. Let the marginal
distribution µ be fixed. We denote D the class of distributions P of the random
variable (X ,Y ) such that X is of distribution µ , such that the regression function r
belongs to F and such that Y satisfies the exponential moment condition

E eτ|Y | ≤ B. (2.5)
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3 Non adaptive case
Fix ` ∈ {1, . . . , p}. In this section, we derive bounds on the optimal rates of con-
vergence associated to the class of distributions D under the assumption that all
functions h ∈H satisfy

dimS(h)≤ `, (3.1)

where S(h) denotes the subspace of Rp spanned by h(X ). Let (X1,Y1), . . . ,(Xn,Yn)
be a sample of n independent and identically distributed random variable with
same distribution P as (X ,Y ).

First we present an upper bound. For any Borel measure Q on X , we denote
by L2(Q) the set of measurable functions f : X → R such that

‖ f‖2
Q :=

∫
X
| f |2dQ <+∞. (3.2)

For a class C ⊂ L2(Q), we recall that the ε-covering number of C with respect
to ‖.‖Q, denoted N(ε,C ,Q), is the minimal number of ‖.‖Q-balls of radius ε that
are needed to cover C . The ε-metric entropy of C with respect to ‖.‖Q is defined
by H (ε,C ,Q) := ln N (ε,C ,Q). In this paper, we set

H(ε,C ) := sup
Q

H (ε,C ,Q) , (3.3)

where the supremum is taken over all probability measures Q with finite support
in X . These notations will also be used for classes of vector valued functions. In
this case, it will be understood that the absolute value |.| in (3.2) is replaced by the
appropriate Euclidean norm.

We fix a constant α > 2 and define the least-squares estimate f̂ as any element
in F satisfying

f̂ ∈ argmin
f∈F

1
n

n

∑
i=1

(
Yi1{|Yi| ≤ Tn}− f (Xi)

)2
, (3.4)

where Tn := (lnn)α/2. Implicitly, it will be assumed that such an element exists,
though it might not be unique. We denote

υn,` :=
(
(lnn)α

n

)β/(2β+`)

.
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Theorem 3.1. Suppose that β ≥ 1, that β > `/2 and suppose that there exists
C > 0 and 0 < s≤ `/β such that for all ε > 0 we have

H (ε,H )≤Cε
−s. (3.5)

Then we have

limsup
n→+∞

υ
−2
n,` sup

P∈D
E
(

f̂ (X)−E(Y |X)
)2

<+∞. (3.6)

An immediate consequence of Theorem 3.1 is that, up to a logarithmic factor,
the optimal rate of convergence associated to D is upper bounded by n−β/(2β+`)

which depends only on ` and not anymore on the dimension p of the predictor X .
Note that, under some technical conditions, n−β/(2β+`) corresponds to the optimal
rate of convergence for the estimation of a β -Hölder function in the case where X
is `-dimensional (see e.g. Theorem 3.2 in Györfi et al. (2002) and Theorem 1 in
Kolher et al. (2009)). If the exponential moment condition (2.5) is replaced by a
boundedness assumption on Y , then a slight modification of the proof reveals that
Theorem 3.1 holds with υn,` replaced by n−β/(2β+`).

Example 3.2. An example where condition (3.5) is fulfilled is the following. Con-
sider the case where H is a parametric class of the form

H =
{

hθ : θ ∈Θ⊂ Rk
}
, (3.7)

where Θ is bounded. Suppose that there exists a constant C > 0 such that for all
θ ,θ ′ ∈Θ we have

‖hθ −hθ ′‖X ≤C|θ −θ
′|, (3.8)

where |.| stands for the Euclidian norm in Rk. Then, for all ε > 0 we have
H(ε,H ) ≤ H(ε/C,Θ) where H(ε,Θ) stands for the logarithm of the minimal
number of Euclidean balls of radius ε that are needed to cover Θ. Since Θ is
bounded, it is included in a Euclidean ball of radius ρ for some ρ > 0. Therefore,
it follows from Proposition 5 in Cucker and Smale (2001) that for all ε > 0 we
have

H(ε,Θ)≤ k ln(4ρ/ε).

As a result, there exists a constant C′ such that for all ε > 0 we have

H(ε,H )≤C′ ln(1/ε) ,

and condition (3.5) is satisfied.
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Now we give a lower bound for the optimal rates of convergence. The proof
of this result uses arguments from Yang and Barron (1999).

Theorem 3.3. Suppose that β > 0. Suppose that there exists h∈H with dimS(h)=
` and a constant c > 0 such that

µ ◦h−1 ≥ c λh (.∩B) , (3.9)

where λh denotes the Lebesgue measure in S(h). Then, we have

liminf
n→+∞

n2β/(2β+`) inf
f̂

sup
P∈D

E
(

f̂ (X)−E(Y |X)
)2

> 0,

where the infinimum is taken over all estimates f̂ .

