
HAL Id: hal-00768797
https://hal.science/hal-00768797

Submitted on 24 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonuniform cratering of the Moon and a revised crater
chronology of the inner solar system

Mathieu Le Feuvre, Mark A. Wieczorek

To cite this version:
Mathieu Le Feuvre, Mark A. Wieczorek. Nonuniform cratering of the Moon and a revised crater
chronology of the inner solar system. Icarus, 2011, �10.1016/j.icarus.2011.03.010�. �hal-00768797�

https://hal.science/hal-00768797
https://hal.archives-ouvertes.fr


Accepted Manuscript

Nonuniform cratering of the Moon and a revised crater chronology of the inner

solar system

Mathieu Le Feuvre, Mark A. Wieczorek

PII: S0019-1035(11)00094-7

DOI: 10.1016/j.icarus.2011.03.010

Reference: YICAR 9753

To appear in: Icarus

Received Date: 18 August 2010

Revised Date: 1 March 2011

Accepted Date: 7 March 2011

Please cite this article as: Le Feuvre, M., Wieczorek, M.A., Nonuniform cratering of the Moon and a revised crater

chronology of the inner solar system, Icarus (2011), doi: 10.1016/j.icarus.2011.03.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.icarus.2011.03.010
http://dx.doi.org/10.1016/j.icarus.2011.03.010


  

Nonuniform cratering of the Moon and a1

revised crater chronology of the inner solar2

system.3

Mathieu Le Feuvre ∗ and Mark A. Wieczorek4

Institut de Physique du Globe de Paris, Saint Maur des Fossés, France.5

Copyright c© 2010 Mathieu Le Feuvre6

Number of pages: 607

Number of tables: 98

Number of figures: 99

∗ Now at Laboratoire de Planétologie et Géodynamique,
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ABSTRACT1

We model the cratering of the Moon and terrestrial planets from the present2

knowledge of the orbital and size distribution of asteroids and comets in the3

inner solar system, in order to refine the crater chronology method. Impact4

occurrences, locations, velocities and incidence angles are calculated semi-5

analytically, and scaling laws are used to convert impactor sizes into crater6

sizes. Our approach is generalizable to other moons or planets. The lunar7

cratering rate varies with both latitude and longitude: with respect to the8

global average, it is about 25 % lower at (±65◦N, 90◦E) and larger by the9

same amount at the apex of motion (0◦N, 90◦W) for the present Earth-Moon10

separation. The measured size-frequency distributions of lunar craters are rec-11

onciled with the observed population of near-Earth objects under the assump-12

tion that craters smaller than a few kilometers in diameter form in a porous13

megaregolith. Varying depths of this megaregolith between the mare and high-14

lands is a plausible partial explanation for differences in previously reported15

measured size-frequency distributions. We give a revised analytical relation-16

ship between the number of craters and the age of a lunar surface. For the17

inner planets, expected size-frequency crater distributions are calculated that18

account for differences in impact conditions, and the age of a few key geologic19

units is given. We estimate the Orientale and Caloris basins to be 3.73 Ga old,20

and the surface of Venus to be 240 Ma old. The terrestrial cratering record21

is consistent with the revised chronology and a constant impact rate over the22

last 400 Ma. Better knowledge of the orbital dynamics, crater scaling laws and23

megaregoltih properties are needed to confidently assess the net uncertainty24

of the model ages that result from the combination of numerous steps, from25

the observation of asteroids to the formation of craters. Our model may be26
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inaccurate for periods prior to 3.5 Ga because of a different impactor popula-1

tion, or for craters smaller than a few kilometers on Mars and Mercury, due2

to the presence of subsurface ice and to the abundance of large secondaries,3

respectively. Standard parameter values allow for the first time to naturally4

reproduce both the size distribution and absolute number of lunar craters up5

to 3.5 Ga ago, and give self-consistent estimates of the planetary cratering6

rates relative to the Moon.7

Keywords: cratering ; Moon ; terrestrial planets ; crater chronology ; impact8

processes9
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1 Introduction1

The counting of impact craters offers a simple method to estimate the ages of2

geologic units on planetary surfaces when in situ rock samples are lacking. The3

crater chronology method is based on the simple idea that old surfaces have4

accumulated more impact craters than more recent ones (Baldwin, 1949). The5

relationship between geologic age and number of lunar craters, based on the ra-6

diometric dating of existing lunar rock samples, is found to be approximately7

linear from the present to about 3 Ga ago, and approximately exponential8

beyond that time (Neukum et al., 2001a; Stöffler and Ryder, 2001, and refer-9

ences therein). For statistical robustness, craters are generally counted within10

a number of consecutive diameter ranges, allowing one to recognize certain11

biases, such as erosion, resurfacing or crater saturation processes. Measure-12

ments over various geologic units has led to the postulate that the relative13

shape of the size-frequency distributions (SFD) of lunar impact craters was14

similar for all surfaces, but unfortunately, the exact shape of this production15

function in the 2–20 km kilometer range is still debated after decades of study.16

The total predicted size-frequency distribution for any given time is obtained17

by multiplying the production function, assumed independent of age, by a18

time-variable constant. The age of a geologic unit is estimated by finding the19

best fit between the standardized and measured distributions.20

The approach taken in this work models directly crater distributions from the21

current knowledge of the impactor population. This allows us to infer prop-22

erties of the impact history of a planetary body that the sole observation of23

craters could not reveal. In particular, whereas the crater chronology method24

assumes that craters accumulate uniformly on the surface of the planetary25
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body, this method allows to quantify possible spatial variations in the impact1

rate. Moreover, in the absence of dated samples with known geological context2

from Mercury, Venus and Mars, the generalization of the crater chronology to3

these planets requires an estimate of the relative cratering rates with respect4

to the Moon: in the same period of time, the number of craters of a given5

size that form on two planets differ according to both the different impact6

probabilities of the planet crossing objects and the impact conditions (e.g.,7

impact velocity, surface gravity).8

Using this bottom-up approach, Neukum et al. (2001b) proposed age estimates9

of mercurian geologic features based on a Mercury/Moon cratering rate ra-10

tio estimated from telescopic observations. Similarly, Hartmann and Neukum11

(2001) adapted the lunar cratering chronology to Mars, using the Mars/Moon12

cratering rate ratio of Ivanov (2001). The venusian surface, which contains a13

small number of craters that appear to be randomly distributed, has been the14

subject of several attempts of dating. The most recent estimates can be found15

in Korycansky and Zahnle (2005) and McKinnon et al. (1997), and are both16

based on the population of Venus crossers as estimated by Shoemaker et al.17

(1990). In this study, we use improved estimates of the orbital characteristics18

and size-frequency distribution of the impactor population.19

The early lunar cratering record indicates that impactors were hundred of20

times more numerous than today, possibly due to the massive injection in the21

inner system of main-belt and/or Kuiper-belt objects about 700 Ma after the22

Moon formed, an event known as the Late Heavy Bombardment (LHB) (see23

Gomes et al., 2005; Tera et al., 1974; Hartmann et al., 2000). More than 324

Ga ago, the impactor population appears to have reached a relative state of25

equilibrium, being replenished both in size and orbit by, respectively, collisions26
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inside the main asteroid belt and the ejection by resonances with the giant1

planets (Bottke et al., 2002). Under the assumption of a steady state distrib-2

ution of impactors, the distribution of craters on ∼ 3 Ga old surfaces should3

be consistent with the present astronomically inferred cratering rates.4

The lunar cratering record, in the form of the standardized production func-5

tions, agrees reasonably well with telescopic observations of planet-crossing ob-6

jects down to a few kilometers in diameter (Stuart, 2003; Werner et al., 2002).7

Smaller craters appear to be not numerous enough to have been formed by an8

impacting population similar to the present one. But, in Ivanov and Hartmann9

(2007), it was suggested that the presence of a porous lunar megaregolith may10

reduce the predicted size of small craters, accounting for this observation. In11

Strom et al. (2005), the distinction was made between pre- and post-LHB lu-12

nar crater distributions. Older distributions, depleted in small craters, would13

reflect the SFD of Main Belt asteroids - massively provided by the LHB -14

rather than the SFD of Near-Earth asteroids. Marchi et al. (2009) revised the15

crater chronology method by deriving a new production function from impact16

modeling that differs significantly from those based on measurements. In this17

study, we attempt to fully reconcile the measured lunar production functions18

with the telescopic observations of planet-crossing objects.19

Modeling the impact bombardment also allows us to quantify spatial cratering20

asymmetries that are not accounted for in the traditional crater chronology21

method. The presence of such asymmetries would bias the ages based on crater22

densities according to the location of the geologic unit. The Moon is subject23

to nonuniform cratering, since it is not massive enough to gravitationally ho-24

mogenize encounter trajectories. Latitudinal asymmetries are produced by the25

anisotropy of encounter inclinations (Le Feuvre and Wieczorek, 2008), whereas26
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longitudinal asymmetries result from synchronous rotation since the relative1

encounter velocity, hence impact rate, are maximized at the apex of motion2

(e.g., Morota et al., 2005). In addition, the Earth may focus low inclination3

and velocity projectiles onto the nearside of the satellite or act as a shield at4

small separation distances.5

Several studies have attempted to give estimates of the lunar cratering asym-6

metries. Wiesel (1971) used a simplified asteroid population, and Bandermann7

and Singer (1973) used analytical formulations based on strongly simplifying8

assumptions in order to calculate impact locations on a planet. These for-9

mulations did not allow to investigate any latitudinal effects. Wood (1973)10

numerically integrated the trajectories of ecliptic projectiles; Pinet (1985) nu-11

merically studied the asymmetries caused by geocentric projectiles that were12

potentially present early in the lunar history. Horedt and Neukum (1984),13

Shoemaker and Wolfe (1982), Zahnle et al. (1998) and Zahnle et al. (2001) all14

proposed analytical formulations for the apex/antapex effect, but the range of15

predicted amplitudes is very large (the first, in particular, claimed that this ef-16

fect is negligible for the Moon). Moreover, these four studies based their results17

on isotropic encounter inclinations. Gallant et al. (2009) numerically modeled18

projectile trajectories in the Sun-Earth-Moon system, and reported a signif-19

icant apex/antapex effect. In our study, we derive a semi-analytic approach20

for calculating cratering rates of synchronously locked satellites, and apply21

it to the Moon. This method yields results that are nearly identical to full22

numerical simulations, is computationally very rapid, and easily generalizable23

to other satellites.24

The ”asteroid to crater” modeling requires several steps to create synthetic25

crater distributions. First, one needs to know the impactor population as26
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a function of orbital elements, size and time. Second, impact probabilities1

are calculated over precession and revolution cycles of both the projectile2

and target, based on geometrical considerations (Öpik, 1951; Wetherill, 1967;3

Greenberg, 1982; Bottke and Greenberg, 1993). As these impact probabili-4

ties predict typically that a given planetary crosser will collide with a given5

planet over timescales of about 10 Ga, whereas the typical lifetime of these6

objects is thought to be a thousand times lower (Michel et al., 2005) as a7

result of ejection from the solar system or collision with another body, the8

calculated bombardment must be seen as the product of a steady-state pop-9

ulation, where vacant orbital niches are continuously reoccupied (Ivanov and10

Hartmann, 2007). Third, scaling laws derived from laboratory experiments11

and dimensional analyses are used to calculate the final crater size produced12

for given a impact condition (e.g., impactor size, velocity and cohesion of13

the target material), for which several different scaling laws have been pro-14

posed (Schmidt and Housen, 1987; Holsapple and Schmidt, 1987; Gault, 1974;15

Holsapple, 1993; Holsapple and Housen, 2007). Subsequent gravitational mod-16

ification of the transient cavity that gives rise to the final crater size have been17

deduced from crater morphological studies (Pike, 1980; Croft, 1985).18

The rest of this paper is organized as follows. In the following section, we19

describe the employed orbital and size distribution of the impactor population.20

