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This paper deals with sensor fault detection within a reconfigurable direct torque control of an induction motor-based electric
vehicle. The proposed strategy concerns current, voltage, and speed sensors faults that are detected and followed by post fault-
tolerant control to allow the vehicle continuous operation. The proposed approach is validated through experiments on an
induction motor drive and simulations on an electric vehicle using a European urban and extraurban driving cycle.

1. Introduction

Fault tolerance is gaining interest as a means to increase the
reliability, the availability, and the continuous operation of
electromechanical systems among them automotive ones [1,
2]. In the automotive context, electric vehicle is a key applica-
tion where the propulsion control depends on the availability
and the quality of sensor measurements. Measurements,
however, can be corrupted or interrupted due to sensor
faults. If some sensors are missing, the controllers cannot
provide the correct control actions for the EV propulsion.
It is therefore compulsory to have a sensor fault detection
and isolation system to improve the reliability of the electric
drive. Thereafter, reconfiguration should be achieved with
equivalent observed signals. This will allow fault-tolerant
operation.

In this context, an FTC approach is proposed for an
induction motor-based EV experiencing sensor faults (cur-
rent, voltage, and speed) [3, 4]. As DTC is recognized as
a high-performance control strategy for EVs electric pro-
pulsion, it has been adopted [5, 6]. In general, DTC-based

induction motor drives use two current sensors, one or two
voltage sensors, and a speed sensor.

For sensor fault tolerance purposes, the tendency is
to use three currents sensors and introduce observers and
estimation techniques to detect and isolate current and
speed sensor faults [6–12]. Some proposed FTC approaches
use three nonlinear observers to guarantee the information
redundancy [9]. Unfortunately, multiple observer schemes
cannot be so easily implemented due to the limited sam-
pling period even with recently developed DSPs. In [9],
a Luenberger observer is used to estimate the speed and
generates residuals. Unfortunately, even if this observer
gives good results, the obtained performances in case of
induction motors are proven to be limited in particular at
low speed. This is mainly due to the induction motor strong
nonlinearity.

The proposed FTC approach, which is based on a
bank of observers, the Extended Kalman Filter is adopted
for the estimation of the stator flux, the speed, and the
generation of the current and speed residuals for fault
detection and replacement signals for the reconfiguration. To
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Figure 1: DTC block diagram.

detect and isolate sensor faults, nonlinear observers are used
to guarantee the redundancy [10].

2. Induction Motor-Based EV DTC Briefly

The basic idea of the method is to calculate flux and
torque instantaneous values only from the stator variables.
Flux, torque, and speed are estimated. The input of the
motor controller is the reference speed, which is directly
applied by the pedal of the vehicle. Control is carriedout by
hysteresis comparators and a switching logic table selecting
the appropriate voltage inverter switching configurations [5].

Figure 1 gives the global configuration of a DTC scheme
and also shows how the EV dynamics is taken into account.

3. Sensor Fault Detection and Isolation

Sensor fault detection and isolation (SFDI) is based on two
parts. The first one generates sensor residuals. The second
part detects and isolates the faulty sensors (current, voltage,
or speed sensors).

3.1. EKF for Residual Generation. In our case, only one ob-
server, the EKF for instance, has been adopted.

The Kalman filter is a special class of linear observer
(deterministic type), derived to meet a particular optimality
stochastic condition.

The Kalman filter has two forms: basic and extended. The
EKF can be used for nonlinear systems where the plant model
is extended by extravariables, in our case by the mechanical
speed [13].

In an induction motor drive, the Kalman filter is used to
obtain unmeasured state variables (rotor speed ωr , rotor flux
vector components λrα, and λrβ) using the measured state

variables (stator current is and voltage components Vs in the
Concordia frame α-β). Moreover, it takes into account the
model and measurement noises.

The induction motor state model used by the EKF is
developed in the stationary reference frame and summarized
by (1) [5, 14], where R is the resistance, L is the inductance,
and Lm is the magnetizing inductance.