The condition in (3.9) is not restrictive. As an example, it is satisfied if X = B, if
the function h : (x1, . . . ,xp) ∈ Rp 7→ (x1, . . . ,x`,0, . . . ,0) ∈ Rp belongs to H and
if µ has a density with respect to the Lebesgue measure which is lower bounded
by a positive constant on B. Theorem 3.3 shows that the optimal rate associated to
D is lower bounded by n−β/(2β+`) which, up to a logarithmic factor, corresponds
to the upper bound on the optimal rate given in Theorem 3.1.

4 Dimension adaptivity
In Section 3 we have studied the case where all functions h∈H satisfy dimS(h)≤
` for some ` ∈ {1, . . . , p}. In this section, we impose no restriction on the dimen-
sion of S(h) for h ∈H . In Theorem 4.1 we study an estimate of the reduced
dimension defined hereafter. Based on this estimate, we construct an estimate of
the regression function and show in our main result, Theorem 4.3, that it adapts to
the reduced dimension.

First we need some notations. For all ` ∈ {1, . . . , p}, let H` be the class of all
functions h ∈H such that S(h) is at most `-dimensional, i.e.

H` :=
{

h ∈H : dim S(h)≤ `
}
. (4.1)

We define the subset F` of F by

F` :=
{

g◦h : g ∈ G , h ∈H`

}
. (4.2)
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The F`’s form a nested family of models, that is F1 ⊂ F2 ⊂ ·· · ⊂ Fp = F .
The reduced dimension associated to the underlying distribution P ∈ D of our
observations is defined by

dP := min
{
` : r ∈F`

}
. (4.3)

When no confusion may arise, we will drop the dependency on P in the notation.
Our first task will be to derive a tractable representation of the reduced dimension,
suitable for estimation purposes. We shall use the following assumption.

Assumption (A). For all ` ∈ {1, . . . , p}, the set F` is compact in L2(µ).

Let R` be the risk defined by

R` := inf
f∈F`

E(Y − f (X))2. (4.4)

Since the F`’s are nested, the function ` ∈ {1, . . . , p} 7→ R` is non increasing.
Then, using Assumption (A), we deduce that

d = min
{
` : R` = Rp

}
. (4.5)

Consequently, for all 0 < δ < ∆, we have

d = min
{
`= 1, . . . , p : R` ≤ Rp +δ

}
, (4.6)

where ∆ is defined as

∆ := min
{

R`−Rp : R` > Rp

}
, (4.7)

with the convention min /0 = +∞. Observe that ∆ > 0 and that, when d ≥ 2, ∆

corresponds to the distance from r to Fd−1 in L2(µ), that is

∆ = inf
f∈Fd−1

‖ f − r‖2
µ . (4.8)

Equations (4.5) and (4.8) are proved in Appendix B.

Based on (4.6), one may construct a natural estimate of d. First we introduce
the empirical counterpart of the risk R` defined in (4.4) by setting

R̂` := inf
f∈F`

1
n

n

∑
i=1

(
Yi1{|Yi| ≤ an}− f (Xi)

)2
,
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where (an) denotes an increasing sequence of positive numbers. Then, given a
decreasing sequence of positive numbers (bn), we define the estimate

d̂ := min
{
`= 1, . . . , p : R̂` ≤ R̂p +bn

}
. (4.9)

The asymptotic behavior of d̂ is given by the following result.

Theorem 4.1. Suppose that:

(1) β ≥ 1,
(2) There exists C > 0 and 0 < s≤ p/β such that H (ε,H )≤Cε−s for all ε > 0,
(3) Assumption (A) is satisfied.
Suppose that an = nu and bn = n−u′ where u > 0, where u′ ≥ 0 and where

0 < 2u+u′ <
2β

2β + p
.

Then the following two statements hold:

(i) For all ϑ > 0 we have

lim
n→+∞

nϑ sup
P∈D

P
(

d̂ > d
)
= 0.

(ii) For all δ > 0 and for all ϑ > 0 we have

lim
n→+∞

nϑ sup
P∈D(δ )

P
(

d̂ < d
)
= 0,

where we have denoted D(δ ) :=
{

P ∈D : ∆≥ δ
}
.

Theorem 4.1 reveals that for all δ > 0, the estimate d̂ converges exponentially
fast to d, uniformly for all P ∈D(δ ). This is not the case for δ = 0, as shown by
the following theorem.

Theorem 4.2. Let D0 ⊂D be an arbitrary subset of D such that

inf
{

∆ : P ∈D0
}
= 0.

Under the conditions of Theorem 4.1 and for all ϑ > 0 we have

sup
P∈D0

P
(

d̂ < d
)
≥ 1− 1

nϑ
,

provided n is large enough.
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Now we apply these results to the estimation of the regression function. First,
for all ` ∈ {1, . . . , p}, let f̂` be defined as any element in F` satisfying

f̂` ∈ argmin
f∈F`

1
n

n

∑
i=1

(
Yi1{|Yi| ≤ Tn}− f (Xi)

)2
, (4.10)

where Tn is defined as in (3.4). Our next result proves that the estimate f̂ defined
by

f̂ := f̂d̂, (4.11)

adapts to the reduced dimension d in the sense that for all δ > 0 and uniformly
for all P ∈D(δ ) it converges to r at a rate depending only on d.

