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Wind Turbine Bearing Failure Detection Using 
Generator Stator Current Homopolar Component 

Ensemble Empirical Mode Decomposition 
Yassine Amirat, Vincent Choqueuse and Mohamed Benbouzid 

Abstract-Failure detection has always been a demanding 

task in the electrical machines community; it has become more 

challenging in wind energy conversion systems because 

sustainability and viability of wind farms are highly dependent 

on the reduction of the operational and maintenance costs. 

Indeed the most efficient way of reducing these costs would be to 

continuously monitor the condition of these systems. This allows 

for early detection of the generator health degeneration, 

facilitating a proactive response, minimizing downtime, and 

maximizing productivity. This paper provides then an assessment 

of a failure detection techniques based on the homo polar 

component of the generator stator current and attempts to 

highlight the use of the Ensemble Empirical Mode Decomposition 

(EEMD) as a tool for failure detection in wind turbine generators 

for stationary and non stationary cases. 

Index Terms-Wind turbine, induction generator, bearing 

failure, ensemble empirical mode decomposition, stator current, 

homo polar component. 

I. INTRODUCTION 

Wind energy conversion systems (WECS) are the fastest­
growing sources of new electric generation in the world and it 
is expected to remain so for some time, and those sources are 
becoming a reliable competitor of classical power generation 
systems, which are facing to constantly changing operating 
parameters, such as fuel cost, multiple fuel tradeoffs and 
maintaining older systems becomes more costly. WECS offer 
an alternative and emerging solution by deploying wind farms 
offshore or onshore, where there are substantial wind 
resources, leading to a best electricity generating 
opportunities. However, the offshore or onshore environments 
impose a high demand for reliability on the installed 
equipment because they are hardly accessible or even 
inaccessible [1]. 

A. Wind Turbine Failure Detection Context 

Many techniques and tools have been developed for wind 

turbine electric generator condition monitoring in order to 
prolong their life span as reviewed in [2]. 
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Some of these techniques used the existing and pre-installed 
sensors, which may measure speed, output torque, vibrations, 

temperature, flux densities, etc. These sensors are managed 
together in different architectures and coupled with algorithms 
to allow an efficient monitoring of the system condition [3]. 
Those methods have shown their effectiveness in electric motor 
condition monitoring. From the theoretical and experimental 
point of view, the well-established methods are: electrical 
quantities signature analysis (current, power, etc.), vibration 
monitoring, temperature monitoring and oil monitoring. 

In the case of wind turbines, it has been shown that failures 
in the drive train could be diagnosed from the generator 
electrical quantities. The advantage of signature analysis of the 
generator electrical quantities is that those quantities are easily 
accessible during operation (i.e. the current can be acquired by 
current transformer or Hall effect device, the voltage via a 
voltage transformer, and the power by computation). For 
steady-state operations, the Fast Fourier Transform (FFT), the 
PSD (Power Spectral Density) and other techniques based 

upon them, as for example the STFT (Short-Time Fourier 

Transform), are widely used in the literature [4]. However, in 
the case of variable speed wind turbines, FFT is difficult to 
interpret and it is difficult to extract the variation features in 
time-domain, since the operation is predominately non 
stationary due the stochastic behavior of the wind speed. To 
overcome this problem, failure detection procedures based on 
time-frequency representation (Spectrogram, Quadratic TFR, 
etc . . .  ) or time-scale analysis (wavelet) have been proposed [5-
8]. Nevertheless, these techniques have drawbacks such as 
high complexity, poor resolution or may suffer from artifacts 
(cross-terms, etc). Moreover, failure frequencies tracking is 
not an easy task [9]. 

B. Bearing Failures Importance 

Since induction machine rotors are under high stresses, 
including thermal stresses, mechanical stresses, and electrical 
stresses, they are statistically more vulnerable compared to the 

stator. Particularly, bearings are the most frequently failed 
component [10]. Moreover, in the wind power industry 
context, bearing failures have been a persistent problem which 
account for a significant proportion of all failures in wind 
turbines [1]. Bearing failure of WECS generators is the most 
common failure mode associated with a long downtime. 