In section three, the necessary equations used in generating synthetic cratering21

rates are summarized; the full derivations are given in the appendix. In section22

four, we compare our synthetic lunar crater distribution with observations, we23

describe the lunar spatial asymmetries, and give the predicted planet/Moon24

cratering ratios. We also provide simple analytic equations that reproduce25

the predicted cratering asymmetries on the Moon, as well as the latitudinal26
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variations predicted for the terrestrial planets in Le Feuvre and Wieczorek1

(2008). Section five is dedicated to revising the crater chronology method.2

New age estimates are proposed for geologic units on the Moon, Earth, Venus3

and Mercury.4

2 Impactor population5

Let us denote a, e, i and d respectively the semi-major axis, eccentricity,6

inclination and diameter of those objects whose orbits can intersect the inner7

planets. The entire population can be written8

n(> d, a, e, i) = n̄(> 1)× o(a, e, i)× s(> d) , (1)

where n can be expressed as the product of n̄(d > 1), the total number of9

objects with a diameter greater than 1 km; o(a, e, i), the relative number of ob-10

jects with a given set of orbital elements, normalized so that
∫

o(a, e, i) da de di =11

1; and s(> d), the normalized cumulative number of objects larger than a given12

diameter, such that s(> 1 km) = 1. This formulation assumes that no corre-13

lations exist between the size of the object and its orbit, which is consistent14

with the observations of Stuart and Binzel (2004) for diameters ranging from15

∼10 m to ∼10 km.16

2.1 Orbital distribution17

The orbital distribution of near Earth-objects (NEOs) is taken from the model18

of Bottke et al. (2002), which provides a debiased estimate of the orbital dis-19

tribution of bolides that can potentially encounter the Earth-Moon system.20
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This model assumes that the NEO population is in steady-state, continu-1

ously replenished by the influx coming from source regions associated with2

the main asteroid belt or the transneptunian disk. The model was determined3

through extensive numerical integrations of test particles from these sources,4

and calibrated with the real population observed by the Spacewatch survey.5

The relative number of objects is discretized in orbital cells that spans 0.256

AU in semi-major axis, 0.1 in eccentricity, and 5◦ in inclination.7

In order to model the martian impact flux, we have amended this model by8

including the known asteroids that cross the orbit of Mars, but which are not9

part of the NEO population. These are taken from the database provided by E.10

Bowell (Lowell Observatory), that gives the orbit and absolute magnitude H11

of telescopic discoveries. We consider the population of H < 15 objects to be12

the best compromise between a sufficient number of objects (in order to avoid13

sparseness in the orbital space), and completeness. Their distribution as a14

function of perihelion is very similar in shape to brighter (hence larger) H < 1315

objects (see Le Feuvre and Wieczorek, 2008), the latter being large enough16

to ensure they do not suffer observational bias in the martian neighborhood.17

The H < 15 population is therefore considered as complete, and is scaled to18

match the modeled NEO population. From the relationship between absolute19

magnitude and geometric albedo of Bowell et al. (1989), and a mean albedo20

of 0.13 (Stuart and Binzel, 2004), H < 15 corresponds to d >∼ 4 km.21

2.2 Size distribution22

The size distribution of impactors is taken from a compilation of various esti-23

mates of the size-dependent impact rate on Earth, as shown in figure 1. This24
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compilation gathers atmospheric recordings of meteoroids and impact proba-1

bilities calculated with Öpik equations from debiased telescopic observations.2

Estimates from telescopic observations are those of Rabinowitz et al. (2000),3

Morbidelli et al. (2002), Harris, A. W. (2002) and Stuart and Binzel (2004).4

Estimates based on atmospheric recordings include Halliday et al. (1996),5

ReVelle (2001) and Brown et al. (2002). Concerning the LINEAR survey, esti-6

mates of Harris, A. W. (2002) have been scaled at large sizes to the estimates7

of Stuart and Binzel (2004). In contrast to Morbidelli et al. (2002) and Stuart8

and Binzel (2004), Rabinowitz et al. (2000) did not use a debiased albedo9

distribution, but rather a constant mean geometric albedo of 0.1 in order to10

convert their telescopic observations from magnitude to diameter at all sizes.11

Though small objects are expected to possess a larger albedo as they are gener-12

ally younger than large objects, we did not attempt to correct for this effect,13

since estimates of Rabinowitz et al. (2000) show a general agreement with14

other studies. In atmospheric flash estimates, masses have been deduced from15

kinetic energy, the latter being estimated from luminous energy. We convert16

kinetic energies of Brown et al. (2002) into diameters using a mean density17

of 2700 kg m−3 and a mean impact velocity of 20 km s−1 (Stuart and Binzel,18

2004). In order to increase the range of sizes in our compilation, and to reduce19

the statistical uncertainties associated with the larger objects, we have also20

included the size-frequency distribution of Mars-crossing objects with sizes21

greater than 4 km, and scaled these to the terrestrial impact rates of Stuart22

and Binzel (2004).23

Various assumptions have led to all these estimates. Among them, the assumed24

impact velocity and bolide density are only of moderate influence. As an ex-25

ample, varying the density from 2700 to 2000 kg m−3, or the mean impact26
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velocity from 20 to 17 km s−1, changes the estimates of Brown et al. (2002)1

only by about 10 %. Of major influence are the luminous efficiency used to2

obtain kinetic energy from flashes (see Ortiz et al., 2006), and the debiasing3

process in the case of telescopic observations, which are difficult to assign a4

statistical uncertainty to. Consequently, we simply fit a 10th-order polynomial5

to the entire dataset, assuming each data is error free, and that the average6

combination of all estimates gives a good picture of the impactor population.7

[Table 1 about here.]8

We express the resulting analytic size-frequency distribution as the product9

of two terms: the normalized size distribution log s(> d) =
∑10

i=0 si(log dkm)i,10

whose coefficients are listed in table 1, and the Earth’s impact rate for objects11

larger than 1 km, φ̄e(d > 1) = 3.1× 10−6 Ga−1 km−2. An overbar is appended12

to the Earth’s impact rate symbol, denoting that this quantity is spatially av-13

eraged over the planet’s surface. The size-frequency distribution of impactors14

is here assumed to be the same for all bodies in the inner solar system. The15

relative impact rates for these bodies with respect to Earth are calculated in16

Section 3 using the orbital distribution of the planet crossing objects.17

[Fig. 1 about here.]18

3 From asteroids to craters19

Here we describe how is calculated the number of craters that form on the20

Moon and planets, per unit area and unit time, as a function of the crater21

diameter and location on the surface. We first need to calculate the encounter22

conditions generated by the impactor population, then the corresponding im-23
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pact rate and conditions (impact velocity and incidence angle), in order to1

finally obtain a cratering rate by the use of impact crater scaling laws. For the2

reader’s convenience, derivations are given in the appendix.3

3.1 Encounter probability4

Following Öpik (1951), the assumptions under which an encounter is consid-5

ered to occur can be summarized as follows:6

• An encounter between the target (Moon or planet) and impactor occurs7

at the geometrical point of crossing of the two orbits (the mutual node).8

The geometry of encounter is given by the relative velocity vector U at this9

point, which is expressed here in a frame where the X-axis points towards10

the central body (planet or Sun), (XY) defines the target’s orbital plane,11

and the Z-axis points upward.12

• The relative encounter velocity does not account for the acceleration gener-13

ated by the mass of the target.14

• The impactor, as seen by the target, is treated as if it were approaching from15

an infinite distance, under only the gravitational influence of the target.16

The encounter trajectory is therefore hyperbolic in the reference frame of17

the target.18

• For a given U, there are an infinite number of hyperbolic trajectories that19

can actually strike the target, that are distributed uniformly on a circle20

perpendicular to U with a surface equal to the target’s gravitational cross21

section.22
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These approximations hold as long as the radius of the target’s Hill sphere1

is large enough with respect to the target size. We performed three-body2

numerical simulations that show that a factor of ten between the Hill sphere3

and target radii suffices to ensure the validity of the above approximations.4

For the terrestrial planets, this condition is largely verified. For the Moon, it5

corresponds to a minimum Earth-Moon separation of ∼ 17 Earth’s radii.6

In the case of planets in nearly circular orbits, the encounter geometry U and7

probability P (providing the two orbits intersect) are simply given by the well8

known Öpik equations (Öpik, 1951). In order to account for the eccentricity9

of the target (which is important for Mercury and Mars, but not for the10

Earth), we use the improved formulation of Greenberg (1982) and Bottke and11

Greenberg (1993). The probability is largest for low inclination encounters,12

and for encounters occurring near the projectile’s pericenter and apocenter.13

Singularities of the encounter probability are avoided following Dones et al.14

(1999). For a given orbital geometry, the encounter probability is proportional15

to the gravitational cross section, whose radius is16

τ = R
√

1 + Γ , (2)

where R is the target’s radius and17

Γ = 2
GM

RU2
(3)

is the Safronov parameter, with G the gravitational constant and M the tar-18

get’s mass.19

Note that the calculated impact probabilities are long-term averages over pre-20

cession cycles of both the projectile and target (i.e., the longitude of node and21

argument of pericenter can take any value between 0 and 2π). We account22
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for secular variations of the planetary orbital elements using the probability1

distributions given as a function of time in Laskar (2008). Our results are2

only sensitive to secular variations for Mars, and in the following, two values3

are quoted for this planet, that correspond to the present day value and to a4

long-term average (1 Ga and 4 Ga averages yield nearly identical results).5

By calculating the encounter probability P and velocity U associated with a6

given orbital element set (a, e, i), by weighting this probability with the relative7

number of objects o(a, e, i), and by summing over the entire planet-crossing8

population for each terrestrial planet, we build the probability distribution of9

the encounter conditions, p(U), using bins of 1 km s−1 for each component of10

the encounter velocity. Analytically, we have11

p(U) =
p′(U)∫

U p′(U) dU
, (4)

with12

p′(U) =
∫
D

P (D) o(a, e, i) δ(U(D)−U′) dD , (5)

where the integration is performed over the 8-dimensional domain13

D = (U ′
X , U ′

Y , U ′
Z , a, e, i, w0, ∆Ω), with w0 the target’s argument of perihelion,14

∆Ω the difference between the target and projectile’s longitudes of the ascend-15

ing node (see Greenberg, 1982), and δ the Kronecker function which equals 116

when U = U′ and 0 otherwise. The impact rate relative to the Earth is17

r =

∫
U p′(U) dU∫
U p′e(U) dU

. (6)

where p′e is calculated from equation 5 with the Earth being the target.18

The lunar case requires a specific treatment, which is detailed in appendix A.2.19