Theorem 4.3. Suppose that:

(1′) β ≥ 1 and β > p/2,
(2′) For all ` ∈ {1, . . . , p}, there exists C > 0 and 0 < s ≤ `/β such that for all
ε > 0 we have H (ε,H`)≤Cε−s,
(3) Assumption (A) is satisfied.
Suppose that an = nu and bn = n−u′ where u > 0, where u′ ≥ 0 and where

0 < 2u+u′ <
2β

2β + p
.

Then for all δ > 0 we have

limsup
n→+∞

sup
P∈D(δ )

υ
−2
n,d E

(
f̂ (X)−E(Y |X)

)2
<+∞,

where it is understood that d = dP.

Theorem 4.3 shows that the estimate f̂ defined in (4.11) converges to r as fast
as the estimate f̂d one would choose if the true value of the reduced dimension
d where known as exposed in Section 3. Therefore, for all δ > 0, the estimate f̂
adapts to the reduced dimension d, uniformly over all P ∈ D(δ ). Note that for
condition (2′) to be satisfied for all ` ∈ {1, . . . , p}, it is sufficient to impose that
H(ε,H )≤Cε−s for some C > 0 and some 0 < s≤ 1/β . For example, this con-
dition is satisfied when H is chosen as in Example (3.2).

The condition β > p/2 in Theorem 4.3 allows adaptation for all values of
d ∈ {1, . . . , p}. We do not know whether this result holds for β ≤ p/2. That being
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said, if adaptation is required only for small dimensions we have the following
result. For all β ≥ 1 and all δ > 0, by considering the smaller class

D(δ ,β ) := D(δ )∩
{

P ∈D : d ≤ `β

}
,

where
`β := [2β ]−1,

and where [x] stands for the greatest integer smaller or equal to x, we obtain readily
that

limsup
n→+∞

sup
P∈D(δ ,β )

υ
−2
n,d E

(
f̂ (X)−E(Y |X)

)2
<+∞.

Finaly, note that if the exponential moment condition (2.5) is replaced by a bound-
edness assumption on Y , then Theorem 4.3 holds with υn,d replaced by n−β/(2β+d).

5 Proofs

5.1 Proof of Theorem 3.1
Lemma 5.1. Assume β ≥ 1. Then for all ε > 0 we have

H (ε,F )≤ sup
h∈H

H
(

ε

2 ,G ◦h
)
+H

(
ε

2L ,H
)
.

Proof – We fix ε > 0 and let Q be any probability measure with support in X .
We denote

N := N
(

ε

2L ,H ,Q
)
,

and choose an ε

2L -covering of H with respect to ‖.‖Q of minimum cardinality
{h1, . . . ,hN}. For all i ∈ {1, . . . ,N}, let

Ni := N
(

ε

2 ,G ◦hi,Q
)
,

and let {gi
1 ◦ hi, . . . ,gi

Ni
◦ hi} be an ε

2 -covering of G ◦ hi with respect to ‖.‖Q.
Then, let g ∈ G and h ∈ H be chosen arbitrarily. By definition, there exists
i ∈ {1, . . . ,N} and j ∈ {1, . . . ,Ni} such that√∫

‖h−hi‖2dQ≤ ε

2L and

√∫ (
g◦hi−gi

j ◦hi

)2
dQ≤ ε

2 .
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Therefore, we have√∫ (
g◦h−gi

j ◦hi

)2
dQ

≤
√∫

(g◦h−g◦hi)
2 dQ+

√∫ (
g◦hi−gi

j ◦hi

)2
dQ

≤
√∫

(g◦h−g◦hi)
2 dQ+

ε

2
.

According to the mean value Theorem, all g ∈ G are L-Lipschitz. Therefore, we
have √∫ (

g◦h−gi
j ◦hi

)2
dQ ≤

√∫
(g◦h−g◦hi)

2 dQ+
ε

2

≤ L

√∫
‖h−hi‖2dQ+

ε

2
≤ ε. (5.1)

As a result, we have obtained that

N (ε,F ,Q) ≤
∣∣∣{gi

j ◦hi : i ∈ {1, . . . ,N}, j ∈ {1, . . . ,Ni}
}∣∣∣

=
N

∑
i=1

Ni

≤ sup
h∈H

N
(

ε

2 ,G ◦h,Q
)

N
(

ε

2L ,H ,Q
)
,

which implies that

H (ε,F ,Q) ≤ ln
(

sup
h∈H

N
(

ε

2 ,G ◦h,Q
))

+H
(

ε

2L ,H ,Q
)

= sup
h∈H

H
(

ε

2 ,G ◦h,Q
)
+H

(
ε

2L ,H ,Q
)
,

by continuity. Taking the supremum over all probability measures Q with finite
support in X , we obtain the expected result. �

Lemma 5.2. Suppose β ≥ 1. Suppose there exists a constant C > 0 and 0 <
s ≤ `/β such that for all ε > 0 we have H (ε,H ) ≤ Cε−s. Then, there exists a
constant A > 0 depending only on `, β , L and R such that for all ε > 0 we have

H (ε,F )≤ Aε
−`/β .
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Proof –According to Lemma 5.1, we only need to prove that there exists a constant
A > 0 depending only on `, β , L and R such that for all ε > 0 we have

sup
h∈H

H (ε,G ◦h)≤ Aε
−`/β .

