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The degrees of freedom of the Group Lasso
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Abstract In this paper, we are concerned with regression problems where
covariates can be grouped in nonoverlapping blocks, and where only a few of
them are assumed to be active. In such a situation, the group Lasso is an at-
tractive method for variable selection since it promotes sparsity of the groups.
We study the sensitivity of any group Lasso solution to the observations and
provide its precise local parameterization. When the noise is Gaussian, this
allows us to derive an unbiased estimator of the degrees of freedom of the
group Lasso. This result holds true for any fixed design, no matter whether it
is under- or overdetermined. With these results at hand, various model selec-
tion criteria, such as the Stein Unbiased Risk Estimator (SURE), are readily
available which can provide an objectively guided choice of the optimal group
Lasso fit.
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1 Introduction

1.1 Group Lasso

Consider the linear regression problem

y = Xβ0 + ε, (1)

where y ∈ R
n is the response vector, β0 ∈ R

p is the unknown vector of re-
gression coefficients to be estimated, X ∈ R

n×p is the design matrix whose
columns are the p covariate vectors, and ε is the error term. In this paper, we
do not make any specific assumption on the number of observations n with
respect to the number of predictors p. Recall that when n < p, (1) is an under-
determined linear regression model, whereas when n > p and all the columns
of X are linearly independent, it is overdetermined.

Regularization is now a central theme in many fields including statistics,
machine learning and inverse problems. It allows to reduce the space of can-
didate solutions by imposing some prior structure on the object to be esti-
mated. This regularization ranges from squared Euclidean or Hilbertian norms
(Tikhonov and Arsenin 1997), to non-Hilbertian norms that have sparked
considerable interest in the recent years. Of particular interest are sparsity-
inducing regularizations such as the ℓ1 norm which is an intensively active area
of research, e.g. (Tibshirani 1996; Osborne et al 2000; Donoho 2006; Candès
and Plan 2009; Bickel et al 2009); see (Bühlmann and van de Geer 2011) for
a comprehensive review. When the covariates are assumed to be clustered in
a few active groups/blocks, the group Lasso has been advocated since it pro-
motes sparsity of the groups, i.e. it drives all the coefficients in one group to
zero together hence leading to group selection, see (Bakin 1999; Yuan and Lin
2006; Bach 2008; Wei and Huang 2010) to cite a few.

Let B be a disjoint union of the set of indices i.e.
⋃

b∈B = {1, . . . , p} such
that b, b′ ∈ B, b∩b′ = ∅. For β ∈ R

p, for each b ∈ B, βb = (βi)i∈b is a subvector
of β whose entries are indexed by the block b, and |b| is the cardinality of b.
The group Lasso amounts to solving

β̂(y) ∈ argmin
β∈Rp

1

2
||y −Xβ||2 + λ

∑

b∈B

||βb||, (Pλ(y))

where λ > 0 is the regularization parameter and || · || is the (Euclidean) ℓ2-
norm. By coercivity of the penalty norm, the set of minimizers of (Pλ(y)) is a
nonempty convex compact set. Note that the Lasso is a particular instance of
(Pλ(y)) that is recovered when each block b is of size 1.

1.2 Degrees of Freedom

We focus in this paper on sensitivity analysis of any solution to (Pλ(y)) with
respect to the observations y and the regularization parameter λ. This turns
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out to be a central ingredient to compute an estimator of the degrees of freedom
(DOF) of the group Lasso response. The DOF is usually used to quantify the
complexity of a statistical modeling procedure (Efron 1986).

More precisely, let µ̂(y) = Xβ̂(y) be the response or the prediction asso-

ciated to an estimator β̂(y) of β0, and let µ0 = Xβ0. We recall that µ̂(y) is

always uniquely defined (see Lemma 2), although β̂(y) may not as is the case
when X is a rank-deficient or underdetermined design matrix. Suppose that ε
is an additive white Gaussian noise ε ∼ N (0, σ2Idn). Following (Efron 1986),
the DOF is given by

df =

n∑

i=1

cov(yi, µ̂i(y)])

σ2
.

