



## Knot shape assessment on various species through X-ray CT scanning

A. Krähenbühl<sup>1</sup> F. Longuetaud<sup>2</sup> J-B. Morisset<sup>2</sup>

F. Colin<sup>2</sup> I. Debled-Rennesson<sup>1</sup>

B. Kerautret<sup>1</sup>

F. Mothe<sup>2</sup>

<sup>1</sup>LORIA, Université de Lorraine

<sup>2</sup>INRA, LERFoB

**IUFRO** July 9, 2012 Knots are the prolongation of branches inside the stem. Size and shape of knots / branches directly impact:

- tree growth and physiology
- architectural tree models
- wood quality (structural or aesthetic uses)
- lumber cutting optimisation & grading

X-ray CT scanning is specially well adapted to knot measurements







Manual measurements of knot features

What can be seen?

The tool

Application to species classification

Automatic algorithm for knot features

3DKnotDM

Measurements

Limits

Work in progress

Conclusion





Manual measurements of knot features

What can be seen?

The tool

Application to species classification

Automatic algorithm for knot features

3DKnotDM

Measurements

Limits

Work in progress

Conclusion





Manual measurements of knot features What can be seen?

Work in progress





oria

## Sequential knots, epicormic knots and bud traces



- Pith
- Scars
- **Sk** Sequential knot
- **E** Epicormic knot
- B1 Trace of 1ry bud
- 12 Trace of 2ry bud
  - Trace of adv. bud



#### Manual measurements of knot features

What can be seen?

The tool

Application to species classification

Automatic algorithm for knot features

3DKnotDM

Measurements

Limits

Work in progress

Conclusion





Gourmands: ImageJ plugin to record knot location & shape.

## Software design

Gourmands: ImageJ plugin to record knot location & shape.

## Outputs

- 3D location
- azimuth
- leaning angle
- length
- diameter





Gourmands: ImageJ plugin to record knot location & shape.

## Outputs

- 3D location
- azimuth
- leaning angle
- length
  - diameter
- hierarchical organisation
- pith density & trajectory





## Software design

Gourmands: ImageJ plugin to record knot location & shape.

## Outputs 3D location azimuth leaning angle length diameter hierarchical organisation pith density & trajectory 3D view





#### Utilisation

#### Processing time

scanning: 10 min / m measurements: 1 hour / m

#### Drawbacks

- accuracy 0.2 to 1mm / pixel
- O not measured in longitudinal direction (circular section assumed)
- low contrast for wet wood
- operator effect unquantified



[1] F. Colin et al. 2010

Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives., Trees-structure and Function.



Fagus



## Manual measurements of knot features

What can be seen

The too

Application to species classification

Automatic algorithm for knot features

3DKnotDM

Measurements

Limits

Work in progress

Conclusion







Classify log species based on internal knot architecture.

## Objective

Classify log species based on internal knot architecture.

## Sampling

| _                     |                |         |          |
|-----------------------|----------------|---------|----------|
| Species               | Common name    | # trees | # logs   |
| Robinia pseudo-acacia | Black locust   | 2       | 5+5      |
| Sorbus torminalis     | Wild           | 2       | 4+5      |
| Alnus glutinosa       | Alder          | 2       | 5+5      |
| Betula pendula        | Birch          | 2       | 5+5      |
| Carpinus betulus      | Hornbeam       | 1       | 0+5      |
| Quercus rubra         | Red oak        | 2       | 2+5      |
| Acer platanoides      | Norway maple   | 2       | 3+1      |
| Fraxinus excelsior    | European ash   | 2       | $^{2+4}$ |
| Fagus sylvatica       | European beech | 2       | 5+5      |
| Prunus avium          | Wild cherry    | 2       | 5+3      |
| Ulmus minor           | Field elm      | 2       | 5+5      |
| Abies alba            | Silver fir     | 2       | 3+3      |
| Tilia platyphyllos    | Lime           | 2       | 5+5      |
| Populus tremula       | Aspen          | 2       | 5+5      |
| Total                 | 14 species     | 27      | 115      |