To that aim, fix a probability measure Q with support in X and h ∈H . For all
g ∈ G , let gh be the restriction of g to S(h)∩B and let Gh := {gh : g ∈ G }. Then,
from the transfer theorem, for all ε > 0 we have

H (ε,G ◦h,Q) = H
(
ε,Gh,Q◦h−1) ,

where for any Borel set A⊂ S : Q◦h−1(A) := Q(h−1(A)). Since S(h) is a vector
space of dimension `′ ≤ `, S(h)∩B may be identified to the open Euclidean ball
B`′ in R`′ with radius R and center the origin. Also, Q ◦ h−1 may be seen as of
support in B`′ and Gh as a subset of

G`′ :=
{

g ∈ C bβc(B`′) : ‖g‖β ≤ L
}
,

where here ‖.‖β is defined as in (2.3) but with the Euclidean norm in R`′ . Accord-
ing to Theorem 9.19 in Kosorok (2008), we know that there exists a constant K′

depending only on `′, β , R, and L such that for all ε > 0 we have

sup
D

H (ε,G`′,D)≤ K′ε−`
′/β ,

where the supremum is taken over all probability distributions D in R`′ . Since
`′ ≤ ` and since supD H (ε,G`′,D) is equal to 0 for ε sufficiently large, we deduce
finally that there exists a constant K depending only on `, β , R, and L such that
for all ε > 0 we have

sup
D

H (ε,G`′,D)≤ Kε
−`/β ,

where the supremum is taken over all probability distributions D in R`′ . Hence,
we deduce that for all ε > 0 we have

H(ε,G ◦h,Q)≤ Kε
−`/β .

Since the result holds uniformly for h ∈H and for Q with support in X , we
deduce finally that for all ε > 0 we have

sup
h∈H

H (ε,G ◦h)≤ Kε
−`/β ,

14



which completes the proof. �

Proof of Theorem 3.1

Let P ∈D . In the proof, C > 0 will denote a constant depending only on `, β ,
R and L and which value may change from line to line. We denote

rn(x) := E(Y 1{|Y | ≤ Tn}|X = x) .

We have

E
(

f̂ (X)−E(Y |X)
)2 ≤ 2E

(
f̂ (X)− rn(X)

)2
+2E(rn(X)−E(Y |X))2 . (5.2)

Using Theorem A.1 of the Appendix with ε := 1, Z :=Y 1{|Y | ≤ Tn} and Lemma
5.2, we deduce that there exists a constant C > 0 such that

E
(

f̂ (X)− rn(X)
)2

≤ 2 inf
f∈F

E( f (X)− rn(X))2 +C
(
(Tn +L)2

n

)2β/(2β+`)

+C
(
(Tn +L)2

n

)
≤ 2E(rn(X)−E(Y |X))2 +C

(
(Tn +L)2

n

)2β/(2β+`)

+C
(
(Tn +L)2

n

)
,

where in the second inequality we have used the fact that r ∈F . Since Tn goes to
+∞ and T 2

n /n goes to 0 as n goes to +∞, we deduce that there exists a constant
C > 0 and an integer n0 depending only on L, β and ` such that n ≥ n0 implies
that

E
(

f̂ (X)− rn(X)
)2 ≤ 2E(rn(X)−E(Y |X))2 +C

(
T 2

n
n

)2β/(2β+`)

. (5.3)

We deduce from (5.2) and (5.3) that there exists a constant C > 0 such that for all
n≥ n0 we have

E
(

f̂ (X)−E(Y |X)
)2 ≤ 6E(rn(X)−E(Y |X))2 +C

(
T 2

n
n

)2β/(2β+`)

. (5.4)

Using Jensen’s inequality and Cauchy-Schwarz’s inequality, we have

E(rn(X)−E(Y |X))2 = E
[
E(Y 1{|Y | ≤ Tn}|X)−E(Y |X)

]2
= E

[
E(Y 1{|Y |> Tn}|X)

]2
≤ E

(
Y 21{|Y |> Tn}

)
≤
√
EY 4

√
P(|Y |> Tn). (5.5)

15



Then, using the fact that for all u ∈ R we have

(τu)4

4!
≤ eτ|u|,

we deduce from the exponential moment condition (2.5) that

EY 4 ≤ 4!
τ4Eeτ|Y | ≤ 24B

τ4 . (5.6)