The well-known Stein’s lemma asserts that, if µ̂(y) is a weakly differentiable
function for which

Eε

(∣∣∣∣
∂

∂yi
µ̂i(y)

∣∣∣∣
)

< ∞ ,

then its divergence is an unbiased estimator of its DOF, i.e.

d̂f = divµ̂(y) = tr(∂yµ̂(y)) and Eε(d̂f) = df ,

where ∂yµ̂(y) is the Jacobian of µ̂(y). It is well known that in Gaussian regres-
sion problems, an unbiased estimator of the DOF allows to get an unbiased
of the prediction risk estimation Eε||µ̂(y)− µ0||2 through e.g. the Mallow’s Cp

(Mallows 1973), the AIC (Akaike 1973) or the SURE (Stein Unbiased Risk
Estimate, Stein 1981). These quantities can serve as model selection criteria
to assess the accuracy of a candidate model.

1.3 Contributions

This paper establishes a general result (Theorem 1) on local parameterization
of any solution to the group Lasso (Pλ(y)) as a function of the observation
vector y. This local behavior result does not need X to be full column rank.
With such a result at hand, we derive an expression of the divergence of the
group Lasso response. Using tools from semialgebraic geometry, we prove that
this divergence formula is valid Lebesgue-almost everywhere (Theorem 2), and
thus, this formula is a provably unbiased estimate of the DOF (Theorem 3).
In turn, this allows us to deduce an unbiased estimate of the prediction risk
of the group Lasso through the SURE.

1.4 Relation to prior works

In the special case of standard Lasso with a linearly independent design, (Zou
et al 2007) show that the number of nonzero coefficients is an unbiased estimate
for the degrees of freedom. This work is generalized in (Dossal et al 2012) to
any arbitrary design matrix. The DOF of the analysis sparse regularization
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(a.k.a. generalized Lasso in statistics) is studied in (Tibshirani and Taylor
2012; Vaiter et al 2012b).

A formula of an estimate of the DOF for the group Lasso when the design
is orthogonal within each group is conjectured in (Yuan and Lin 2006). Its
unbiasedness is proved but only for an orthogonal design. (Kato 2009) studies
the DOF of a general shrinkage estimator where the regression coefficients are
constrained to a closed convex set C. This work extended that of (Meyer and
Woodroofe 2000) which treats the case where C is a convex polyhedral cone.
When X is full column rank, (Kato 2009) derived a divergence formula under a
smoothness condition on the boundary of C, from which he obtained an unbi-
ased estimator of the degrees of freedom. When specializing to the constrained
version of the group Lasso, the author provided an unbiased estimate of the
corresponding DOF under the same group-wise orthogonality assumption on
X as (Yuan and Lin 2006). An estimate of the DOF for the group Lasso is
also given by (Solo and Ulfarsson 2010) using heuristic derivations that are
valid only when X is full column rank, though its unbiasedness is not proved.

In (Vaiter et al 2012a), we derived an estimator of the DOF of the group
Lasso and proved its unbiasedness when X is full column rank, but without
the orthogonality assumption required in (Yuan and Lin 2006; Kato 2009).
In this paper, we remove the full column rank assumption, which enables us
to tackle the much more challenging rank-deficient or underdetermined case
where p > n.

1.5 Notations

We start by some notations used in the rest of the paper. We extend the notion
of support, commonly used in sparsity by defining the B-support suppB(β) of
β ∈ R

n as
suppB(β) = {b ∈ B \ ||βb|| 6= 0} .

The size of suppB(β) is defined as | suppB(β)| =
∑

b∈B |b|. The set of all B-
supports is denoted I. We denote by XI , where I is a B-support, the matrix
formed by the columns Xi where i is an element of b ∈ I. To lighten the no-
tation in our derivations, we introduce the following block-diagonal operators

δβ : v ∈ R
|I| 7→ (vb/||βb||)b∈I ∈ R

|I|

and Pβ : v ∈ R
|I| 7→ (Projβ⊥

b
(vb))b∈I ∈ R

|I| ,

where Projβ⊥
b
= Id− βbβ

T
b is the orthogonal projector on β⊥

b . For any matrix

A, AT denotes its transpose.

1.6 Paper organization

The paper is organized as follows. Sensitivity analysis of the group Lasso solu-
tions to perturbations of the observations is given in Section 2. Then we turn to
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the degrees of freedom and unbiased prediction risk estimation in Section 3.
The proofs are deferred to Section 4 awaiting inspection by the interested
reader.

2 Local Behavior of the Group Lasso

The first difficulty we need to overcome when X is not full column rank is
that β̂(y) is not uniquely defined. Toward this goal, we are led to impose the
following assumption on X with respect to the block structure.