For simplicity and without altering the results, it is assumed that the lunar20

orbit is circular about the Earth and possess a zero inclination with respect21
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to the ecliptic. We first calculate encounters probabilities P ′ and velocities1

V with the entire Earth-Moon system, whose expression is the same as for2

the Earth, except that the gravitational cross section radius is replaced in the3

Öpik equation by what we call here the lunar orbit cross section, defined as4

(Zahnle et al., 1998)5

τ ′ = am

√
1 + 2

v2
m

V 2
, (7)

where am and vm are respectively the lunar semi-major axis and velocity. On6

the cross sectional disk, the distance from the center is denoted by the impact7

parameter b. Only when b ≤ τ ′ is it possible for a hyperbolic orbit to impact the8

Moon (note that the gravitational cross section of the Moon itself is accounted9

for later in the calculation, see appendix A.2). The probability distribution of10

encounter conditions p(V) is first calculated according to this new definition11

of the encounter probability. Then, the relative lunar encounter velocity U12

and probability Pm are derived analytically for each hyperbolic orbit crossing13

the Earth-Moon system (equations A.19 – A.18, A.24 – A.25, A.30 – A.33).14

The probability distribution of lunar encounter conditions, p(U), is then de-15

termined by integrating numerically Pm for all possible hyperbolic orbits of16

each encounter V, and for all encounter velocities. Similarly, the impact prob-17

ability with Earth Pe is determined for each hyperbola, and the Moon/Earth18

impact ratio r is calculated over all possible encounters. Mathematically, p(U)19

and r are given by equations (A.34–A.36).20

Note that there is a dependence of the lunar impact rate on the Earth-Moon21

separation distance, am. This distance has evolved outward with time, and we22

test various separation distances in the simulations. A major difference be-23

tween our approach and previous investigations (Shoemaker and Wolfe, 1982;24

Zahnle et al., 1998, 2001) is that the argument of pericenter of the hyperbolic25
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orbits is not assumed to precess uniformly within the Earth-Moon system,1

but is explicitly given by the encounter geometry. Our formulation allows to2

calculate explicitly lateral asymmetries in the lunar cratering rate.3

3.2 Impact rate4

Let us express the cumulative impact flux, that is the number of objects with5

diameters greater than d that hit the planet per unit time and area, as6

φ(> d, λ, ϕ) = φ̄(> d)×∆φ(λ, ϕ) , (8)

where λ and ϕ are respectively the latitude and longitude, φ̄(> d) is the7

spatially-averaged impact rate for projectiles larger than d, and ∆φ(λ, ϕ) is the8

relative impact rate as a function of position, normalized to the global average.9

Using our normalized impactor SFD, the average impact rate expresses as10

φ̄(> d) = φ̄(> 1) s(> d) , (9)

and φ̄(d > 1) is obtained from the impact ratio between the target and Earth,11

r, and the terrestrial impact rate φ̄e(d > 1) as12

φ̄(> 1) = r φ̄e(> 1) . (10)

The net spatial asymmetry ∆φ(λ, ϕ) is found by integrating the spatial as-13

symetries δφ(λ, ϕ,U) associated with each encounter geometry:14

∆φ(λ, ϕ) =
∫
U

δφ(λ, ϕ,U) p(U) dU , (11)

where δφ is given in appendix A.3 as a function of the Safronov parameter Γ15

and obliquity of the target (equations A.47 – A.49). The impact flux is homo-16

geneous for Γ = ∞, that is, for encounter velocities negligible with respect to17
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the target’s surface gravitational potential (equation 3). On the other hand,1

for Γ = 0, encounter trajectories are straight lines, and the impact flux is a2

simple geometrical projection of the spatially uniform encounter flux (on a3

plane perpendicular to the radiant) onto the target’s spherical surface. The4

associated impact velocities and incidence angles are calculated from equa-5

tions (A.51) and (A.54). The impact velocity u is only dependent on U and6

Γ, while the incidence angle θ further depends on position.7

3.3 Cratering rate8

To obtain cratering rates from impact rates, we need to convert the impactor9

diameters into crater diameters. For this purpose, we use equations that have10

been derived in the framework of π-scaling dimensional analysis (Holsapple11

and Schmidt, 1987; Holsapple, 1993), where the transient crater is given as12

a function of the projectile diameter, impact velocity, surface gravity and13

projectile/target density ratio (see appendix A.4). It is assumed that only the14

vertical component of the impact velocity, whose value is obtained from the15

impact angle, contributes to the crater size (Pierazzo et al., 1997), though16

other relations could be easily incorporated into this analysis. The scaling17

equation and parameters are taken from the summary of Holsapple and Housen18

(2007) for the case of porous and non-porous scaling. It will be seen that both19

formation regimes are necessary to reconcile the impactor and crater SFDs.20

We only consider craters that form in the gravity regime, where the tensile21

strength of rock is negligible, that is, craters larger than a few hundred meters22

in competent rock, and larger than a few meters in consolidated soils. An23

increase of the transient crater diameter by wall slumping and rim formation is24
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accounted for as given in Melosh (1989, 253 pp.). Finally, large craters collapse1

due to gravity, becoming complex craters, and the relationship between simple2

and complex crater diameters is taken from Holsapple (1993). Putting this3

altogether, we obtain the relation d(D, u, θ) that gives the impactor diameter4

d as a function of the crater diameter D, impact velocity u and incidence5

angle θ (appendix A.4, equations (A.63 – A.59)). The impactor diameter d6

required to create a crater of size D is ultimately a function of λ, φ and U7

(see equations A.51 and A.54).8

The cratering rate, that is the number of craters larger than D that form at9

(λ, ϕ) per unit time and area, is10

C(> D, λ, ϕ) =
∫
U

φ(> d, λ, φ) p(U) dU , (12)

where11

d = d(D, λ, φ,U) . (13)

For convenience, we separate the cratering rate into12

C(> D, λ, ϕ) = C̄(> D)×∆C(> D, λ, ϕ) . (14)

where C̄(> D) is the spatially averaged rate and ∆C(> D, λ, ϕ) is the rela-13

tive spatial variation. Note that ∆C depends on D, though in practice, this14

dependence is moderate (see next section).15
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4 Results1

4.1 Crater size-frequency distributions2

We first present our synthetic size-frequency distribution of lunar craters. Fol-3

lowing the terminology of Marchi et al. (2009), we refer to this as a model4

production function. We compare our model production function with the5

two standard measured production functions of Neukum (Neukum, 1983, 1866

pp.; Neukum and Ivanov, 1994) and Hartmann (Basaltic Volcanism Study7

Project, 1981; Hartmann, 1999). We note that the two are in good agreement8

over the crater diameter range from 300 m to 100 km, but differ between 29

and 20 km, with a maximum discrepancy of a factor 3 at 5 km.10

Using the traditional non-porous scaling relations and a standard target den-11

sity of 2800 kg m−3, we calculate that 2.88 × 10−11 craters larger than 1 km12

would be created each year on the lunar surface by the present impactor pop-13

ulation. Using the time-dependence established by Neukum (1983, 186 pp.)14

that predicts a quasi-constant impact flux over the last ∼ 3 Ga, the Hartmann15

and Neukum production functions return respective values of 7.0× 10−13 and16

8.2× 10−13, which are about forty times lower, implying that the present flux17

must be considerably larger than the time averaged value.18

However, by using the porous scaling law instead, in order to account for19

the presence of megaregolith on the lunar surface, our calculated spatially20

averaged lunar cratering rate is21

C̄m(D > 1) = 7.5× 10−13 yr−1 km−2 , (15)

a value in excellent agreement with the two measured production functions22
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under the assumption of a constant impact flux over the last ∼ 3 Ga.1

Let us now reconcile the entire shape of the measured production functions2

with the observed impactor population. As shown in figure 2, the two mea-3

sured distributions are very well fitted by using the porous regime for small4

craters (D < 2 km), and the non-porous regime for larger craters (D > 205

km). We model a simple smooth transition between the two regimes by con-6

sidering that the impactor size d required to create a crater of diameter D is a7

linear combination of the sizes required from the porous and non-porous scal-8

ing relations, the influence of each regime depending on the depth of material9

excavated by the crater. The depth of excavation zT is about 1/10 of the tran-10

sient crater diameter DT , and does not seem to depend on target properties11

(Melosh and Ivanov, 1999). The impactor size is averaged over the depth of12

excavation:13

d =
1

zT

∫ zT

0
dz(z) dz , (16)

where dz is the impactor size required by the material at depth z, given by14

the porous regime at the surface, by the non-porous regime at depths larger15

than a given ”megaregolith thickness” T , and by a linear combination between16

z = 0 and z = T :17

dz(z) = 1
T

((T − z) dp + z dnp) for z ≤ T ,

dz(z) = dnp for z ≥ T ,

(17)

with dp and dnp the impactor diameters respectively required from the porous18

and non-porous regimes. In the calculation of dnp, the target density is set to19

2800 kg m−3 (solid rocks), whereas we assume in calculating dp that the density20

of the porous material is 2500 kg m−3, based on Bondarenko and Shkuratov21

(1999, abstract no. 1196) who inferred an upper regolith density comprised22
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between 2300 and 2600 kg m−3 from correlations between the surface regolith1

thickness and the Soderblom’s crater parameter (Soderblom and Lebofsky,2

1972). We note that given the simplicity of our crater-scaling procedure in the3

transition zone, the correspondance between T and the actual megaregolith4

thickness should not be expected to be exact.5

As shown in figure 2, our model reproduces both the Hartmann and Neukum6

production functions within the 100 m – 300 km diameter range, for respective7

values of T equal to 250 and 700 m, respectively. For these diameter ranges,8

the maximum discrepancy between our model and the Neukum production9

function is only 30 % at 200 m, and always less than 20 % for craters larger10

than 500 m. Below 100 m, we note that our model is in reasonable agreement11

with the Neukum production function, and we leave the implications for the12

contribution of secondary craters to further investigations. The model pro-13

duction function proposed by Marchi et al. (2009) is also shown in figure 2. A14

detailed comparison with this latter study is given in the discussion section.15

[Fig. 2 about here.]16

The use of porous scaling was first suggested by Ivanov (2006) (see also Ivanov,17

2008; Ivanov and Hartmann, 2007), and is a natural consequence of a highly18

fractured megaregolith on airless bodies. Also natural is to expect that the19

thickness of the megaregolith will depend upon both age and local geology.20

We note that the need for a transition regime falls within the diameter range21

where the measured production functions differ the most (excluding very large22

craters). We suspect that this is partially a result of the Hartmann produc-23

tion function being based on crater counts performed solely over mare units,24

whereas the Neukum production function also includes older highlands ter-25
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rains (Neukum et al., 2001a).1