14 species, 2 trees per species, 2-5 logs per tree (thanks to InterReg European Project CoForKo)



#### Classify log species based on internal knot architecture.

## Sampling

| Species               | Common name    | # trees | # logs   |  |
|-----------------------|----------------|---------|----------|--|
| Robinia pseudo-acacia | Black locust   | 2       | 5+5      |  |
| Sorbus torminalis     | Wild           | 2       | 4+5      |  |
| Alnus glutinosa       | Alder          | 2       | 5+5      |  |
| Betula pendula        | Birch          | 2       | 5+5      |  |
| Carpinus betulus      | Hornbeam       | 1       | 0+5      |  |
| Quercus rubra         | Red oak        | 2       | 2+5      |  |
| Acer platanoides      | Norway maple   | 2       | 3+1      |  |
| Fraxinus excelsior    | European ash   | 2       | $^{2+4}$ |  |
| Fagus sylvatica       | European beech | 2       | 5+5      |  |
| Prunus avium          | Wild cherry    | 2       | 5+3      |  |
| Ulmus minor           | Field elm      | 2       | 5+5      |  |
| Abies alba            | Silver fir     | 2       | 3+3      |  |
| Tilia platyphyllos    | Lime           | 2       | 5+5      |  |
| Populus tremula       | Aspen          | 2       | 5+5      |  |
| Total                 | 14 species     | 27      | 115      |  |



14 species, 2 trees per species, 2-5 logs per tree (thanks to InterReg European Project CoForKo)

#### 13 angiosperms vs. 1 gymnosperm.

oria

#### Data used in classification

#### 20 variables computed from Gourmands outputs:

| Considered    | l variables                               |
|---------------|-------------------------------------------|
| sequential    | length                                    |
| branches      | relative length (/ log radius)            |
|               | sd relative length                        |
|               | inclination                               |
|               | sd inclination                            |
|               | initial inclination (median)              |
|               | diameter                                  |
|               | relative diameter (/ log diameter)        |
|               | sd relative diameter                      |
|               | diameter / length                         |
|               | min diameter (1st decile)                 |
|               | max diameter (last decile)                |
|               | diameter decrease (end diam. / max diam.) |
| number / m of | sequential knots                          |
|               | epicormic knots                           |
|               | all buds                                  |
|               | primary buds                              |
|               | secondary buds                            |
|               | adventive buds                            |

angle between 2 successive buds/branches (phyllotaxic angle)







## Data used in classification

#### 20 variables computed from *Gourmands* outputs:

| Considered      | l variables                                  |
|-----------------|----------------------------------------------|
| sequential      | length                                       |
| branches        | relative length (/ log radius)               |
|                 | sd relative length                           |
|                 | inclination                                  |
|                 | sd inclination                               |
|                 | initial inclination (median)                 |
|                 | diameter                                     |
|                 | relative diameter (/ log diameter)           |
|                 | sd relative diameter                         |
|                 | diameter / length                            |
|                 | min diameter (1st decile)                    |
|                 | max diameter (last decile)                   |
|                 | diameter decrease (end diam. / max diam.)    |
| number / m of   | sequential knots                             |
|                 | epicormic knots                              |
|                 | all buds                                     |
|                 | primary buds                                 |
|                 | secondary buds                               |
|                 | adventive buds                               |
| angle between 2 | successive buds/branches (phyllotaxic angle) |







#### Data used in classification

Considered variables

number / m of

#### 20 variables computed from *Gourmands* outputs:

| sequential | length                             |
|------------|------------------------------------|
| branches   | relative length (/ log radius)     |
|            | sd relative length                 |
|            | inclination                        |
|            | sd inclination                     |
|            | initial inclination (median)       |
|            | diameter                           |
|            | relative diameter (/ log diameter) |
|            | sd relative diameter               |
|            | diameter / length                  |
|            | min diameter (1st decile)          |
|            | max diameter (last decile)         |

sequential knots

epicormic knots
all buds
primary buds
secondary buds
adventive buds
angle between 2 successive buds/branches (phyllotaxic angle)

diameter decrease (end diam. / max diam.)