Assumption (A(β)) : Given a vector β ∈ R
p of B-support I, we assume that

the finite subset of vectors {Xbβb \ b ∈ I} is linearly independent.

It is important to notice that (A(β)) is weaker than imposing that XI is
full column rank, which is standard when analyzing the Lasso. The two as-
sumptions coincide for the Lasso, i.e. |b| = 1, ∀b ∈ I.

Let us now turn to sensitivity of the minimizers β̂(y) of (Pλ(y)) to per-

turbations of y. Toward this end, we will exploit the fact that β̂(y) obeys an
implicit parameterization. But as optimal solutions turns out to be not every-
where differentiable, we will concentrate on a local analysis where y is allowed
to vary in a neighborhood where non-differentiability will not occur. This is
why we need to introduce the following transition space H.

Definition 1 Let λ > 0. The transition space H is defined as

H =
⋃

I⊂I

⋃

b6∈I

HI,b, where HI,b = bd(π(AI,b)),

where we have denoted

π : Rn × R
I,∗ × R

I,∗ → R
n where R

I,∗ =
∏

b∈I

(R|b| \ {0})

the canonical projection on R
n (with respect to the first component), bdC is

the boundary of the set C, and

AI,b =
{
(y, βI , vI) ∈ R

n × R
I,∗ × R

I,∗ \

||XT
b (y −XIβI)|| = λ,

XT
I (XIβI − y) + λvI = 0,

∀g ∈ I, vg =
βg

||βg||

}
.

We are now equipped to state our main sensitivity analysis result.
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Theorem 1 Let λ > 0. Let y 6∈ H, and β̂(y) a solution of (Pλ(y)). Let I =

suppB(β̂(y)) be the B-support of β̂(y) such that (A(β̂(y))) holds. Then, there

exists an open neighborhood of y O ⊂ R
n, and a mapping β̃ : O → R

p such
that

1. For all ȳ ∈ O, β̃(ȳ) is a solution of (Pλ(ȳ)), and β̃(y) = β̂(y).

2. the B-support of β̃(ȳ) is constant on O, i.e.

∀ȳ ∈ O, suppB(β̃(ȳ)) = I,

3. the mapping β̃ is C1(O) and its Jacobian is such that ∀ȳ ∈ O,

∂ȳβ̃Ic(ȳ) = 0 and ∂ȳβ̃I(ȳ) = d(y, λ) (2)

where d(y, λ) =
(
XT

I XI + λδβ̂(y) ◦ Pβ̂(y)

)−1
XT

I (3)

and Ic = {b ∈ B \ b /∈ I} . (4)

3 Degrees of freedom and Risk Estimation

As remarked earlier and stated formally in Lemma 2, all solutions of the Lasso
share the same image under X , hence allowing us to denote the prediction µ̂(y)
without ambiguity as a single-valued mapping. The next theorem provides
a closed-form expression of the local variations of µ̂(y) with respect to the
observation y. In turn, this will yield an unbiased estimator of the degrees of
freedom and of the prediction risk of the group Lasso.

Theorem 2 Let λ > 0. For all y 6∈ H, there exists a solution β̂(y) of (Pλ(y))

with B-support I = suppB(β̂(y)) such that (A(β̂(y))) is fulfilled. Moreover,

The mapping y 7→ µ̂(y) = Xβ̂(y) is C1(Rn \ H) and,

div(µ̂(y)) = tr(XId(y, λ)) . (5)

Theorem 3 Let λ > 0. Assume y = Xβ0 + ε where ε ∼ N (0, σ2Idn). The set
H has Lebesgue measure zero, and therefore (5) is an unbiased estimate of the
DOF of the group Lasso. Moreover, an unbiased estimator of the prediction
risk Eε||µ̂(y)− µ0||2 is given by the SURE formula

SURE(β̂(y)) =||y − µ̂(y)||2 − nσ2 + 2σ2 tr(XId(y, λ)) . (6)

Although not given here explicitly, Theorem 3 can be straightforwardly
extended to unbiasedly of measures of the risk, including the projection risk,
or the estimation risk (in the full rank case) through the Generalized Stein
Unbiased Risk Estimator as proposed in (Vaiter et al 2012b).