Estimated megaregolith thicknesses are roughly consistent with seismic mod-2

els of the lunar crust (e.g., Warren and Trice, 1977; Lognonné et al., 2003)3

that generally predict reduced seismic velocities for the upper km, which is4

attributed to an increased porosity and fractures. Furthermore, seismic data5

at the Apollo 17 landing site, overlaid by mare basalt, indicates that the upper6

250 / 400 m show a very low P-wave velocity with respect to the deeper basalt7

(Kovach and Watkins, 1973; Cooper et al., 1974), the lower estimate being in8

agreement with our calculated megaregolith depth of 250 m for the Hartmann9

production function. Finally, Thompson et al. (1979) show by analysis of radar10

and infrared data (which are dependent on the amount of near surface rocks)11

that craters overlying highlands show different signatures for craters greater12

and less than 12 km, and that mare craters down to 4 km in diameter possess13

a similar signature to that of highlands craters greater than 12 km. They at-14

tribute this difference to the presence of a pulverized megaregolith layer that15

is thicker in the older highlands than the younger mare.16

By the use of a porous regime dictated by the properties of a megaregolith,17

our model production function reproduces the measured crater distributions18

in shape and in the absolute number of craters formed over the past 3 Ga,19

under the assumption of a constant impact flux. We caution that our simple20

formulation of the porous / non-porous transition does not account for the21

temporal evolution of the megaregolith and that the inferred megaregolith22

thicknesses are only qualitative estimates.23

The present Earth-Moon distance has been used in the above calculation of24

the lunar cratering rate, and temporal variations in the lunar semimajor axis25
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could, in principle, modify the Earth/Moon impact ratio and encounter ve-1

locity distribution with the Moon. Nevertheless, it is found in our simulations2

that, for a lunar semi-major axis as low as 20 Earth radii, the average lunar3

cratering rate is changed by less than 3%. This implies that both the shielding4

and gravitational focusing of projectiles by the Earth are of very moderate5

effects, especially since the Moon is believed to have spent the vast majority6

of its history beyond 40 Earth radii.7

[Table 2 about here.]8

Our globally averaged planetary cratering rates C̄(> D) are fitted by 10th-9

order polynomials for the Moon and inner planets. The coefficients (with units10

of yr−1 km2) are listed in table 2. Since the megaregolith thickness is not11

necessarily the same on each planet, and may depend on the age and geology12

of the surface, coefficients are given for the two scaling regimes (T = ∞ and13

T = 0 km) for diameters between 0.1 and 1000 km (except for the Earth and14

Venus, where only non-porous scaling is given). A linear transition simpler15

than ours can be used by defining two threshold diameters, Dp and Dnp, such16

that the porous and non-porous regime applies alone respectively below Dp17

and above Dnp. The cratering rate in the transition regime is then calculated18

as C(> D) = Cp(> Dp) + Cnp(>Dnp)−Cp(>Dp)
Dnp−Dp

(D −Dp), where Cp and Cnp are19

given in table 2 in the porous and non-porous columns, respectively. Note that20

the martian cratering rate is sensitive to the eccentricity of the planet, since21

the number of potential impactors increases dramatically as this planets gets22

closer to the Main Asteroid Belt (Le Feuvre and Wieczorek, 2008; Ivanov,23

2001). In addition to calculating the present day martian cratering rate, we24

also used the probability distribution of the martian eccentricity provided by25

Laskar (2008) to calculate an average over the past 1 Ga (note that this value26
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is nearly insensitive for longer averages).1

Planetary size-frequency distributions are generally expressed with respect to2

the lunar one. This is done by defining the size-dependent quantity Rc, which3

is the cratering ratio with respect to the Moon,4

Rc(> D) =
C̄(> D)

C̄m(> D)
. (18)

For illustrative purpose, Rc is shown for the inner planets in figure 3 by assum-5

ing that craters with diameters less than 10 km form in a porous soil on both6

the planet and Moon, while craters with greater sizes form in solid rocks (ex-7

cept for the Earth and Venus where only the non-porous regime is used). Note8

that Rc can be easily calculated from equation 18 and table 2 for a different9

(and more realistic) transition between porous and non-porous regimes.10

[Fig. 3 about here.]11

[Fig. 4 about here.]12

The mean impact velocity on the Moon is calculated to be ūm = 19.7 km13

s−1. The full probability distribution of impact velocities for each planet is14

shown in figure 4. The quantities φ̄/φ̄m, ū/ūm and g/gm, that give the relative15

impact flux, impact velocity and surface gravity with respect to the Moon,16

are given in table 3 for the inner planets. Mars experiences a high impact rate17

with respect to the Moon (about 3) due to its proximity to the main asteroid18

belt. In comparison, the martian cratering ratio is reduced (between about19

0.5 and 2.5) because the impact velocity on Mars is significantly lower than20

on the Moon, requiring larger (and hence less numerous) impactors to create21

a crater of a given size. Mercury exhibits also a high impact rate, and the22

impact velocity is about twice as large as on the Moon, resulting in a high23
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value of the cratering ratio Rc, comprised between 2 and 4. The impact rate1

is larger on the Earth and Venus than on the Moon, as these planets possess a2

higher gravitational attraction. Their higher surface gravities compensate the3

differences in impact velocities with the Moon, and Rc is comprised between4

0.5 and 1.5 for the Earth and between 1 and 2 for Venus.5

[Table 3 about here.]6

4.2 Spatial variations7

The relative spatial cratering variations on the Moon, ∆C(> D, λ, ϕ), are8

shown in figure 5 for the present Earth-Moon distance of about 60 Earth9

radii, and for crater diameters larger than 1 km. The cratering rate varies10

from approximately −20% to +25% with respect to the global average. It is11

minimized at about (±65◦N, 90◦E), whereas the maximum, which is a factor12

1.5 higher, is located at the apex of motion (0◦N, 90◦W ).13

[Fig. 5 about here.]14

Two effects conjugate to give such a distribution. First, a latitudinal effect,15

detailed in Le Feuvre and Wieczorek (2008), comes from the higher propor-16

tion of low inclination asteroids associated with the higher probabilities of low17

inclination encounters. The pole/equator ratio is 0.80. Second, a longitudinal18

apex/antapex effect comes from the synchronous rotation of the Moon and19

the higher relative encounter velocities at the apex. The lunar orbital velocity20

is added to the projectile velocity for impacts at the apex, whereas it is sub-21

tracted at the antapex. The apex/antapex ratio is 1.37. We note that there is22

a negligible nearside/farside effect: the nearside experiences the formation of23
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about 0.1% more craters that the farside. The Earth does indeed concentrate1

very low inclination (and moderate velocity) projectiles onto the lunar near-2

side, but these are not numerous enough to influence the global distribution.3

The lateral cratering variations depend on the crater size since the size-4

frequency distribution of impactors s(> d) is not a simple power law, and5

the impact conditions are not everywhere the same. Nevertheless, the maxi-6

mum/minimum cratering ratio varies only by about 5% for D ranging from7

30 m to 300 km. Consequently, for the following discussion, we shall consider8

that ∆C(> D, λ, ϕ) ' ∆C(> 1, λ, ϕ).9

For smaller Earth-Moon distances am, the apex/antapex effect increases as10

the lunar velocity increases. Between 20 and 60 Earth radii, this dependency11

is fit by the simple equation12

C(apex)/C(antapex) = 1.12 e−0.0529am
Re + 1.32 , (19)

where Re is the Earth radius. Over this range of Earth-Moon separations,13

latitudinal variations and the nearside/farside effect are found to vary by less14

than 1%. These calculations assume that the lunar obliquity stayed equal to15

its present value in the past.16

Figure 6 plots the relative cratering rate ∆C as a function of the angular17

distance from the apex of motion for the present Earth-Moon distance, and18

compares this with the counts of rayed craters with diameters greater than19

5 km given in Morota et al. (2005). Rayed craters are younger than about20

1 Ga (Wilhelms et al., 1987), which should corresponds to an Earth-Moon21

separation distance very close to the present one (Sonett and Chan, 1998;22

Eriksson and Simpson, 2000). As is seen, the model compares favorably to the23
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data.1

[Fig. 6 about here.]2

We note that the impact rate exhibits nearly the same behavior as the cra-3

tering rate, but with a reduced amplitude. The pole/equator ratio is 0.90,4

whereas the apex/antapex ratio is 1.29. The latitudinal cratering variations5

are enhanced with respect to the impact rate variations, as the mean impact6

angle and impact velocity are smaller at the poles than at the equator (re-7

spectively by 2.5 degrees and 500 m/s), requiring a larger projectile to create8

the same crater size. As large projectiles are less numerous than small ones,9

the impact rate at the poles is smaller than the cratering rate (Le Feuvre and10

Wieczorek, 2008). This is also true for the apex/antapex asymmetry, as the11

average impact velocity is 500 m/s higher at the apex than at the antapex.12

However, the increase is moderate, as the mean impact angle is only about13

1.5 degree smaller.14

It is seen in figure 7 that our predicted apex/antapex effect differs from that15

of Zahnle et al. (2001). These authors describe their variations of the impact16

rate as a function of γ, the angular distance to the apex, as17

∆φ(γ) =

1 +
vm√

2v2
m + V̄ 2

cos γ

2

, (20)

where V̄ ' 19 km s−1 is the mean encounter velocity with the Earth-Moon18

system. We are able to reproduce their analytical solution, but only under19

the condition where we force the encounter inclinations with respect to the20

lunar orbit plane to be isotropic in space. These authors used Öpik equations21

(Shoemaker and Wolfe, 1982) for hyperbolic orbits that were assumed to pre-22

cess uniformly inside the planet-moon system. We nevertheless point out that23
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Zahnle et al. (2001) applied equation (20) to the moons of Jupiter, where this1

approximation might be valid.2

[Fig. 7 about here.]3

We next provide analytical solutions for the relative variations of both the im-4

pact and cratering rates on the Moon. We also give solutions for the latitudi-5

nal variations presented on the terrestrial planets in Le Feuvre and Wieczorek6

(2008). Two values are quoted for Mars, one that corresponds to its present7

obliquity and eccentricity and the other to averaged results using variations8

over 3 Ga as given in Laskar et al. (2004) (see Le Feuvre and Wieczorek, 2008).9

Spatial variations in the impact flux and cratering rate are parameterized by10

a sum a spherical harmonic functions11

∆C(λ, ϕ) =
∞∑
l=0

l∑
m=−l

ClmYlm(λ, ϕ) , (21)

where Ylm is the spherical harmonic function of degree l and order m, Clm is12

the corresponding expansion coefficient, and (λ, ϕ) represents position on the13

sphere in terms of latitude λ and longitude ϕ, respectively. The real spherical14

harmonics are defined as15

Ylm(λ, ϕ) =


Plm(sin λ) cos mϕ if m ≥ 0

Pl|m|(sin λ) sin |m|ϕ if m < 0,

(22)

and the corresponding unnormalized Legendre functions are listed in Table 4.16

Many of the expansion coefficients are nearly zero since the cratering rate17

is symmetric about both the equator and the axis connecting the apex and18

antapex of motion. Only the most significant coefficients are listed in Tables 519

and 6, which for most cases reproduce the data to better than 0.2%. The20
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coefficients for the latitudinal variations on the terrestrial planets are listed in1