## Visualisation 1/2





Robinia pseudo-acacia

Sorbus torminalis





Alnus glutinosa

Betula pendula





Quercus rubra

Acer platanoides



oria

Tree #1 – log #2 (4m height) for each species,

## Visualisation 2/2





Fagus sylvatica

Prunus avium





Ulmus minor

Abies alba





Tilia platyphyllos

Populus tremula

Tree #1 - log #2 (4m height) for each species,

oria

#### Classification methods

2 methods tested

Regression Tree (R package rpart)



#### 2 methods tested

- Regression Tree (R package rpart)
- 2 Score based method (R script) Scores computed for each species i using n variables  $x_i$ :

$$Score_{i} = \frac{1}{n} \sum_{j=1}^{n} \frac{|x_{j} - \overline{x}_{ij}|}{\sigma_{ij}}$$

minimal score  $\Rightarrow$  predicted species



## Classification methods

2 methods tested

- Regression Tree (R package rpart)
- Score based method (R script) Scores computed for each species i using n variables  $x_i$ :

$$Score_{i} = \frac{1}{n} \sum_{j=1}^{n} \frac{|x_{j} - \overline{x}_{ij}|}{\sigma_{ij}}$$

minimal score  $\Rightarrow$  predicted species

#### In both cases

- calibration using the full data-set
- cross-validation for each log using other logs as training data



## Results: Regression Tree

# Calibration tree after pruning Populus t. Tilia Abies Fraxinus

Fagus

Unstable nodes pruned based on internal cross-validation





## Calibration tree after pruning



Unstable nodes pruned based on internal cross-validation

3 misclassified species





## Results: Regression Tree

## Calibration tree after pruning



Unstable nodes pruned based on internal cross-validation

3 misclassified species

#### **Detection rates**

calibration 70.4 % validation 33.0 %





Step by step method to select the best variables Same variables applied in validation



oria

Step by step method to select the best variables Same variables applied in validation



#### Detection rates

calibration 82.6 % validation 53.9 %



#### Detection rates per species (validation)

| Log      |     |     |     |     |     | Det | ected | speci | es  |     |     |     |     |     | Detect.  |
|----------|-----|-----|-----|-----|-----|-----|-------|-------|-----|-----|-----|-----|-----|-----|----------|
| species  | Rob | Sor | Aln | Bet | Car | Que | Ace   | Fra   | Fag | Pru | Ulm | Abi | Til | Pop | rate (%) |
| Robinia  | 7   | 0   | 0   | 0   | 0   | 0   | 0     | 0     | 1   | 0   | 1   | 0   | 1   | 0   | 70       |
| Sorbus   | 0   | 0   | 0   | 0   | 1   | 3   | 0     | 0     | 4   | 1   | 0   | 0   | 0   | 0   | 0        |
| Alnus    | 0   | 0   | 6   | 0   | 2   | 0   | 0     | 0     | 2   | 0   | 0   | 0   | 0   | 0   | 60       |
| Betula   | 0   | 0   | 2   | 6   | 1   | 0   | 0     | 0     | 1   | 0   | 0   | 0   | 0   | 0   | 60       |
| Carpinus | 1   | 0   | 0   | 0   | 1   | 1   | 0     | 0     | 2   | 0   | 0   | 0   | 0   | 0   | 20       |
| Quercus  | 0   | 2   | 1   | 0   | 0   | 3   | 0     | 0     | 0   | 0   | 1   | 0   | 0   | 0   | 43       |
| Acer     | 0   | 0   | 0   | 0   | 0   | 0   | 1     | 0     | 1   | 1   | 1   | 0   | 0   | 0   | 25       |
| Fraxinus | 0   | 0   | 0   | 0   | 0   | 0   | 1     | 3     | 1   | 0   | 0   | 0   | 0   | 1   | 50       |
| Fagus    | 0   | 0   | 3   | 0   | 0   | 0   | 1     | 0     | 4   | 0   | 2   | 0   | 0   | 0   | 40       |
| Prunus   | 0   | 0   | 0   | 0   | 1   | 0   | 1     | 0     | 0   | 6   | 0   | 0   | 0   | 0   | 75       |
| Ulmus    | 0   | 1   | 0   | 0   | 0   | 0   | 1     | 0     | 0   | 0   | 8   | 0   | 0   | 0   | 80       |
| Abies    | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0     | 0   | 2   | 0   | 3   | 0   | 1   | 50       |
| Tilia    | 0   | 0   | 2   | 0   | 0   | 0   | 0     | 0     | 0   | 0   | 1   | 0   | 7   | 0   | 70       |
| Populus  | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0     | 1   | 2   | 0   | 0   | 0   | 7   | 70       |