An immediate corollary of Theorem 3 is obtained when X is orthogonal,
and without loss of generality X = Idn, i.e. µ̂(y) is the block soft thresholding
estimator. We then recover the expression found by (Yuan and Lin 2006).
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Corollary 1 If X = Idn, then

d̂f = |J | − λ
∑

b∈J

|b| − 1

||yb||

where J =
⋃
{b ∈ B \ ||yb|| > λ}. Moreover, the SURE is given by

SURE(β̂(y)) =− nσ2 + (2σ2 + λ2)|J |+
∑

b/∈J

||yb||
2 − 2σ2λ

∑

b∈J

|b| − 1

||yb||
.

4 Proofs

This section details the proofs of our results. For a vector β whose B-support
is I, we introduce the following normalization operator

N (βI) = vI where ∀b ∈ I, vb =
βb

||βb||
.

4.1 Preparatory lemmata

By standard arguments of convex analysis and using the subdifferential of the
group Lasso ℓ1− ℓ2 penalty, the following lemma gives the first-order sufficient
and necessary optimality condition of a minimizer of (Pλ(y)); see e.g. Bach
(2008).

Lemma 1 A vector β⋆ ∈ R
p is a solution of (Pλ(y)) if, and only if the fol-

lowing holds

1. On the B-support I = suppB(β
⋆),

XT
I (y −XIβ

⋆
I ) = λN (β⋆

I ).

2. For all b ∈ B such that b 6∈ I, one has

||XT
b (y −XIβ

⋆
I )|| 6 λ.

We now show that all solutions of (Pλ(y)) share the same image under the
action of X , which in turn implies that the prediction/response vector µ̂ is a
single-valued mapping of y.

Lemma 2 If β0 and β1 are two solutions of (Pλ(y)), then Xβ0 = Xβ1.

Proof Let β0, β1 be two solutions of (Pλ(y)) such that Xβ0 6= Xβ1. Take
any convex combination βρ = (1 − ρ)β0 + ρβ1, ρ ∈]0, 1[. Strict convexity of
u 7→ ||y − u||2 implies that the Jensen inequality is strict, i.e.

1

2
||y −Xβρ||2 <

1− ρ

2
||y −Xβ0||2 +

ρ

2
||y −Xβ1||2 .
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Denote the ℓ1 − ℓ2 norm ||β||B =
∑

b∈Bb ||βb||. Jensen’s inequality applied to
||·||B gives

||βρ||B 6 (1− ρ)||β0||B + ρ||β1||B .

Summing these two inequalities we arrive at
1

2
||y −Xβρ||2 + λ||βρ||B <

1

2
||y −

Xβ0||2 + λ||β0||B, a contradiction since β0 is a minimizer of (Pλ(y)).

4.2 Proof of Theorem 1

We first need the following lemma.

Lemma 3 Let β ∈ R
p and λ > 0. Assume that (A(β)) holds for I the B-

support of β. Then XT
I XI + λδβ ◦ Pβ is invertible.

Proof We prove that XT
I XI +λδβ ◦Pβ is actually symmetric definite positive.

First observe that XT
I XI and δβ ◦ Pβ are both symmetric semidefinite posi-

tive. Indeed, δβ is diagonal (with strictly positive diagonal entries), and Pβ is
symmetric since it is a block-wise orthogonal projector, and we have

〈x, δβ ◦ Pβ(x)〉 =
∑

b∈I

||Projβ⊥
b
(x)||2

||βb||
> 0, ∀x ∈ R

|I| .

The inequality becomes an equality if and only if x = βI , i.e. Ker δβ ◦ Pβ =
{βI}.

It remains to show that KerXT
I XI ∩ Ker δβ ◦ Pβ = {0}. Suppose that

βI ∈ KerXT
I XI . This is equivalent to βI ∈ KerXI since

〈βI , X
T
I XIβI〉 = ||XIβI ||

2 .

But this would mean that

XIβI =
∑

b∈I

Xbβb = 0

which is in contradiction with the linear independence assumption (A(β)). ⊓⊔

Let y 6∈ H. We define I = suppB(β̂(y)) the B-support of a solution β̂(y) of
(Pλ(y)). We define the following mapping

Γ (βI , y) = XT
I (XIβI − y) + λN (βI).

Observe that the first statement of Lemma 1 is equivalent to Γ (β̂I(y), y) = 0.
Any βI ∈ R

|I| such that Γ (βI , y) = 0 is solution of the problem

min
βI∈R|I|

1

2
||y −XIβI ||

2 + λ
∑

g∈I

||βg|| . (Pλ(y)I)

Our proof will be split in three steps. We first prove the first statement by
showing that there exists a mapping ȳ 7→ β̃(ȳ) and an open neighborhood O
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of y such that every element ȳ of O satisfies Γ (β̃I(ȳ), ȳ) = 0 and β̃Ic(ȳ) = 0.