Using Markov’s inequality and the exponential moment condition (2.5), we obtain
that

P(|Y |> Tn) = P
(

eτ|Y | > eτTn
)
≤ Be−τTn. (5.7)

Combining (5.6) and (5.7) we deduce from (5.5) that

E(rn(X)−E(Y |X))2 ≤
√

24B
τ2 e−τTn/2. (5.8)

Equations (5.4) and (5.8) imply that there exists a constant C > 0 such that for all
n≥ n0 we have

E
(

f̂ (X)−E(Y |X)
)2 ≤ 6

√
24B

τ2 e−τTn/2 +C
(

T 2
n
n

)2β/(2β+`)

. (5.9)

Since the integer n0 and the constants involved on the right hand side of (5.9) do
not depend on P ∈ D , we deduce that there exists a constant C > 0 such that for
all n≥ n0 we have

sup
P∈D

E
(

f̂ (X)−E(Y |X)
)2 ≤ 6

√
24B

τ2 e−τTn/2 +C
(

T 2
n
n

)2β/(2β+`)

.

Since α > 2, the choice of Tn = (lnn)α/2 leads to

e−τTn/2 �
n→+∞

(
T 2

n
n

)2β/(2β+`)

= υ
2
n,`.

It follows that

limsup
n→+∞

υ
−2
n,` sup

P∈D
E
(

f̂ (X)−E(Y |X)
)2

<+∞.

The proof is complete. �
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5.2 Proof of Theorem 3.3
Let D◦ be the class of distributions P of (X ,Y ) where X is of distribution µ , where

Y = f (X)+ξ ,

for f ∈F and where ξ is independent from X and with distribution N (0,σ2). It
may be easily verified that the exponential moment condition (2.5) holds in this
context so that we have D◦ ⊂D . Therefore, it is clear that

inf
f̂

sup
P∈D◦

E
(

f̂ (X)−E(Y |X)
)2 ≤ inf

f̂
sup
P∈D

E
(

f̂ (X)−E(Y |X)
)2
.

As a result, in order to prove Theorem 3.3 we need only to prove that

liminf
n→+∞

n2β/(2β+`) inf
f̂

sup
P∈D◦

E
(

f̂ (X)−E(Y |X)
)2

> 0. (5.10)

According to Theorem 6 in Yang and Barron (1999), inequality (5.10) is satisfied
provided there exists a lower bound N(ε) for the covering number N (ε,F ,µ)
such that any εn satisfying

lnN(εn) = nε
2
n ,

is of order n−β/(2β+`). To obtain such a lower bound, let h ∈H satisfying the
conditions of Theorem 3.3. Then, we have

{
g ◦ h : g ∈ G

}
⊂F which implies

that for all ε > 0 we have

N (ε,F ,µ)≥ N
(
ε,
{

g◦h : g ∈ G
}
,µ
)
. (5.11)

The right hand side of inequality (5.11) may be lower bounded as follows. For all
g ∈ G , let gh be the restriction of g to S(h)∩B. Then, for all g,g′ ∈ G , we have

‖g◦h−g′ ◦h‖2
µ =

∫
(g◦h(x)−g′ ◦h(x))2

µ(dx)

=
∫
(gh(u)−g′h(u))

2
µ ◦h−1(du)

≥ c
∫
(gh(u)−g′h(u))

2
λh(du), (5.12)

where in (5.12) we have used (3.9). Hence, for all ε > 0 we have

N
(
ε,
{

g◦h : g ∈ G
}
,µ
)
≥ N

(
ε

c ,Gh,λh
)
, (5.13)
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where we have denoted Gh := {gh : g ∈ G }. Now, let us identify S(h)∩B to the
open Euclidean ball in R` with center the origin and radius R` and λh to the
Lebesgue measure in R`. Then, according to Corollary 2.4 of chapter 15 in the
book by Lorentz et al (1996), there exists a constant c′ > 0 such that for all ε > 0,
we have

lnN
(

ε

c ,Gh,λh
)
≥ c′ε−`/β . (5.14)

Combining (5.11), (5.13) and (5.14) we deduce that

lnN (ε,F ,µ)≥ c′ε−`/β =: lnN(ε).

It may be easily verified that the solution εn of c′ε−`/β
n = nε2

n is given by a constant
times n−β/(2β+`), and this concludes the proof. �

5.3 Proof of Theorem 4.1
Lemma 5.3. Suppose β ≥ 1 and suppose there exists a constant C > 0 and 0 <
s ≤ p/β such that for all ε > 0 we have H (ε,H ) ≤ Cε−s. Suppose an = nu

and bn = n−u′ with u > 0, u′ ≥ 0 and 0 < 2u+ u′ < 2β/(2β + p). Then for all
` ∈ {1, . . . , p} and for all ϑ > 0 we have

lim
n→+∞

nϑ sup
P∈D

P
(∣∣R̂`−R`

∣∣≥ bn

)
= 0.