#### Results: Score based method

#### Detection rates per species (validation)

| Log      |     |     |     |     |     | Dete | ected | speci | es  |     |     |     |     |     | Detect.  |
|----------|-----|-----|-----|-----|-----|------|-------|-------|-----|-----|-----|-----|-----|-----|----------|
| species  | Rob | Sor | Aln | Bet | Car | Que  | Ace   | Fra   | Fag | Pru | Ulm | Abi | Til | Pop | rate (%) |
| Robinia  | 7   | 0   | 0   | 0   | 0   | 0    | 0     | 0     | 1   | 0   | 1   | 0   | 1   | 0   | 70       |
| Sorbus   | 0   | 0   | 0   | 0   | 1   | 3    | 0     | 0     | 4   | 1   | 0   | 0   | 0   | 0   | 0        |
| Alnus    | 0   | 0   | 6   | 0   | 2   | 0    | 0     | 0     | 2   | 0   | 0   | 0   | 0   | 0   | 60       |
| Betula   | 0   | 0   | 2   | 6   | 1   | 0    | 0     | 0     | 1   | 0   | 0   | 0   | 0   | 0   | 60       |
| Carpinus | 1   | 0   | 0   | 0   | 1   | 1    | 0     | 0     | 2   | 0   | 0   | 0   | 0   | 0   | 20       |
| Quercus  | 0   | 2   | 1   | 0   | 0   | 3    | 0     | 0     | 0   | 0   | 1   | 0   | 0   | 0   | 43       |
| Acer     | 0   | 0   | 0   | 0   | 0   | 0    | 1     | 0     | 1   | 1   | 1   | 0   | 0   | 0   | 25       |
| Fraxinus | 0   | 0   | 0   | 0   | 0   | 0    | 1     | 3     | 1   | 0   | 0   | 0   | 0   | 1   | 50       |
| Fagus    | 0   | 0   | 3   | 0   | 0   | 0    | 1     | 0     | 4   | 0   | 2   | 0   | 0   | 0   | 40       |
| Prunus   | 0   | 0   | 0   | 0   | 1   | 0    | 1     | 0     | 0   | 6   | 0   | 0   | 0   | 0   | 75       |
| Ulmus    | 0   | 1   | 0   | 0   | 0   | 0    | 1     | 0     | 0   | 0   | 8   | 0   | 0   | 0   | 80       |
| Abies    | 0   | 0   | 0   | 0   | 0   | 0    | 0     | 0     | 0   | 2   | 0   | 3   | 0   | 1   | 50       |
| Tilia    | 0   | 0   | 2   | 0   | 0   | 0    | 0     | 0     | 0   | 0   | 1   | 0   | 7   | 0   | 70       |
| Populus  | 0   | 0   | 0   | 0   | 0   | 0    | 0     | 0     | 1   | 2   | 0   | 0   | 0   | 7   | 70       |

Very low detection rates for Sorbus, Carpinus & Acer





## Applications of the manual measurement tool

#### For species classification:

- Two classification methods gave similar results
- Detection failed for 3 species
  - ⇒ find more species-specific architectural variables?
  - ⇒ include other CT measurements (bark, density...)?
  - ⇒ larger sampling?
  - ⇒ grouping species based on knot architecture?



#### For species classification:

- Two classification methods gave similar results
- Detection failed for 3 species
  - ⇒ find more species-specific architectural variables?
  - ⇒ include other CT measurements (bark, density...)?
  - ⇒ larger sampling?
  - ⇒ grouping species based on knot architecture?