The implementation of the Kalman filter is based on a
recursive algorithm minimizing the error variance between
the real variable and its estimate

d
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⎡
⎢⎢⎢⎢⎢⎣

isα
isβ
λrα
λrβ
ωr

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

KR

KL
0

LmRr

L2
rKL

Lmωr

LrKL
0

0 −

KR

KL

Lmωr

LrKL

LmRr

L2
rKL

0

Lm
Tr

0 −

1

Tr
−ωr 0

0
Lm
Tr

ωr −

1

Tr
0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

isα
isβ
λrα
λrβ
ωr

⎤
⎥⎥⎥⎥⎥⎦

+
1

KL

⎡
⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

[
Vsα

Vsβ

]
,

[
isα
isβ

]
=

[
1 0 0 0 0
0 1 0 0 0

]
⎡
⎢⎢⎢⎢⎢⎣

isα
isβ
λrα
λrβ
ωr

⎤
⎥⎥⎥⎥⎥⎦

,

(1)

where KL/KR = Rs/Ls + 1 − σ/σTr , Tr = Lr/Rr , Ts = Ls/Rs,
and σ = 1− L2

m/LsLr .
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Let us consider a linear stochastic system whose discrete
state model is given by

x(k + 1) = Ax(k) + Bu(k) + w(k),

y(k + 1) = Cx(k) + v(k),
(2)

where w(k) represents the disturbances vector applied to the
system inputs. It also represents the modeling uncertainties;
v(k) corresponds to system output measurement noises. It is
supposed that the random signals v(k) andw(k) are Gaussian
noises not correlated and with null average value. They are
characterized by covariance matrixes, Q and R, respectively,
which are symmetrical and positive definite. The initial state
vector x0 is also a random variable with covariance matrix P0

and average value x0.
The Kalman filter recursive algorithm is illustrated by

Figure 2. For an induction motor, the Kalman filter must
be used in its extended version. Therefore, a nonlinear
stochastic system discrete state equation is given by

xk+1 = f (xk,uk) + wk,

yk = h(xk) + vk,
(3)

where f and h are vector functions
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(4)

The notation k + 1 is related to predicted values at
(k + 1)th instant and is based on measurements up to kth
instant. T is the sampling period.

The EKF equations are similar to those of the linear
Kalman filter with the difference that A and C matrices
should be replaced by the Jacobians of the vector functions
f and h at every sampling time as follows:

Ak

[
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(5)

The covariance matrices Rk and Qk are also defined at
every sampling time.

For the induction motor control, the EKF is used for the
speed real-time estimation. It can also be used to estimate
states and parameters using the motor voltages and currents
measurements.

3.2. Sensor Fault Detection and Isolation

3.2.1. Current Sensor Faults. Three sensors are used to meas-
ure the motor currents. To detect current sensor faults, the
following equation is used:

isum = imas + imbs + imcs , (6)

where the upper script m means a measured quantity.
Indeed, if one or two sensors fail, isum will be a nonzero

sinusoidal signal. Therefore, additional logic and informa-
tion (redundancy) are required to isolate the failed sensor.
The required redundancy can be obtained from the EKF
which is driven by the scheduled test input sets

CSFI(1) =
{
imas, i

m
bs, i

m1
cs

}
when im1

cs = −
(
imas + imbs

)
,

CSFI(2) =
{
imas, i

m2
bs , imcs

}
when im2

bs = −
(
imas + imcs

)
,

(7)

where CSFI is the Current Sensor Fault Isolation input for
phase a or b. CSFI(1) is used to isolate a faulty current sensor
in phase c and CSFI(2) to isolate a faulty current sensor
in phase a or b. It should be noticed that the two current
residuals are calculated using Concordia components to
isolate the faulty current sensor.

Sensor fault detection is performed using isum. The first
residue is calculated using the Concordia currents provided
by CSFI(1)

r1 =
∣∣∣im1

sα − îsα
∣∣∣ +

∣∣∣im1
sβ − îsβ

∣∣∣. (8)

If this residue is lower than a predefined threshold,
current sensor (c) should be the failed one. Otherwise, the
fault sensors are (a) or (b). In this case, an additional residue
is calculated using CSFI(2)

r2 =
∣∣∣im2

sα − îsα
∣∣∣ +

∣∣∣im2
sβ − îsβ

∣∣∣. (9)

If this residue is greater than a predefined threshold, the
faulty current sensor is (a). Otherwise, it is (b). The estimated
currents (∧) are provided by the EKF.

It should be noted that the proposed fault detection
method avoid merging CSFI(1) and CSFI(2) information.