Proof – Let
R̃` := inf

f∈F`

E(Y an− f (X))2 ,

where Y an := Y 1{|Y | ≤ an}. We have

|R̂`−R`| ≤ |R̂`− R̃`|+ |R̃`−R`|

≤ sup
f∈F

∣∣∣∣1n n

∑
i=1

(
Y an

i − f (Xi)
)2−E(Y an− f (X))2

∣∣∣∣
+ sup

f∈F

∣∣∣E(Y an− f (X))2−E(Y − f (X))2
∣∣∣ . (5.15)

Using Cauchy-Schwarz’s inequality we obtain that for all f ∈F , we have∣∣∣E(Y an− f (X))2−E(Y − f (X))2
∣∣∣

= |E(Y an +Y −2 f (X))(Y an−Y )|
≤ E [|Y an +Y −2 f (X)| |Y an−Y |]

≤
√

E(Y an +Y −2 f (X))2
√
E(Y an−Y )2. (5.16)
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Using the fact that for all u ∈ R and for every positive integer k we have

(τu)k

k!
≤ eτ|u|,

we deduce from the exponential moment condition (2.5) that for every positive
integer k we have

EY k ≤ k!
τkEeτ|Y | ≤ k!B

τk . (5.17)

Then, using Minkowski’s inequality and the fact that all functions f ∈ F are
bounded by L, we deduce that√

E(Y an +Y −2 f (X))2 ≤ 2
√
EY 2 +2

√
E f (X)2

≤ 2

√
2!
τ2Eeτ|Y |+2L

≤ 2

√
2B
τ2 +2L. (5.18)

Using Markov’s inequality and the exponential moment condition (2.5) we obtain
that

P(|Y |> an) = P
(

eτ|Y | > eτan
)
≤ Be−τan. (5.19)

Then, using Cauchy-Schwarz’s inequality and equations (5.17) and (5.19) we de-
duce that

E(Y an−Y )2 = E
(
Y 21{|Y |> an}

)
≤
√
EY 4

√
P(|Y |> an)

≤
√

4!
τ4Eeτ|Y |

√
P
(

eτ|Y | > eτan

)
≤ B

√
24
τ4 e−τan/2. (5.20)

Hence, combining (5.16), (5.18) and (5.20) we deduce that

sup
f∈F

∣∣∣E(Y an− f (X))2−E(Y − f (X))2
∣∣∣ ≤ √(

2
√

2B
τ

+2L
)√(

B
√

24
τ2

)
e−τan/4

=: Ue−τan/4.
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Therefore, denoting by κn := bn−Ue−τan/4 and

F̄ an :=
{
(x,y) 7→ (y1{|y| ≤ an}− f (x))2 : f ∈F

}
,

we deduce from (5.15) and Theorem 9.1 in the book by Györfi et al. (2002) that
there exists a universal constant C > 0 such that

P
(
|R̂`−R`| ≥ bn

)
≤ P

(
sup
f∈F

∣∣∣∣1n n

∑
i=1

(
Y an

i − f (Xi)
)2−E(Y an− f (X))2

∣∣∣∣≥ κn

)

≤ CE
[
N1
(

κn
C ,F̄ an,Pn

)]
e
− nκ2

n
C(an+L)4 , (5.21)

where Pn := n−1
∑

n
i=1 δ(Xi,Yi) denotes the empirical distribution associated with the

sample (X1,Y1), . . . ,(Xn,Yn) and where N1(ε,C ,Q) denotes the minimal number
of metric balls of radius ε in L1(Q) that are needed to cover C . For all f , f ′ ∈F
we have

1
n

n

∑
i=1

∣∣∣(Y an
i − f (Xi)

)2−
(
Y an

i − f ′(Xi)
)2
∣∣∣

=
1
n

n

∑
i=1
|2Y an

i − f (Xi)− f ′(Xi)|| f (Xi)− f ′(Xi)|

≤ 2(an +L)
n

n

∑
i=1

∣∣ f (Xi)− f ′(Xi)
∣∣

≤ 2(an +L)

{
1
n

n

∑
i=1

(
f (Xi)− f ′(Xi)

)2

}1/2

.

Therefore, we obtain that

N1
(

κn
C ,F̄ an,Pn

)
≤ N

(
κn

2C(an+L) ,F ,µn

)
,

where µn := n−1
∑

n
i=1 δXi . Hence, we deduce from (5.21) and Lemma 5.2 that

there exists a universal constant C > 0 such that

P
(
|R̂`−R`| ≥ bn

)
≤C exp

((
C(an +L)

κn

)p/β

− nκ2
n

C(an +L)4

)
. (5.22)

Recalling that an = nu, that bn = n−u′ and that κn = bn−Ue−τan/4, it follows that
there exists a universal constant C > 0 such that

sup
P∈D

P
(
|R̂`−R`| ≥ bn

)
≤C exp

(
n(u+u′)p/β −n1−2u′−4u

)
. (5.23)
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Consequently, the term on the left hand side of (5.23) converges exponentially fast
to 0 as n goes to +∞ provided

(1−2u′−4u)> (u+u′)
p
β
,

which is implied by

0 < 2u+u′ <
2β

2β + p
.