#### Other applications

 Knot shape modelling & epicormics ontogeny (see presentations by E. Duchâteau & J-B. Morisset)





## Applications of the manual measurement tool

#### For species classification:

- Two classification methods gave similar results
- Detection failed for 3 species
  - ⇒ find more species-specific architectural variables?
  - ⇒ include other CT measurements (bark, density...)?
  - ⇒ larger sampling?
  - ⇒ grouping species based on knot architecture?

## Other applications

- Knot shape modelling & epicormics ontogeny (see presentations by E. Duchâteau & J-B. Morisset)
- Validation of automatic algorithms
  - ⇒ A. Krähenbühl





Automatic algorithm for knot features 3DKnotDM Measurements Limits Work in progress





Manual measurements of knot features

What can be seen

The too

Application to species classification

## Automatic algorithm for knot features 3DKnotDM

Measurements

Work in progress

Conclusion





# Automatic knot segmentation



3DKnotDM software developped in [1].





Automatic knot detection and measurements from X-ray CT images of wood: A review and validation of an improved algorithm on softwood samples., Computers and Electronics in Agriculture.

# The state of the s

3DKnotDM software developped in [1].

Thresholding based on knot density



[1] F. Longuetaud and al., 2012

Automatic knot detection and measurements from X-ray CT images of wood: A review and validation of an improved algorithm on softwood samples., Computers and Electronics in Agriculture.



# Automatic knot segmentation



3DKnotDM software developped in [1].

- 1 Thresholding based on knot density
- Extraction of connected components



[1] F. Longuetaud and al., 2012

Automatic knot detection and measurements from X-ray CT images of wood: A review and validation of an improved algorithm on softwood samples., Computers and Electronics in Agriculture.





3DKnotDM software developped in [1].

- 1 Thresholding based on knot density
- 2 Extraction of connected components
- 3 Computation of several knot's features.



[1] F. Longuetaud and al., 2012

Automatic knot detection and measurements from X-ray CT images of wood: A review and validation of an improved algorithm on softwood samples., Computers and Electronics in Agriculture.



orio

Manual measurements of knot features

What can be seen?

The too

Application to species classification

Automatic algorithm for knot features

3DKnotDM

Measurements

Limits

Work in progress

Conclusion



#### Automatic vs. manual







## Automatic algorithm for knot features

Limits

Work in progress





# Segmentation of knots with sapwood









# Segmentation of knots with sapwood





#### Problem

Density/intensity of sapwood and knots are similar.





## Segmentation of knots with sapwood





#### Problem

Density/intensity of sapwood and knots are similar.

## Consequences

- ⇒ Unefficient thresholding
- ⇒ Knots merged after connected component extraction

Manual measurements of knot features

What can be seen?

The too

Application to species classification

## Automatic algorithm for knot features

3DKnotDM

Measurements

Limits

Work in progress

Conclusion





#### Knot area detection







Manual measurements of knot features

What can be seen

The too

Application to species classification

Automatic algorithm for knot features

3DKnotDM

Measurements

Limits

Work in progress

#### Conclusion





#### Conclusion

Tools for analysing knots on CT scan of wood are available:

 A manual tool for detailed knot architecture. measurements, designed for research studies

## Gourmands plugin

https://www.nancy.inra.fr/foret\_bois\_lerfob\_eng/

boite\_a\_outils/tomographie\_x Contact: frederic.mothe@nancy.inra.fr



#### Conclusion

Tools for analysing knots on CT scan of wood are available:

 A manual tool for detailed knot architecture measurements, designed for research studies

## Gourmands plugin

https://www.nancy.inra.fr/foret\_bois\_lerfob\_eng/

boite\_a\_outils/tomographie\_x Contact: frederic.mothe@nancy.inra.fr

 An automatic tool for fast detection of knots, oriented toward industry (in development)

#### 3DKnotDM

http://www.loria.fr/equipes/adage/3DKnotDM

Contact: adrien.krahenbuhl@loria.fr









#### Thanks for your attention!