Bearing failure is typically caused by some misalignment 
in the drive train, which gives rise to abnormal loading and 
accelerates bearing wear. Because of their construction, rolling 
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element bearings generate precisely identifiable signature on 
vibration with characteristic frequencies. Those frequencies 
present an effective route for monitoring progressive bearing 
degradation. It is therefore possible to detect on the stator side 
the frequencies associated with the bearings using 
accelerometers mounted directly on the bearing housing, 
which is not often easily accessible [11]. Nonintrusive 
condition monitoring techniques, which monitor the bearing 
condition using only the generator currents or voltages, are 
preferred due to their nonintrusiveness and also low cost. To 
tackle this problem, numerous failure detection techniques 
have proposed by analyzing the stator side electrical 
quantities; such as the current [12] or the instantaneous power 
factor [13]. 

In this important and particular context, this paper will 
focus on bearing failure detection. As this failure leads to 
stator current amplitude modulation [14], it is therefore 
proposed to assess the efficiency of the Ensemble Empirical 
Mode Decomposition (EEMD) using the homopolar 
component of the stator current as a failure detection tool. 

II. F AlLURE DETECTION USING ADVANCED SIGNAL 

PROCESSING TECHNIQUES 

A. Why Monitoring the Homopolar Current? 

This study suggests the use of the homopolar current as the 
variable to be monitored for failure detection. Indeed, failures 
majority lead to an obvious unbalance behavior of a three­
phase machine. This will give rise to a homopolar component 
of the current. This component could be very useful if the 

neutral point is connected allowing the use of one current 
sensors. In a wind turbine application, no homopolar current is 
produced by the generator (i.e. doubly-fed induction 
generator) since the neutral point is disconnected. However, 
the component could be computed and therefore monitored. 

The homopolar current is computed through the Clarke 
transform and is given by 

1 1 1 

lJ� 
.fi .fi .fi 
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0 
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Where 1",b.C are the three-phase currents. Hence 

1 10= J3(Ia+1h+1c) (2) 

B. Current Modulation vs Failure Detection Technique 

Most of electric machine failures lead to current 
modulation (amplitude and/or phase) [11]. This is the 
particular case of bearing failures [15]. Indeed, a bearing 
failure is assumed to produce and air gap eccentricity and 

hence producing an unbalanced magnetic pull that leads to 
stator current modulation [16]. In this context, it is a 
demodulation technique is a well-suited tool for failure 
detection. 

For modulated signals, the most popular techniques are 
Teager-Kaizer Energy Operator (TKEO) [17], Hilbert 
Transform (HT) and it has been recently shown that the 
Concordia Transform (CT) can be used for demodulation [18-
19]. Those techniques were investigated in many research 
works for failure detection tasks. However, TKEO is less 
robust against noise and HT is valid only for mono-component 
signals, while CT is reliable only for balanced three-phase 
system. To go besides those constraints, innovative techniques 
are investigated for tracking the fault component by blind 
source separation such as Principal Component Analysis 
(PCA) [20] or noise cancellation [21]. 

Unfortunately, in typical electric machines, stator current 
dominant components are the supply fundamental and 
harmonics, the eccentricity harmonics, the slot harmonics, the 
saturation harmonics, and other components from unknown 
sources including environmental noise. These components 
could be considered as noise in the context of bearing failure 
detection [21]. 

Under these considerations, it is proposed to investigate 
the empirical mode decomposition (EMD) in order to track the 
dominant component introduced by the bearing failure in the 
homopolar current. 