The proof is complete. �

Proof of Theorem 4.1

Let P ∈ D . Since the function ` 7→ R̂` is non increasing, for all integer q ∈
{1, . . . , p} and all n≥ 1 we have

min
{
`= 1, . . . , p : R̂`− R̂p ≤ bn

}
≤ q ⇔ R̂q− R̂p ≤ bn. (5.24)

Therefore, using the fact that Rd = Rp, we obtain that

P
(

d̂ > d
)

= P
(

min
{
`= 1, . . . , p : R̂`− R̂p ≤ bn

}
> d
)

= P
(

R̂d− R̂p > bn

)
= P

((
R̂d−Rd

)
+
(
Rp− R̂p

)
> bn

)
≤ P

(
|R̂d−Rd| ≥ bn

2

)
+P
(
|R̂p−Rp| ≥ bn

2

)
.

Using Lemma 5.3, we deduce that for all ϑ > 0 we have

lim
n→+∞

nϑ sup
P∈D

P
(
|R̂d−Rd| ≥ bn

2

)
= 0,

and
lim

n→+∞
nϑ sup

P∈D
P
(
|R̂p−Rp| ≥ bn

2

)
= 0,

which gives
lim

n→+∞
nϑ sup

P∈D
P
(

d̂ > d
)
= 0. (5.25)

21



Now let P ∈D(δ ) and assume d ≥ 2. Using the fact that Rd−1−Rp = ∆≥ δ and
provided n is large enough to have δ −bn ≥ bn, we obtain that

P
(

d̂ < d
)

= P
(

min
{
`= 1, . . . , p : R̂`− R̂p ≤ bn

}
≤ d−1

)
= P

(
R̂d−1− R̂p ≤ bn

)
= P

((
R̂d−1−Rd−1

)
+∆+

(
Rp− R̂p

)
≤ bn

)
≤ P

((
Rd−1− R̂d−1

)
+
(
R̂p−Rp

)
≥ δ −bn

)
≤ P

((
Rd−1− R̂d−1

)
+
(
R̂p−Rp

)
≥ bn

)
≤ P

(
|R̂d−1−Rd−1| ≥ bn

2

)
+P
(
|R̂p−Rp| ≥ bn

2

)
.

From the same argument as in the beginning of the proof, we have

lim
n→+∞

nϑ sup
P∈D(δ )

P
(

d̂ < d
)
= 0,

which concludes the proof. �

5.4 Proof of Theorem 4.2
Since we have

inf
{

∆ : P ∈D0
}
= 0,

for all ε > 0 there exists P(ε) ∈D0 such that

∆P(ε) ≤ ε.

For all n≥ 1 let
Qn := P(bn/2).

Now assume that the sample (X1,Y1), . . . ,(Xn,Yn) is drawn from Qn and let d̂ be
defined by

d̂ := min
{
` : R̂` ≤ R̂p +bn

}
.
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Then, we obtain as in the proof of Theorem 4.1 that

P
(

d̂ < d
)

= P
(

min
{
`= 1, . . . , p : R̂`− R̂p ≤ bn

}
≤ d−1

)
= P

(
R̂d−1− R̂p ≤ bn

)
= P

((
R̂d−1−Rd−1

)
+∆Qn +

(
Rp− R̂p

)
≤ bn

)
≥ P

((
R̂d−1−Rd−1

)
+ bn

2 +
(
Rp− R̂p

)
≤ bn

)
= P

((
R̂d−1−Rd−1

)
+
(
Rp− R̂p

)
≤ bn

2

)
≥ 1−P

((
R̂d−1−Rd−1

)
+
(
Rp− R̂p

)
≥ bn

2

)
≥ 1−P

(
|R̂d−1−Rd−1| ≥ bn

4

)
−P
(
|R̂p−Rp| ≥ bn

4

)
.

According to Lemma 5.3, we know that for all ϑ > 0 we have

lim
n→+∞

nϑP
(
|R̂d−1−Rd−1| ≥ bn

4

)
= 0 and lim

n→+∞
nϑP

(
|R̂p−Rp| ≥ bn

4

)
= 0.

As a result, there exists an integer n0 such that for all n≥ n0 we have

P
(
|R̂d−1−Rd−1| ≥ bn

4

)
≤ 1

2nϑ
and P

(
|R̂p−Rp| ≥ bn

4

)
≤ 1

2nϑ
.