Then, we prove the second assertion that β̃(ȳ) is a solution of (Pλ(ȳ)) for
ȳ ∈ O. Finally, we obtain (2) from the implicit function theorem.

1. The Jacobian of Γ with respect to the first variable reads on R
I,∗ × R

n

∂1Γ (βI , y) = XT
I XI + λδβI

◦ PβI
.

The mapping ∂1Γ is invertible according to Lemma 3. Hence, using the
implicit function theorem, there exists a neighborhood Õ of y such that we
can define a mapping β̃I : Õ → R

|I| which is C1(Õ), and satisfies for ȳ ∈ Õ

Γ (β̃I(ȳ), ȳ) = 0 and β̃I(y) = β̂I(y).

We then extend β̃I on Ic as β̃Ic(ȳ) = 0, which defines a continuous mapping

β̃ : Õ → R
p.

2. From the second minimality condition of Lemma 1, we have

∀b /∈ I, ||XT
b (y −XI β̂I(y))|| 6 λ.

We define the two following sets

Jsat =
{
b 6∈ I \ ||XT

b (y −XI β̂I(y))|| = λ
}
,

Jnosat =
{
b 6∈ I \ ||XT

b (y −XI β̂I(y))|| < λ
}
,

which forms a disjoint union of Ic = Jsat ∪ Jnosat.

a) By continuity of ȳ 7→ β̃I(ȳ) and since β̃I(y) = β̂I(y), we can find a

neighborhood O of y included in Õ such that

∀ ȳ ∈ O, ∀ b ∈ Jnosat, ||XT
b (ȳ −XI β̃I(ȳ))|| 6 λ.

b) Consider now a block b ∈ Jsat. Observe that the vector (y, β̂I(y),N (β̂I(y)))
is an element of AI,b. In particular y ∈ π(AI,b). Since by assumption
y 6∈ H, one has y 6∈ bd(π(AI,b)). Hence, there exists an open ball B(y, ε)
for some ε > 0 such that B(y, ε) ⊂ π(AI,b). Notice that every element
of ȳ ∈ B(y, ε) is such that there exists (β̄I , v̄I) ∈ R

I,∗ × R
I,∗ with

||XT
b (ȳ −XI β̄I)|| = λ

XT
I (XI β̄I − ȳ) + λv̄I = 0

v̄I = N (β̄I) .

Using a similar argument as in the proof of Lemma 2, it is easy to see
that all solutions of (Pλ(y)I) share the same image under XI . Thus the

vector (ȳ, β̃I(ȳ),N (β̃I(ȳ))) is an element AI,b, and we conclude that

∀ȳ ∈ B(y, ε), fI,b(ȳ) = ||XT
b (ȳ −XI β̃I(ȳ))|| = λ.

Hence, fI,b is locally constant around y on an open ball Ō.
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Moreover, by definition of the mapping β̃I , one has for all ȳ ∈ O ∩ Ō

XT
I (y −XI β̃I(ȳ)) = λN (β̃I(ȳ)) and suppB(β̃I(ȳ)) = I.

According to Lemma 1, the vector β̃(ȳ) is a solution of (Pλ(ȳ)).

3. By virtue of statement 1., we are in position to use the implicit function
theorem, and we get the Jacobian of β̃I as

∂ȳβ̃I(ȳ) = −
(
∂1Γ (β̃I(y), y)

)−1(
∂2Γ (β̃I(y), y)

)

where ∂2Γ (β̃I(y), y) = XT
I , which leads us to (2).

4.3 Proof of Theorem 2

We define the set

∆I =

{
βI ∈ R

|I| \ ∀µ ∈ R
♯I ,

∑

b∈I

µbXbβb = 0 ⇒ µ = 0

}
. (7)

where ♯I is the number of blocks in I. It is easy to see that β⋆ ∈ ∆I for I the
B-support of β⋆ if and only if (A(β⋆)).

The following lemma proves that there exists a solution β⋆ of (Pλ(y)) such
that (A(β⋆)) holds. A similar result with a different proof can be found in
(Liu and Zhang 2009).

Lemma 4 There exists a solution β⋆ of (Pλ(y)) such that β⋆ ∈ ∆I where
I = suppB(β

⋆).