C. The EMD Briefly 

The EMD method has recently focused considerable 
attention and been widely indexed to rotating machinery fault 
detection [22-23]. The EMD technique is an adaptive time­
frequency data analysis method for multi-component, 
nonlinear and non-stationary signals. It decomposes the signal 
into a number of Intrinsic Mode Functions (IMFs), each of 
which is a mono-component function. The multi-components 
signal (the current i in our case) is then decomposed into M 
intrinsic modes and a residue RM [24-25]. 

M 
i(n) = '2)mJ;n(n)+RM(n) (3) 

m=1 

The procedure for extracting the IMFs from a signal is 
illustrated in Fig. I. 

In addition, the implementation of EMD is a data-driven 

process, not requiring any pre-knowledge of the signal or the 

machine. This particular advantage in wind turbines context 
drive the EMD to be a promising tool for delivering improved 
condition monitoring [26]. The EMD method has however 
several drawbacks. The stop criterion, envelope technique, and 
mode-mixing problem are the most important topics that need 
to be addressed in order to improve the EMD algorithm [27]. 

Mode-mixing is the major drawback. Indeed, a detail related 
to one scale can appear in two different intrinsic modes. This 
makes an individuallMF devoid of physical meanings. 
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Fig. 1. Flow chart of the EMD process for signal decomposition. 

To overcome the mode-mixing problem, the Ensemble 
EMD (EEMD) was introduced [28]. 

D. The EEMD versus the EMD 

The EEMD is a noise-assisted data analysis method. It 
defines true IMFs as the mean of an ensemble of trials. Each 
trial consists of the decomposition results of the signal adding 
a finite amplitude white noise. In this context, it is 
demonstrated that noise could help data analysis in the EMD 
method and therefore automatically mitigates mode-mixing 
[29]. The EEMD procedure for extracting the IMFs from a 
signal is illustrated in Fig. 2. 

The EEMD reliability depends on the choice of the 
ensemble number N and the noise amplitude a. Those two 
parameters are linked by [29] 

(4) 

Where en is the standard deviation error and is defined as the 
discrepancy between the input signal and the corresponding 

imf 

E. What is Specifically Proposed? 

For failure detection several fault detectors based on 
amplitude demodulation have been proposed in the available 
literature. However, most of them assume that a training 
database is available. This can be very difficult to obtain for 
WECS. 

Initialization 
Trial munber: N 

Noise amplitude: e 

Fig. 2. Flow chart of the EEMD process for signal decomposition. 

Indeed, it has been mentioned in a number of previously 
published paper, that one of the main difficulties in real word 
testing of developed condition monitoring technique, is the 
lack of collaboration needed with wind turbine operators and 
manufacturers, due to data confidentiality, particularly when 
failures are present [3]. 

In this paper, the authors propose a low complexity 
detector which does not require any training sequence. Indeed, 
the proposed detector is based on the dominant imfvariance. 

III. EXPERIMENTAL EVALUATION OF THE EEMD-BASED 
FAILURE DETECTION ApPROACH 

A. Test Facility Description 

The failures are obtained by simply drilling holes in 
different parts of the bearing (Fig. 3). 

A conventional test bed is used in order to test the proposed 
failure detection method (Fig. 4). The mechanical part (Fig. 7a) 
is composed by a synchronous and an induction machine. The 
induction machine is fed by the synchronous generator in order 
to eliminate time harmonics. Indeed, this will automatically 
eliminate supply harmonics and therefore allow focusing only 
on bearing faults effect on the stator current. 

The tested induction machine has the following rated 
parameters: 0.75 kW, 220/380 V, 1.95/3.4 A, 2780 rpm, 50 
Hz, 2 poles, Y-connected. It has two 6204.2ZR type bearings 

with the following parameters: outside diameter is 47 mm, 
inside diameter is 20 mm, and pitch diameter is 3l. 85 mm. A 

bearing has eight balls with an approximate diameter of 12 
mm and a contact angle of 0°. 