Tables 7 and 8.2

[Table 4 about here.]3

[Table 5 about here.]4

[Table 6 about here.]5

[Table 7 about here.]6

[Table 8 about here.]7

5 Crater chronology8

Neukum et al. (2001a) (see also Neukum, 1983, 186 pp.; Strom and Neukum,9

1988; Neukum and Ivanov, 1994) established empirically the following rela-10

tionship between the number of craters with diameters greater than 1 km and11

the age of the geologic unit:12

N̄(D > 1, t) = a
(
ebt − 1

)
+ c t , (23)

where N̄(D > 1, t) is given per 106 km2, t is the age expressed in Ga, and13

a = 5.44× 10−14, b = 6.93 and c = 8.38× 10−4. This relationship is essentially14

linear over the last 3.3 Ga (constant cratering rate in time) and approximately15

exponential beyond. The data used to construct this empirical curve are ob-16

tained from radiometric ages of the Apollo and Luna rock samples, compared17

to the crater density covering the associated geologic unit. We emphasize that18

no agreed upon calibration data exist between 1 and 3 Ga and beyond 3.919

Ga (Stöffler and Ryder, 2001). We also note that equation (23) was originally20
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obtained using age estimates of the highland crust and Nectaris impact basin,1

both of which are disputed and considerably older than 3.9 Ga.2

Accounting for our calculated spatial variations, we first convert the measured3

crater density at a given site, N(D > 1, λ, ϕ), into the corresponding spatially4

averaged quantity:5

N̄(D > 1) = N(D > 1, λ, ϕ)/∆C(D > 1, λ, ϕ) . (24)

The cratering asymmetry ∆C is given in table 2, and we use the function that6

corresponds to the present Earth-Moon separation for cratered surfaces that7

are less than 1 Ga (consistent with the tidal deposit data of Sonett and Chan8

(1998)). We choose a Earth-Moon separation of 40 Earth radii for units that9

are older than 3 Ga (based on the tidal deposits data of Eriksson and Simpson10

(2000)). This lunar semimajor axis value corresponds to a lunar orbital velocity11

twice as large as the present one. We further assume that the lunar obliquity12

was equal to its present value (nearly zero) for the entire time between 3.9 Ga13

and the present.14

The data used to calibrate the crater density versus age relationship are listed15

in table 9, along with their corrections accounting for spatial variations in the16

cratering rate. We use the crater density and ages values quoted in Stöffler and17

Ryder (2001). We did not attempt to fit crater distributions with our model18

production function to re-estimate N(D > 1) values, since our model already19

reproduces very well the Neukum production function that was used to esti-20

mate this quantity. For the case of very young calibration surfaces, we suspect21

that a thinner megaregolith might change the crater distribution with respect22

to the Neukum production function at sizes larger than one kilometer, but,23

for small exposure times, the largest observed craters are below this diameter24
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value. Based on the data and interpretations of Norman (2009), we exclude1

the Nectaris basin from consideration, as it is possible that samples assigned2

to this basin have instead an Imbrium provenance. We thus assume that the3

Descartes formation is not Nectaris ejecta, but rather Imbrium ejecta with an4

age of 3.85 Ga. We also exclude the Crisium basin from the fit, due to the5

uncertain provenance of samples dated at the Luna 20 site. Finally, we use6

the recent crater counts performed on Copernicus deposits by Hiesinger et al.7

(2010, abstract no 1533) with high-resolution Lunar Reconnaissance Orbiter8

images, which agree with a constant impact flux during the last 800 Ma, in9

contrast to previous studies.10

As seen in table 9, the spatial correction is in general moderate, since the cali-11

bration terrains are located in the central portion of the nearside hemisphere,12

far from the extrema of the spatially-dependent cratering rate. Nevertheless,13

we point out that after correction, the Apennines, Fra Mauro and Descartes14

formations, which are all Imbrian in age, exhibit nearly the same globally av-15

eraged crater density, which is consistent with our assignment of an Imbrium16

origin to the Descartes formation, as recently suggested by Norman (2009)17

(see also Haskin et al., 1998).18

We perform a new fit of the calibration point, using the same functional form19

as in equation 23. Our resulting best parameters are20

a′ = 1.893× 10−26

b′ = 14.44

c′ = 7.960× 10−4 ,

(25)

and our proposed curve is shown in figure 8, along with the curves proposed by21
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Neukum et al. (2001a) and Marchi et al. (2009). It is seen that our model favors1

a longer period of nearly constant impact flux (up to about 3.5 Ga), and that2

the agreement with the calibration points is improved. Crisium basin is also3

plotted (but was not included in the fit) for the tentative age of 3.895 given by4

Swindle et al. (1991, abstract no 1229), showing an excellent agreement with5

our model.6

We note that the only calibration point that is not well fit to our relationship7

is the ”young” group of basalts at the Apollo 11 landing site (point 9 in figure8

8). As discussed in Stöffler and Ryder (2001), four different flow units having9

distinct compositions and ages were sampled at this site, with ages of 3.58, 3.7,10

3.8, and 3.85 Ga. Previously measured crater densities were assigned to the11

3.58 and 3.8 Ga age groups, and we acknowledge the possibility that one, or12

perhaps both, of these assignments could possibly be in error. As an example,13

we note that if the 3.7 Ga age were assigned to the younger crater density14

that it would lie directly on our best fit line. In contrast, if the older crater15

density were assigned the 3.7 Ga age, this would require a different form to16

the fit between 3.41 and 3.75 Ga. Given the discrepancy of the 3.58 Ga crater17

density, ages derived from our crater chronology between 3.41 and 3.75 Ga18

should be used with caution.19

Figure 8 also shows the range of bias that could occur if spatial variations20

are not taken into account in the crater chronology method. Radiometric ages21

obtained from future missions, or crater count data from images, that are far22

from the Apollo and Luna sampling sites might need to have their associ-23

ated local crater densities corrected by a factor up to ∼25% to obtain the24

corresponding globally averaged value. Since the age/density relationship is25

approximatively linear for the last 3.5 Ga, ages could be biased by the same26
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amount as the spatial variations. Maximal variations in apparent ages would1

correspond to geologic units located at the apex or at (±65◦N, 90◦E). If one2

geologic unit were located at (0◦N, 90◦W ) and another at (±65◦N, 90◦E), and3

if both surfaces formed at 2 Ga, there would be about 900 Ma separating their4

apparent ages.5

[Fig. 8 about here.]6

[Table 9 about here.]7

The number of craters larger than D that accumulate on a given planet, at8

the location (λ, ϕ), and over a period of t Ga, is9

N(> D, λ, ϕ, t) = C(> D, λ, ϕ)× T (t) , (26)

where the temporal dependency is10

T (t) =
a′
(
eb′t − 1

)
+ c′ t

a′ (eb′ − 1) + c′
, (27)

and a′, b′ and c′ are given in equation 25. The dating of a planetary geologic11

unit is performed by finding the value of t that allows the best fit between12

N(D, λ, ϕ, t) and the data.13

At a given location (λ, ϕ) (note that ϕ plays a role only in the lunar case and14

that, apart from Mars where the cratering rate is expected to be 30 % less at15

the equator than at the pole, the latitudinal effect on the terrestrial planets is16

less than 10%), the best age is found by solving the linear least-square problem17

as a function of T (t): Nobs(> Dk) = C(> Dk, λ, ϕ)× T (t), where Nobs(> Dk)18

are the K measured cumulative crater densities with k ∈ [1, K]. Each data19

possesses an uncertainty σk =
√

Nobs(> Dk)/A, where A is the area where20
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craters have been counted. The solution (e.g., Tarantola 2001) is given by1

T (t) =

∑K
k=1 C(> Dk, λ, ϕ) Nobs(> Dk)/σ

2
k∑K

k=1 C2(> Dk, λ, ϕ)/σ2
k

(28)

The a posteriori uncertainty is given by2

δT (t) =

(
K∑

k=1

C2(> Dk, λ, ϕ)

σ2
k

)− 1
2

. (29)

The best age t (in Ga) and its uncertainty are finally determined from T (t)±3

δT (t).4

We next show an application of our procedure by estimating new ages of key5

geologic units on the Moon, Earth, Venus and Mercury. Figure 9a shows our6

synthetic lunar SFD fitted to crater counts performed over the Orientale basin7

(data from Neukum et al. (2001a)). The crater SFD is shown in R-plot form,8

R(> D) = D3 dN(>D)
dD

, where changes in slope are emphasized with respect9

to a reference cumulative distribution having a power-law slope of -2. We use10

a best-fitting megaregolith thickness of 500 m, and exclude in the fit craters11

smaller than 1.5 km in diameter that have reached saturation level. We find12

an age of 3.73 ± 0.01 Ga. The difference with Neukum et al. (2001a), who13

quoted an age of 3.70, lies principally in the updated coefficient values of14

the calibration curve. Without accounting for spatial cratering variations, the15

age would have been estimated to be 3.75 Ga. The bias in age from spatial16

cratering variations is here moderate, as we are in the exponential part of the17

calibration curve.18

On Earth, Hughes (2000) used a nearest neighbors technique and known crater19

ages to calculate the size-dependent formation rate of craters over the last20

125 ± 20 Ma. The best fit between our model production function and the21

estimates of Hughes (2000) is for an age of 138±6 Ma (figure 9b), in excellent22
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agreement with a constant impact flux over this period. Craters smaller than1

15 km in diameter were not included in the fit, being depleted as a consequence2

of erosional processes (note that the megaregolith thickness was obviously set3

to 0 in this calculation). Our result implies that craters larger than about 10-4

20 km have not been erased by erosional processes over the last 100 Ma. We5

also fit our model to the crater distribution of a number of North American6

and European Phanerozoic cratons that have been independently estimated7

by Grieve and Dence (1979) to be 375 Ma old on average. Neukum and Ivanov8

(1994) noted that the crater chronology, once applied to this crater population,9

returns an age of about 700 Ma. Our best fit corresponds to an age of 390±7510

Ma, in agreement with Grieve and Dence (1979).11

Using crater counts derived from the Magellan mission, the average age of12

the Venusian surface has generally been estimated to be between 650 and13

750 Ma (Neukum and Ivanov, 1994; McKinnon et al., 1997; Korycansky and14

Zahnle, 2005). We fit our model distribution to the data, excluding craters15

smaller than 25 km in diameter: their depletion with respect to the model is16

attributed to atmospheric shielding. Our estimate, based on the use of the17

non-porous scaling alone, is shown in figure 9c, and corresponds to an age18

of 240 ± 13 Ma (figure 9c), significantly younger than other estimates. The19

difference lies principally in the impactor population used in the calculations.20