3.2.2. Voltages Sensor Faults. The fault detection may be
performed using a simple threshold test on the parity equa-
tion (10), which describes the three-phase simple voltage
equivalence

Vsum = Vm
as + Vm

bs + Vm
cs . (10)

It is used to monitor the EKF inputs and therefore ensure
the efficient operation of the proposed FTC.

3.2.3. Speed Sensor Faults. The fault detection is achieved
by comparing the measured speed with the estimated one
given by the EKF. The encoder fault detection is given by the
following residual:

r̟ =
∣∣∣̟m

m − ̟̂mm
∣∣∣. (11)

Figure 3 illustrates the SFDI principle. It includes the
EKF, the residual generation, and the Concordia transforms.
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(a) Sensor fault indicator (green), motor speed (orange), reference
speed (purple)

(b) Current residual

Figure 6: Induction motor drive FTC performance under a current sensor fault.

3.3. Sensor Fault-Tolerant Control Scheme. Figure 4 describes
the proposed fault-tolerant control scheme in terms of
current, voltage, and speed sensor faults.

4. Experimental and Simulation Tests

4.1. Induction Motor Sensor Fault-Tolerant Control. Experi-
mental tests have been first carriedout to check the sensor
fault-tolerant control performances on a 1-kW induction
motor drive (Figure 5).

The used cage induction motor rated data are given in
the Appendix. This motor is supplied by a 2-level voltage
inverter. The setup main components are a DSP system
(single fixed-point TMS320LF2407), a speed sensor attached
to the motor shaft, current and voltage sensors. The DSP
system is interfaced to a standard PC.

Figures 6 and 7 illustrate experimental results for current
and speed sensors, respectively. Figure 6 shows the response
of the proposed sensor FTC scheme in the event of one
current sensor failure (phase b). In this case, the proposed
algorithm ensures the control as shown by the speed and
its reference in Figure 6(a). Figure 7 shows the sensor FTC

performances in the event of a speed sensor failure. In this
case, the sensor speed is replaced by the EKF estimates
ensuring then the control as illustrated by Figure 7(a).

The obtained results confirm the effectiveness of the pro-
posed sensor fault detection and post fault-tolerant control
approach. Indeed, quiet good speed tracking performances
are achieved.

4.2. EV Sensor Fault-Tolerant Control. The proposed sensor
fault detection and post fault-tolerant control approach
is now evaluated for an electric vehicle using a 37-kW
induction motor based powertrain. The EV and the used
cage induction motor rated data and parameters are given in
the Appendix. Simulations are carriedout using a European
urban and extraurban driving cycle as speed reference. For
that purpose, two sensor faults are introduced: a current
sensor fault in phase a (an offset) at 2-sec and a speed sensor
fault (a signal disconnection) at 7-sec.

Figure 8 shows the EV fault-tolerant performances in
terms of speed (via a single gear). The obtained results clearly
confirm the effectiveness of the proposed post fault-tolerant
control approach.
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(a) Sensor fault indicator (green), motor speed (orange), speed sensor
output (blue), reference speed (purple)

(b) Speed residual

Figure 7: Induction motor drive FTC performance under a speed sensor fault.
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5. Conclusion

This paper dealt with fault-tolerant control of an induction
motor-based EV experiencing sensor faults (current, voltage,
and speed). The carried-out simulations and experiments
confirm that the proposed sensor post fault-tolerant control
approach seems to be effective and provides a simple
configuration with high performance in terms of speed
response.

Appendix

EV Mechanical and Aerodynamic Parameters: m = 1540 kg
(two 70 kg passengers), A = 1.8 m2, r = 0.3 m, µrr1 =

0.0055, µrr2 = 0.056, Cad = 0.19, G = 3.29, ηg = 0.95, v0 =

4.155 m/sec, g = 9.81 m/sec2, ρ = 0.23 kg/m3.

Rated Data of the Simulated Induction Motor: 37 kW,
1480 rpm, p = 2, Rs = 0.0851Ω, Rr = 0.0658Ω, Ls =
0.0314 H, Lr = 0.0291 H, Lm = 0.0291 H, J = 0.37 kg ·m2,
k f = 0.02791 Nmsec.

Rated Data of the Tested Induction Motor: 1 kW, 2.5 Nm,
2830 rpm, p = 1, Rs = 4.750Ω, Rr = 8.000Ω, Ls = 0.375 H,
Lr = 0.375 H, Lm = 0.364 H, J = 0.003 kg · m2, k f =

0.0024 Nmsec.
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