B. Experimental Tests 

Figures 5 and 6 show the three phase currents and the 
homopolar component, for healthy and faulty bearings (failure 
c), respectively. 
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(c) (d) 

Fig. 3. Artificially deteriorated bearings: (a) outer race deterioration, 
(b) inner race deterioration, (c) cage deterioration, (d) ball deterioration. 

Tacho Generator Induction motor Alternator 

(a) Mechanical part. 

Connectors 
to the mechanical part Current transfonners Load (bulbs) 

Outlet to DAQ card and PC 

(b) Electrical part. 

Fig. 4. Experimental setup. 

After adjusting the EEMD parameters respectively the 

noise amplitude a and the ensemble number N; the 
decomposition is applied to the homopolar current computed 
through (2), for several loads during the induction machine 
operation with healthy and faulty bearing. 

For illustration, Fig. 7 show the current homopolar 
component first 5 IMFs and the residue when the induction 
machine is loaded by 40% of the nominal load. 

It seems therefore that in presence of a bearing failure the 
4th IMF is more energized. Indeed, strong oscillations are 
observed. This is clearly illustrated by Fig. 8. 
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Fig. 5. The healthy case currents 
(the homopolar component is multiplied by 20). 

Time (sec) 

Fig. 6. The faulty case (failure c) currents 
(the homopolar component is multiplied by 20). 
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(b) Faulty bearings (failure c). 

Fig. 7. Current homopolar component EEMD decomposition. 
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Fig. 8. Current homopolar component 4'h IMF for healthy and faulty bearings. 

In order to quantify those oscillations, the statistical 

variance (J2 of this IMF is computed for all the failures for 
several loads using the following equation 

where flim(4 is imf4(n) mean. 

(5) 

The obtained results are summarized by Table 1 and Fig. 9. 
It should be first mentioned that the variance is not strictly 
equal to zero for healthy bearing. 

Load 

00.00% 

26.66% 

40.00% 

53.33% 

Table I. Current homopolar component 4th IMF variance. 

(32 

Healthy Failure Failure Failure Failure 

bearing (a) (b) (c) (d) 

2.20E-05 1.30E-05 7.02E-05 7.04E-05 7.48E-05 

1.58E-05 1.46E-05 7.53E-05 7.55E-05 7.22E-05 

1.77E-05 1.59E-05 9.05E-05 8.83E-05 8.82E-05 

2.45E-05 2.21E-05 1.07E-04 1.10E-04 1.14E-04 

Ratio to nominal load 

Fig. 9. Current homopolar component 4th IMF variance 
for healthy and faulty bearings. 

This could be simply explained by the induction machine 
natural unbalances in one hand and in another hand by the fact 
that stator current could contain unknown noises. However 
when a bearing failure occurs, this criteria is multiplied by 
about 5. These results clearly demonstrate that the 4th IMF can 
be used an effective indicator for bearing health monitoring. 
The exception is failure (a), which needs further investigations 
in regard to artificially created failures. Table 2 confirms the 
achieved tendencies. 

Table 2. Current homopolar component 41h IMF variance error. 

= ((J�l1l_fi11l1�V - (J�nf_hea1thV ) 
e" 

(J'�nf _ healthy 

Load Failure (a) Failure (b) Failure (c) Failure (d) 

00.00% 41% 218% 219% 239% 

26.66% 8% 375% 377% 356% 

40.00% 10% 413% 400% 400% 

53.33% 10% 337% 351% 366% 

IV. CONCLUSION 

This paper dealt with induction machine bearing failures 
detection using the current homopolar component. This 
component is first decomposed into intrinsic mode functions 
through the EEMD which is the EMD free mixed mode 
version. It was then found that the 4th IMF is the most 

energized mode. This mode was then analyzed using a 
statistical criterion on experimental data. The achieved results 
clearly demonstrate that the 4th IMF can be used an effective 
indicator for bearing health monitoring. 

The obtained results seem very promising for wind 
turbines monitoring using the generator current. Indeed, the 
proposed EEMD-based and low complexity failure detector 
does not require any training database. 
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