Proof Let β0 be a solution of (Pλ(y)) and I = suppB(β
0) such that β0

I 6∈ ∆I .
There exists µ = (µb)b∈I ∈ R

♯I , where µb ∈ R, such that

∑

b∈I

µbXbβ
0
b = 0. (8)

Consider now the family t 7→ βt defined for every t ∈ R

∀b ∈ I, βt
b = (1 + tµb)β

0
b and βt

Ic = 0 . (9)

Consider t0 = min {|t| ∈ R \ ∃b ∈ I such that 1 + tµb = 0}. Without loss of
generality, we assume that t0 > 0. Remark that for all t ∈ [0, t0), β

t is a
solution of (Pλ(y)). Indeed, I is the B-support of βt and

XIβ
t
I = XIβ

0
I + t

∑

b∈I

µbXbβ
0
b

︸ ︷︷ ︸
=0 using (8)

= XIβ
0
I . (10)

Hence,
XT

I (y −XIβ
t
I) = XT

I (y −XIβ
0
I ) = λN (βI) = λN (βt

I),
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and

||XT
b (y −XIβ

t
I)|| = ||XT

b (y −XIβI)|| 6 λ.

Since the image of all solutions of (Pλ(y)) are equal under X , one has

Xβt = Xβ0 and ||βt||B = ||β0||B.

where ||·||B is the ℓ1 − ℓ2 norm. Consider now the vector βt0 . By continuity of
β 7→ Xβ and β 7→ ||β||B, one has

Xβt0 = Xβ0 and ||βt0 ||B = ||β0||B.

Hence, βt0 has a B-support It0 strictly included in I (in the sense that for all
b ∈ It0 one has b ∈ I) and is a solution of (Pλ(y)). Iterating this argument
with β0 = βt0 shows that there exists a solution β⋆ such that β⋆ ∈ ∆suppB(β⋆).
This concludes the proof of the lemma. ⊓⊔

According to Theorem 1, y 7→ β̂(y) is C1(Rn\H). This property is preserved
under the linear mappingX which shows that µ̂ is also C1(Rn\H). Thus, taking
the trace of the Jacobian XId(y, λ) gives the divergence formula (5) for any

solution β̂(y) such that (A(β̂(y))) holds.

4.4 Proof of Theorem 3

The next lemma shows that the transition space has zero measure.

Lemma 5 Let λ > 0. The transition space H is of zero measure with respect
to the Lebesgue measure of Rn.

Proof We obtain this result by proving that all HI,b are of zero measure for
all I and b 6∈ I, and that the union is over a finite set.

We recall from (Coste 2002) that any semialgebraic set S ⊆ R
n can be de-

composed in a disjoint union of q semialgebraic subsets Ci each diffeomorphic
to (0, 1)di . The dimension of S is thus

d = max
i∈{1,...,q}

di 6 n.

The set AI,b is an algebraic, hence a semialgebraic, set. By the fundamental
Tarski-Seidenberg principle, the canonical projection π(AI,b) is also semialge-
braic. The boundary bd(π(AI,b)) is also semialgebraic with a strictly smaller
dimension than π(AI,b)

dimHI,b = dimbd(π(AI,b)) < dimπ(AI,b) 6 n

whence we deduce that H is of zero measure with respect to the Lebesgue
measure on R

n. ⊓⊔
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As µ̂ is uniformly Lipschitz over Rn, using similar arguments as in (Meyer
and Woodroofe 2000), we get that µ̂ is weakly differentiable with an essentially
bounded gradient. Moreover, the divergence formula (5) holds valid almost ev-
erywhere, except on the set H which is of Lebesgue measure zero. We conclude
by invoking Stein’s lemma (Stein 1981) to establish unbiasedness of the esti-

mator d̂f of the DOF.
Plugging the DOF expression into that of the SURE (Stein 1981, Theo-

rem 1), we get (6).

4.5 Proof of Corollary 1

When X = Id, the solution of (Pλ(y)) is a block soft thresholding

β̂b(y) =

{
0 if ||yb|| 6 λ

(1 − λ
||yb||

)yb otherwise
. (11)

For every b ∈ J , we differentiate (11) to get

∂yβ̂b(y) : α ∈ R
|b| 7→ α−

λ

||yb||
Py⊥

b
(α),

which is consistent with expression (2). Since Py⊥
b
(α) is a projector on a sub-

space of dimension |b| − 1, one has tr(Py⊥
b
) = |b| − 1.
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