Therefore, for all n≥ n0, we have

sup
P∈D0

P
(

d̂ < d
)
≥ P(X ,Y )∼Qn

(
d̂ < d

)
≥ 1− 1

nϑ
,

which concludes the proof. �

5.5 Proof of Theorem 4.3
Let δ > 0 and P ∈D(δ ). We have

E
(

f̂ (X)−E(X |Y )
)2

= E
[
1
{

d̂ 6= d
}(

f̂ (X)−E(X |Y )
)2
]

+ E
[
1
{

d̂ = d
}(

f̂ (X)−E(X |Y )
)2
]
. (5.26)

Since both f̂ and r belong to F , they are bounded by L and therefore we have

E
[
1
{

d̂ 6= d
}(

f̂ (X)−E(X |Y )
)2
]
≤ 4L2P

(
d̂ 6= d

)
. (5.27)

23



Then, we observe that

E
[
1
{

d̂ = d
}(

f̂ (X)−E(X |Y )
)2
]

= E
[
1
{

d̂ = d
}(

f̂d(X)−E(Y |X)
)2
]

≤ E
(

f̂d(X)−E(Y |X)
)2
. (5.28)

Hence, we deduce from (5.26), (5.27) and (5.28) that

υ
−2
n,d E

(
f̂ (X)−E(X |Y )

)2 ≤ 4L2
υ
−2
n,d P

(
d̂ 6= d

)
+ υ

−2
n,d E

(
f̂d(X)−E(Y |X)

)2
. (5.29)

According to the proof of Theorem 3.1, there exists a constant C > 0 depending
only on τ , B, β , R and L such that

υ
−2
n,d E

(
f̂d(X)−E(Y |X)

)2 ≤C. (5.30)

In particular, since this constant C does not depend on P ∈D we obtain that

sup
P∈D(δ )

υ
−2
n,d E

(
f̂d(X)−E(Y |X)

)2 ≤C. (5.31)

Then, we deduce from Theorem 4.1 that

sup
P∈D(δ )

υ
−2
n,d P

(
d̂ 6= d

)
≤ υ

−2
n,1 sup

P∈D(δ )

P
(

d̂ 6= d
)
→

n→+∞
0. (5.32)

Finally, it follows from (5.29), (5.31) and (5.32) that there exists a constant de-
pending only on τ , B, β , R and L such that

limsup
n→+∞

sup
P∈D(δ )

υ
−2
n,d E

(
f̂ (X)−E(Y |X)

)2 ≤C,

which concludes the proof. �
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A Performance of least-squares estimates
Let (X ,Z) be an X ×R-valued random variable of distribution P where X de-
notes a metric space. We fix T > 0 and assume that |Z| ≤ T . Let µ be the distri-
bution of X . For x ∈X we set

f∗(x) := E(Z|X = x). (A.1)

Let L > 0 be fixed and F be a class of functions f : X → R such that

sup
x∈X
| f (x)| ≤ L. (A.2)

Let (X1,Z1), . . . ,(Xn,Zn) be a sample of n independent and identically distributed
random variables with distribution P. The least-squares estimate fn of f∗ is defined
as any element in F satisfying

fn ∈ argmin
f∈F

1
n

n

∑
i=1

(Zi− f (Xi))
2 .

Implicitly, it is assumed that such an element exists. Following the lines devised
in Koltchinskii (2006), we establish the following result. The proof may be found
in the supplementary material Paris (2012).

Theorem A.1. Let 0 < s < 2 and assume there exists A > 0 such that for all u > 0
we have H(u,F )≤ Au−s. Then, there exists a constant C depending only on s, A
and L such that for all ε ∈ (0,1] we have

E‖ fn− f∗‖2
µ ≤ (1+ ε) inf

f∈F
‖ f − f∗‖2

µ +Cε
− 2−s

2+s

(
b
n

) 2
2+s

+
C
ε

(
b
n

)
,

where b := (T +L)2.

25



B Reduced dimension d and parameter ∆

In this appendix, we prove equations (4.5) and (4.8). First, observe that since F`

is compact in L2(µ) and since r ∈F , we have

r ∈F` ⇔ inf
f∈F`

E( f (X)− r(X))2 = 0

⇔ inf
f∈F`

E(Y − f (X))2−E(Y − r(X))2 = 0

⇔ inf
f∈F`

E(Y − f (X))2− inf
f∈F

E(Y − f (X))2 = 0

⇔ R` = Rp.

Therefore, since the function ` ∈ {1, . . . , p} 7→ R` is non-increasing, we deduce
that

d := min
{
` : r ∈F`

}
= min

{
` : R` = Rp

}
,

which proves equation (4.5). Using (4.5) and the fact that r ∈F we obtain that

∆ = min
{

R`−Rp : R` > Rp

}
= Rd−1−Rp

= inf
f∈Fd−1

E(Y − f (X))2− inf
f∈F

E(Y − f (X))2

= inf
f∈Fd−1

E(Y − f (X))2−E(Y − r(X))2

= inf
f∈Fd−1

E( f (X)− r(X))2

= inf
f∈Fd−1

‖ f − r‖2
µ ,

which proves (4.8).
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