In particular, both Korycansky and Zahnle (2005) and McKinnon et al. (1997)21

used the Venus-crossing population estimated by Shoemaker et al. (1990),22

which produces an impact rate that is significantly higher than our value23

calculated from the NEO model of Bottke et al. (2002). This high impact rate24

is compensated in their study by a very efficient atmospheric shielding model25

that has the effect of decreasing the proportion of small craters. In particular,26
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the number of 30 km craters is reduced by about a factor 5 between their1

airless and atmosphere-shielded simulations in order to fit the data, whereas2

our airless model fits the crater distribution at that size, suggesting that the3

atmosphere is of negligible effect. Neukum and Ivanov (1994) assumed that the4

mean impact velocity on Venus is 19 km s−1 (we calculate 25 km s−1), and that5

the projectile flux at infinity was the same for Venus and the Moon. Moreover,6

our venusian size-frequency distribution is not of the same shape as in Neukum7

and Ivanov (1994), because it was not constructed from the lunar production8

function, where porous megaregolith decreases the proportion of small craters,9

but rather directly from the impactor size distribution. We finally note that10

our inferred age is more similar to the estimate of Strom et al. (1994), who11

calculated the global surface of Venus to be 290 Ma old.12

[Fig. 9 about here.]13

Figure 9d shows crater counts performed on Mercury, both on plains interior14

to the Caloris basin and on the lineated Caloris basin sculpture (Fassett et al.,15

2009). Our best fits are respectively for megaregolith thicknesses of 250 m and16

900 m, and for ages of 3.30 ± 0.3 and 3.73 ± 0.2 Ga. According to Fassett17

et al. (2009), the size-frequency distribution of craters on the lineated sculp-18

ture (resulting from the basin formation) should be more representative of the19

Caloris basin formation time than the distribution measured on the Caloris20

rim, that exhibits a loss of small craters due to erosional processes and bad21

lighting conditions for crater counts, both being the consequences of the rim22

slope. Therefore, we attribute the age of 3.69 Ga to the Caloris basin. Our pre-23

ferred values are consistent with the interpretation that older surfaces present24

a thicker layer of megaregolith than younger ones. Moreover, the megaregolith25

appears to be thicker on Mercury than on the Moon, which is consistent with26
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the fact that Mercury has both impact rate and mean impact velocity that1

are about twice as great as for the Moon. Finally, we suggest the possibility2

that differences in crater size-frequency distribution between pre- and post-3

LHB surfaces may partially be explained by megaregolith thickness variations4

rather than changes in the impactor size distribution, the latter hypothesis5

being supported by Strom et al. (2005).6

6 Discussion7

Here we compare our calculations with published results, and discuss the sen-8

sitivity of our model to various parameters. Our present Earth/Moon impact9

ratio and mean lunar impact velocity are calculated to be, respectively, 1.5810

and 19.7 km s−1. This is comparable to the values of Stuart and Binzel (2004)11

(respectively 1.61 and 19.3 km s−1), who used Öpik calculations for an isolated12

Moon possessing an Earth-like orbit about the Sun. These authors used the13

NEO population of Stuart (2001), estimated from the debiased observations of14

the LINEAR survey, and calculated the cratering rate on the Earth and Moon15

using various scaling laws. They did not account for a porous megaregolith.16

Gallant et al. (2009) used numerical simulations to estimate lunar asymme-17

tries. From the NEO population of Bottke et al. (2002), they calculated the18

probability of encounter with the Earth-Moon system with Öpik probabilities,19

and used a 4-body (projectile, Moon, Earth and Sun) numerical approach to20

calculate the encounter trajectory, starting at 0.02 AU from the Earth. They21

reported a mean lunar impact velocity of 20 km s−1. Our analytical approach22

yields consistent values with their predicted apex/antapex cratering ratio as23

a function of the Earth-Moon distance: our leading/trailing hemispheric ratio24
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is 1.17 for the present lunar semi-major axis am = 60 Earth radii, and 1.201

for am = 40 Earth radii, while Gallant et al. (2009) gave respectively 1.152

and 1.18. Their latitudinal effect is found to be 10%, whereas ours is 20%.3

The difference is due to the crater scaling employed: Gallant et al. (2009) did4

not include the effect of the impact angle on the crater diameter, while we5

consider that only the vertical component of the impact velocity contributes6

to the crater size. By ignoring the effect of impact angle, we indeed obtain7

a similar latitudinal effect of ∼ 10% (see Le Feuvre and Wieczorek, 2008).8

The ”vertical component” scaling appears to be the safest assumption for a9

single target body, though the impact angle dependence of the average crater10

efficiency may vary from planet to planet (see Collins et al. 2009, Elbeshausen11

2009). Nevertheless, this angle dependence is of negligible influence in the cal-12

culation of planetary cratering rate ratios with respect to the Moon, and only13

affects the amplitude of the cratering asymmetries on a given body. Gallant14

et al. (2009) also estimated the terrestrial impact rate as a function of local15

time (see figure 9 of their paper). Although it is not the purpose of this paper,16

we note here that our semi-analytical approach reproduces their results.17

Recently, Marchi et al. (2009) proposed a revised crater chronology. The main18

differences with our approach (excluding the assumption of spatially uniform19

cratering rates in the latter) are the following:20

• We use the orbital distribution of near-Earth objects of Bottke et al. (2002),21

modified for Mars, which is assumed to be in steady state and independent22

of bolide size. Marchi et al. (2009), in contrast, use a subset of this model23

based on orbital integrations of test particles coming from only the 3:1 and24

ν6 resonances. Furthermore, the relative importance of these two sources is25
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not the same as in the final debiased model of Bottke et al. (2002).1

• We assume that the size frequency distribution of objects impacting the2

planets is the same for all planets and that the probability of an object3

impacting a planet is independent of size. In contrast, in Marchi et al. (2009),4

the size frequency distribution differs for each planet and is dependent on5

how much time the impactors spend in the asteroid belt. Furthermore, the6

impact probabilities are assumed to depend upon the projectile size.7

• In the impact crater scaling relations, we use K=1.17 for impacts in water8

for the gravity regime, whereas Marchi et al. (2009) use K=0.93 for impacts9

in wet soils and rock in the strength regime (though employed in the general10

scaling relationship that contains both strength and gravity terms).11

• When converting transient crater diameters to final crater diameters, we12

use a multiplicative factor of 1.56 as suggested by Melosh (1989, 253 pp.)13

and Melosh (1998), whereas Marchi et al. (2009) assume that the transient14

crater diameter is equivalent to the final simple crater diameter for their15

preferred impact scaling law that is based on the equations in Holsapple16

and Housen (2007).17

• Both studies treat the case of impact crater scaling in the porous megare-18

golith differently. We use a linear transition from porous (i.e., ”sand or co-19

hesive soils” from Holsapple and Housen (2007)) to nonporous scaling to fit20

either the Neukum or Hartmann production functions. In contrast, Marchi21

et al. (2009) place the transition between porous and nonporous scaling at22

projectile diameters of 0.5 km (corresponding to a crater diameter of about23

5 km), and additionally use an average strength parameter in their impact24

crater scaling relationship that depends on crater size.25

It is difficult to quantify how each of these differences affect the final crater26
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size-frequency distribution on a planetary object, and hence the derived ages1

of a surface. Nonetheless, we note that the different bolide size-frequency dis-2

tributions and the different crater scaling laws could be significant. As an3

example, if Marchi et al. (2009) were to have used the same crater scaling4

constants and to have multiplied their transient crater diameters by the same5

factor as us, this would have increased their predicted crater densities by about6

a factor of 5. Excluding these factors from our analysis would have decreased7

our crater densities by the same factor.8

Regardless of these differences, we note that our model production function is9

in closer agreement with the Neukum production function than that proposed10

by Marchi et al. (2009). In particular, our crater densities differ by a factor11

of 1.1 and 0.8 at crater diameters of 1 and 50 km, respectively (1.3 and 0.712

with respect to the Hartmann production function), whereas for Marchi et al.13

(2009) the respective factors are about 1.5 and 0.3 (1.7 and 0.2 with respect14

to the Hartmann production function). Though a factor of 5 increase in crater15

densities would improve their fit to the Neukum production function at large16

crater diameters, the misfit would be significantly worse for small craters.17

It should be noted that, according to Stewart and Valiant (2006), morphologi-18

cal analysis of young Martian craters combined with theoretical crater scaling19

relationships implies a factor of about 1.4 for modification of the transient cav-20

ity by wall slumping and rim uplift (in addition to gravity collapse of complex21

craters), whereas Melosh (1989, 253 pp.) suggested a factor of 1.56. Using the22

Stewart and Valiant (2006) factor would make our crater densities differ at23

most by 40 % from the Neukum production function for crater sizes between24

100 m and 300 km. Using an impactor density of 2000 instead of 2700 kg m−3
25

would produce the same effect. Given the uncertainties in both the transient26
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cavity modification factor and the impactor densities, we favor our previous1

estimate, that is in closer agreement with the observed production functions.2

The density and porosity of the lunar megaregolith are not known with any3

certainty. It is likely that porosity reduces the density of the first few hundred4

meters of the lunar crust. Nevertheless, the subsurface study of the Ries crater5

on Earth (Pohl et al., 1977) indicates that the density reduction is moderate.6

We used a value of 2500 kg m−3 for the upper density of the megaregolith in7

the calculation of the impact crater sizes, based on Bondarenko and Shkuratov8

(1999, abstract no. 1196). Regardless, we note that taking an extreme value9

of 2000 kg m−3 would still produce a broad agreement with the Neukum10

production function, with a maximum discrepancy of 50 % for crater sizes11

between 500 m and 300 km.12

We test the sensitivity of our calculated lunar cratering asymmetries by using13

the NEO orbital distribution given by telescopic observations only, either for14

diameters larger than 1 km or 4 km, instead of the orbital model provided15

by Bottke et al. (2002). Using the d > 4 km population leads to a strong16

enhancement of lunar latitudinal asymmetries. The pole/equator is in this17

case equal to 0.56, due to the high proportion of these objects in the ecliptic18

plane. For the d > 1 km population, latitudinal variations are less than 1 %19

with respect to the average. These observations suggest that the observation of20

low inclination objects with d < 1 km is incomplete, which is not unexpected21

since this type of detection is more difficult than for high inclination objects.22

Regardless, in both cases, the apex/antapex ratio does not change significantly.23

The porous regime is required so that the calculated lunar production rate24

for craters smaller than about 10 km matches the Hartmann and Neukum25
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production functions. As reported by Strom et al. (2005), counts of post-LHB1

lunar craters seem to be adequately fit by the observed NEO size-frequency2

distribution and the sole use of the non-porous cratering regime. An alterna-3

tive possibility is that young geologic units that are less impacted, possess a4

thinner porous megaregolith layer than older units, and that this has acted5

to change the apparent size-frequency distribution of lunar craters with time.6

The evolution of megaregolith thickness with time remains to be determined,7

as well as the equivalent thickness on Mercury and Mars, for which the distri-8

bution of craters smaller than a few kilometers is still to be better understood9

before our model can be confidently used: Mercury may exhibit an abundance10

of large secondaries, whereas the presence of subsurface ice may significantly11

reduce the upper porosity of the martian crust.12

Finally, we caution that our model may be inaccurate for periods prior to 3.513

Ga, both because of the Late Heavy Bombardment and a possible reorientation14

of the Moon (Wieczorek and Le Feuvre, 2009). Our study is generalizable15

to different impactor populations or planetary reorientations, but the affects16

of these events are difficult to assess without a better knowledge. Waiting17

in particular for a suitable dynamical model for small bodies in the early18

solar system, we have applied our cratering model to times prior to 3.5 Ga,19

based on the following considerations. First, the size-frequency distributions20

of craters on the oldest lunar terranes are potentially explained by varying the21

megaregoltih thickness, without the need for a different impactor population.22

Second, even if the cratering asymmetries would have been modified by these23

events, the influence of spatial variations on the age estimates is very moderate24

for times prior to 3.5 Ga (which correspond to the exponential part of the25

chronology curve).26
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7 Conclusions1

We have presented a complete set of equations that allows to calculate the2

cratering rate as a function of crater size and location, on the Moon and3

inner planets. Spatial variations of the cratering rate are calculated semi-4

analytically, hence considerably faster than by the use of a fully numerical5

method. The approach is generalizable to any other planet or moon, providing6

the orbital and size distributions of impactors are known. For our purpose, the7

NEO orbital distribution model of Bottke et al. (2002) has been used, and the8

size distribution of bolides has been fitted to a compilation of various estimates9

(Rabinowitz et al., 2000; Morbidelli et al., 2002; Harris, A. W., 2002; Stuart10

and Binzel, 2004; Halliday et al., 1996; ReVelle, 2001; Brown et al., 2002).11

Significant cratering asymmetries, both latitudinal and longitudinal, are found12

on the lunar surface. These are the result of both the high proportion of low13

inclination encounters and the synchronous rotation of the satellite. If the14

resulting bias in the estimate of absolute ages is in general moderate with re-15

spect to other uncertainties associated with the crater chronology method, and16

therefore should not invalidate most of the published ages, this systematic ef-17

fect could be as large as 500 Ma for geologic units of 2 Ga close to (0◦N, 90◦W )18

or (±65◦N, 90◦E), and should be accounted for when determining relative ages19

between different surfaces.20

Our synthetic size-frequency distribution of lunar craters matches the stan-21

dard production functions (see Neukum et al., 2001a), providing that a porous22

megaregolith is accounted for at crater diameters smaller than a few kilome-23

ters. The absolute number of craters formed during the last 3 billion years24
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is consistent with a constant impact flux and the present day cratering rate.1

The shape of the size-frequency distribution is predicted to be time-dependent,2

since older surfaces would possess a thicker layer of fractured megaregolith.3

We have provided an updated crater chronology curve that excludes some4

debated calibration points based on geologic considerations, and accounts for5

the spatially-dependent cratering rate at the calibration units. The proposed6

curve favors a longer period of constant impact flux, extending up to 3.5 Ga7

ago. We have also given polynomial fits for the crater size-frequency distrib-8

utions calculated on Mercury, Venus, the Earth and Mars, allowing the easy9

calculation of age estimates on these planets.10

Our model is consistent with the terrestrial cratering records (Hughes, 2000;11

Grieve and Dence, 1979) for the last 400 Ma. For the Moon, we find that12

the age of the Orientale impact basin is 3.73 Ga, which is 30 Ma older than13

previous estimates. This corresponds to a shorter Late Heavy Bombardment,14

since it is generally considered that the Caloris basin marks the end of this15

event. On Mercury, we attribute the same age to the Caloris basin. We finally16

estimate the venusian surface to be only 240 Ma old on average, which is 2–317

times younger than most previous estimates. Such an age is similar to the18

oldest oceanic crust on Earth and implies that volcanic resurfacing occurs on19

Venus at only a slightly reduced rate as on Earth.20
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A Derivations6

Here we describe in detail how we compute the lunar and planetary cratering7

rates. We start by recalling how to obtain orbital elements in the 2-body8

problem, which is required for calculating hyperbolic trajectories of objects as9

they encounter a planet or Moon. Second, we adapt Öpik impact probabilities,10

originally intended for planets, to the case of a moon in synchronous rotation.11

Third, we derive equations to calculate the impact rate as a function of position12

on the target surface (planet or moon). Finally, we recall the equations that13

allow us to calculate crater diameters from impactor diameters and impact14

conditions.15

A.1 Orbital elements16

Consider a massless particle (our projectile) orbiting around a massive body17

M (our target) isolated in space (two-body problem), described in a Cartesian18

coordinate system (oxyz) whose origin is the center of the target, with x̂, ŷ and19

ẑ the associated unit vectors. The plane (oxy) is chosen as the orbital plane of20

the target body. All the following definitions can be found in standard celestial21

mechanics textbooks (e.g., Murray and Dermott, 2000, 606 pp.). The distance22
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of the projectile to the center of the target is1

r =
p

1 + e cos f
, (A.1)

where p is the semilatus rectum, e the eccentricity and f the true anomaly.2

The pericentre distance (f = π) is given by3

q =
p

1− e
. (A.2)

The semilatus rectum is4

p =
h2

GM
, (A.3)

where M is the mass of the target body, and the specific angular momentum,5

constant and perpendicular to the projectile orbital plane, is6

h = r× ṙ . (A.4)

The eccentricity vector is7

e =
ṙ× h

GM
− r

r
, (A.5)

and the eccentricity is simply e = ||e||. Alternatively, the eccentricity can be8

calculated from the particle’s specific energy ξ as9

e =

√√√√2ξ

(
h

GM

)2

+ 1 . (A.6)

The inclination of the orbit with respect to the (oxy) plane is calculated from10

cos i =
h · ẑ
h

, (A.7)

where i ∈ [0, π]. The nodal vector, that points towards the ascending node, is11

n = ẑ× h

h
, (A.8)
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and the longitude of the ascending node, measured from (ox), is calculated1

from2

cos Ω =
n · x̂

n
, (A.9)

and3

sin Ω =
n · ŷ

n
. (A.10)

The argument of pericentre ω is given by4

cos ω =
n · e
n e

, (A.11)

with5

ω ∈ [0, π] if e · ẑ ≥ 0 ,

ω ∈]π, 2π[ otherwise .

(A.12)

The true anomaly is calculated from6

cos f =
e · r
e r

, (A.13)

with7

f ∈ [0, π] if r · ṙ ≥ 0 ,

f ∈]π, 2π[ otherwise .

(A.14)

Finally, defining Θ as the angle that the projectile makes with respect to the8

line of nodes, we have9

Θ = f + ω , (A.15)

and the projectile crosses the target’s orbital plane at Θ = 0 and Θ = π,10

respectively on an ascending and descending trajectory.11
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A.2 Encounter probabilities with the Moon1

Let us call V the encounter conditions with the Earth-Moon system, calcu-2

lated as explained in section 3.1, and expressed in a right-handed coordinate3

frame where the origin is at the center of the Earth, the x-axis point towards4

the Sun, (xy) is the Earth orbital plane, and the z-axis points upward. The5

symmetry induced by the lunar rotation about the Earth makes the problem6

only dependent on V and Vz. Let us take Vy = 0 and Vx ≤ 0. Consider also7

the frame (x′yz′), where the x′-axis and V are antiparallel. This frame is use-8

ful to express the specific angular momentum and eccentricity vector, since9

it avoids complications due to the initial position of the projectile at infinity.10

The rotation matrix from (x′yz′) to (xyz) is therefore11

M =



√
V 2−V 2

z

V
0 Vz

V

0 1 0

−Vz

V
0

√
V 2−V 2

z

V


. (A.16)

The encounter velocity and initial position of the projectile on the cross section12

disk, perpendicular to x′, expressed in (x′yz′) as13

V =



−V

0

0


(x′yz′)

, r =



∞

b cos α

b sin α


(x′yz′)

, (A.17)

where b is the impact parameter and α defines the angular position on the14

cross section disk with respect to the y-axis.15
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From these initial conditions, the specific angular momentum of the projec-1

tile and eccentricity vector are easily obtained by equations (A.4) and (A.5),2

and expressed in the (xyz) frame by the use of the rotation matrix M (equa-3

tion A.16). The norm of the eccentricity vector is4

E =

√√√√1 +

(
b

am

)2 (
V

vm

)4

, (A.18)

where am and vm are the lunar semi-major axis and orbital velocity. The5

inclination with respect to the system orbit plane (xy) is (equation A.7)6

I = cos−1

√1− V 2
z

V 2
cos α

 . (A.19)

Note that the eccentricity E and inclination I of the hyperbolic trajectory have7

been capitalized in order to distinguish them from the orbital elements e and8

i for elliptic orbits about the Sun. The pericenter distance q is (equation A.2)9

q = am(E − 1)/
(

V

vm

)2

, (A.20)

the nodal vector is calculated with equation (A.8), and the argument of peri-10

center is finally expressed by equation (A.11) as11

cos ω =
Vz

V

√
E2 − 1−

√
1− V 2

z

V 2 sin α

E sin I
. (A.21)

For an intersection to occur between the projectile and Moon, the projectile12

must cross the lunar orbit plane at a distance am from the Earth. Since Vz is13

indifferently positive or negative (Öpik, 1951), the symmetry with respect to14

the system orbit plane allows to restrict ourselves to one of the nodes, here15

chosen to be the descending node. In this case, Θ = π implies (equation A.15)16

cos f = − cos ω , (A.22)
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and r = am gives (equation A.1)1

cos f =
q/am(1 + E)− 1

E
. (A.23)

By using the two above equations, with E, q and cos ω expressed as a function2

of V, b and α from equations (A.18), (A.20) and (A.21), it is found that the3

value of the impact parameter that allows intersection is4

bm =
am

2

√( Vz

V sin I

)2

+ 4
(
1 +

tan α

tan I

)(
vm

V

)2

− Vz

V sin I

 . (A.24)

and that there is only one value of b that allows intersection on the descending5

node for a given angular position on the lunar orbit cross section α.6

For hyperbolic orbits, the relative encounter velocity with the Moon U is given7

in Shoemaker and Wolfe (1982) as a function of q, e and I. For the appropriate8

value of the impact parameter that allows collision, we rewrite these equations9

as10 

U2 = V 2 + v2
m − 2vm UY ,

U2
X = V 2

(
1−

(
bm

am

)2
)

+ 2v2
m ,

UY = V bm

am
cos I − vm ,

U2
Z = V 2

(
bm

am

)2
sin2 I .

(A.25)

where U is expressed in the frame (XY Z) attached to the center of the Moon,11

where the X-axis point towards the Earth, the Y-axis points to the antapex of12

motion, (XY) defines the Lunar orbital plane, and the Z-axis points upward.13

Since we have restricted ourselves to the descending node, UZ is negative. But14

symmetry requires that UZ is positive with the same probability. The sign of15

UX is to be discussed in the following.16
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Öpik probabilities assume that the argument of pericenter ω takes any value1

between 0 and 2π with an equal probability. While this is appropriate for2

elliptic orbits that precess about the Sun, the ω of our hyperbolic trajectory is3

constrained by the geometry of encounter with the Earth-Moon system. The4

encounter probability with the Moon can be expressed as follows5

Pm =
∆(b2)

τ ′2
× ∆t

Tm

, (A.26)

where ∆(b2) is the interval around b2
m that allows the minimum distance be-6

tween the projectile’s and target’s orbits to be smaller than the gravitational7

cross section radius of the Moon, τm. We are interested in the square of b here,8

whose probability distribution on the lunar orbit cross section is uniform. The9

ratio ∆(b2)
τ ′2

corresponds to the fraction in space allowing the collision, since b2
10

can take values between 0 and τ ′2. Similarly, the term ∆t
Tm

is the fraction of11

time that allows the collision, Tm being the orbital period of the Moon. This12

latter term is given by (see Öpik, 1951):13

∆t

Tm

=
τm

4am

U√
U2 − U2

Y

. (A.27)

At this point we need to express ∆(b2) in terms of the relevant variables of14

our problem. At the node, Θ = π; denoting Lmax the distance between rΘ=π15

and am such as the minimum distance between the two orbits equals τm, we16

have17

2Lmax

∆(b2)
'
(

∂rΘ=π

∂b2

)
b=bm

, (A.28)

with18

Lmax = τm

√
1 + U2

X/U2
Z . (A.29)

Equations (A.27) and (A.29) come from the assumption that the projectile19

and Moon follow straight lines trajectories in the vicinity of the node, and20
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are demonstrated in Öpik (1951). Expressing
(

∂rΘ=π

∂b2

)
b=bm

as a function of V1

and α, inserting equation (A.29) into equation (A.28), and equations (A.28),2

(A.27) and (2) into equation (A.26), we finally get the impact probability with3

the Moon as4

Pm =
τ 2
m

a2
m

U

|UZ |
v2

m

2v2
m + V 2

1

sin I

(
sin I +

√
1−

(
Vz

V

)2
sin α− Vz |UZ |

v2
m sin I

)2

2 sin I + 2

√
1−

(
Vz

V

)2
sin α− Vz |UZ |

v2
m sin I

. (A.30)

If UX ≤ 0 and q ≤ Re simultaneously, Re being the radius of the Earth,5

a collision with the planet occurs, and Pm is set to 0 (the Moon cannot be6

impacted, as the sign of UX indicates that the projectile has already cross the7

Earth). Denoting be the impact parameter corresponding to q = Re we have8

from equation A.20:9

be =

√
2Ream

(
vm

V

)2

+ R2
e , (A.31)

and q ≤ Re corresponds to bm ≤ be. The sign of UX is known from10

UX = −
√

U2
X for

√
E2 − 1 sin α/ tan I ≥ 1

UX =
√

U2
X for

√
E2 − 1 sin α/ tan I < 1

,

(A.32)

where the first and second cases correspond respectively to an argument of11

pericenter comprised between 0 and π and between π and 2π (equation A.12).12

For instance, in the first case, the descending node is reached after the min-13

imum distance to Earth, and the projectile is moving away from the Earth.14

Finally, the impact probability with Earth is given by15

Pe =
1

2

b2
e

τ ′2
− Pm , (A.33)

where the factor 1/2 comes from the restriction to one of the two possible16
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nodes. For a given encounter V with the Earth-Moon system, Pm, U and1

Pe are calculated for α ∈ [0, 2π]. The probability distribution of the lunar2

encounter conditions is3

p(U) =
p′(U)∫

U p′(U) dU
, (A.34)

with4

p′(U) =
∫ 2π

α=0

∫ ∞

U′=0

∫
V

Pm(α,V) p(V) δ(U(α,V)−U′) dV dU′ dα , (A.35)

where p(V) is the probability distribution of the encounter distribution with5

the Earth-Moon system and δ is the Kronecker function. Finally, the Earth/Moon6

impact ratio is7

re =

∫ 2π
α=0

∫
V Pm(α,V) p(V) dV dα∫ 2π

α=0

∫
V Pe(α,V) p(V) dV dα

. (A.36)

A.3 Impact rate as a function of position8

Each encounter U generates an infinity of hyperbolic trajectories towards the9

target (moon or planet), initially uniformly distributed over the gravitational10

cross section at infinity. Let us call b the impact parameter and β the angular11

distance between a point on the target surface and the radiant. For a given12

target mass M and radius R, one value of b corresponds to one value of β.13

The impact rate at β is proportional to the area of the annulus 2π b db14

divided by the elementary target surface 2πR2 sin β dβ. The total impact rate15

is proportional to the gravitational cross sectional area, πτ 2, divided by the16

total area of the target surface 4πR2. The relative impact rate, normalized to17

the global average, is therefore18

δφ =
(2π b db)/(2πR2 sin β dβ)

(πτ 2)/(4πR2)
=

4

τ 2

b db

sin β dβ
. (A.37)
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We now have to express b db as a function of β. By noting that β = fi − f∞,1

where fi is the projectile’s true anomaly at the time of impact, and f∞ is the2

initial true anomaly at infinity, we have3


cos β = cos(fi) cos(f∞) + sin(fi) sin(f∞) ,

sin β = sin(fi) cos(f∞)− cos(fi) sin(f∞) .

(A.38)

An impact occurs when r = R. The corresponding cosine of the true anomaly4

is (equation A.1)5

cos fi =
p/R− 1

e
. (A.39)

Since the distance between the projectile and target is initially infinite, the6

cosine of the intial true anomaly is (equation A.1)7

cos f∞ = −1/e. (A.40)

The true anomalie at infinity is negative (since r∞ ·U∞ < 0). This is also true8

for fi, as the collision occurs necessarily before the projectile is at pericenter9

(f = 0). Therefore,10

sin fi = −
√

1− cos2 fi and sin f∞ = −
√

1− cos2 f∞ . (A.41)

The specific angular momentum is given by equation (A.4)11

h = b U . (A.42)

This allows to express the parameter of the conic as (equation (A.3),12

p =
b2 U2

GM
. (A.43)
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From equation (A.6), with an specific energy ξ = U2/2 , the eccentricity is1

e =

√√√√1 +

(
b U2

GM

)2

. (A.44)

Using equations (A.44)–(A.38), the impact parameter b is found to be2

b = R
tan(β/2)

1 + tan2(β/2)

(
1 +

√
1 + Γ(1 + tan2(β/2))

)
, (A.45)

and the maximum value of β is given for b = τ as3

cos βmax = − Γ

2 + Γ
. (A.46)

Calculating db/dβ from the above equation, we get the relative impact flux as4

a function of β from equation (A.37):5

δφ(β,U) =

1+cos β
2(1+Γ)

1+µ
µ
×

[
µ2 + µ− (1 + µ) 1−cos β

1+cos β

]
if β ≤ cos−1

(
− Γ

2+Γ

)
,

0 if β > cos−1
(
− Γ

2+Γ

)
,

(A.47)

with6

µ =

√
1 + Γ + Γ

1− cos β

1 + cos β
. (A.48)

The angular distance β is then simply expressed as a function of latitude λ7

and longitude ϕ by calculating the scalar product between a given position8

on the target and the radiant (equation A.44). Note that the dependency in9

longitude ϕ corresponds to a target body in synchronous rotation. When it is10

not the case, the flux is longitudinally uniform (the obliquity of the target is11
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taken into account at the end of this section). For a zero obliquity, we have1

cos β = (cos λ cos ϕ , cos λ sin ϕ , sin λ)× U

||U||
. (A.49)

We finally need the impact velocity u and incidence angle with respect to the2

surface, θ. The conservation of energy implies3

U2

2
=

u2

2
− GM

R
, (A.50)

giving4

u = U
√

1 + Γ , (A.51)

The specific angular momentum at the time of impact is (equation A.4)5

h = R u sin(θ + π/2) . (A.52)

The conservation of h allows identification with equation (A.42), giving6

cos θ = b/τ , (A.53)

and the impact angle is finally given as a function of β as7

θ = cos−1

(
1 + µ

2
√

1 + Γ

√
1− cos2 β

)
. (A.54)

Let us finally account for the obliquity ε of the target. The obliquity reduces8

spatial variations of the impact rate, since the target’s sphere is moved under9

the projectile flux by precession of the spin axis. Let us denote ϕε the longitude10

of the spin axis in the (XY Z) frame, and W the matrix11

W =



cos2 ϕε + sin2 ϕε cos ε cos ϕε sin ϕε(1− cos ε) − sin ϕε sin ε

cos ϕε sin ϕε(1− cos ε) sin2 ϕε + cos2 ϕε cos ε cos ϕε sin ε

sin ϕεSε − cos ϕε sin ε cos ε



−1

,

(A.55)
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then the latitude and longitude (λ′, ϕ′) in the (XY Z) frame express as a1

function of the geographic coordinates (λ, ϕ) as2

sin λ′ = W31 cos λ cos ϕ + W32 cos λ sin ϕ + W33 sin λ , (A.56)

and3

cos ϕ′ =
W11 cos λ cos ϕ + W12 cos λ sin ϕ + W13 sin λ√

1− sin2 λ′
,

sin ϕ′ =
W21 cos λ cos ϕ + W22 cos λ sin ϕ + W23 sin λ√

1− sin2 λ′
. (A.57)

The impact rate is finally given as a function of the geographic position as4

δφ(λ, ϕ) =
1

2π

∫ 2π

0
δφ(λ′(λ, ϕ, ε, ϕε), ϕ

′(λ, ϕ, ε, ϕε)) dϕε , (A.58)

where the precession of the spin axis is simulated by ϕε taking uniform values5

between 0 and 2π.6

A.4 Crater scaling7

For our purpose, we express the projectile diameter d required to create a8

crater with a given final diameter D, under given impact conditions. Let us9

call Ds the final diameter of a simple crater. Large craters collapse due to10

gravity, such that D > Ds. According to Holsapple (1993),11 
Ds = D if D < D∗ ,

Ds = 0.98 D0.079
∗ D0.921 if D ≥ D∗ ,

(A.59)

where D∗ is a transition diameter believed to be approximately inversely pro-12

portional to the surface gravity, and is about D∗m = 8.5 km for the Moon,13
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that is1

D∗ =
gm

g
D∗m , (A.60)

where gm is the lunar surface gravity.2

Before wall slumping and rim formation, the diameter of the transient cavity3

DT is smaller than the final diameter of the simple crater Ds by a factor4

1.2× 1.3 = 1.56 (Melosh, 1989, 253 pp.):5

DT = Ds/1.56 . (A.61)

Denoting D⊥ the transient cavity for vertical impacts (θ = π/2) we assume6

D⊥ = DT (sin θ)−2ν1 , (A.62)

that is, only the vertical component of the impact velocity has to be accounted7

for. Other assumed functional dependencies on the incidence angle can easily8

be used in place of equation (A.62).9

In the gravity regime, where the tensile strength of rock is negligible, the10

projectile diameter is finally given by Holsapple and Housen (2007) as11

d =

(
K−1D⊥ u−2ν1gν1

(
ρ0

ρ

)ν2
) 1

1−ν1

, (A.63)

with ρ and ρ0 respectively the density of the projectile and target, and g the12

surface gravity. The scaling parameter are taken from Holsapple and Housen13

(2007) as K = 1.17, ν1 = 0.22 and ν2 = 0.31 for the non-porous gravity14

scaling regime (impacts in water), and K = 1.03, ν1 = 0.17 and ν2 = 0.33215

for the porous scaling. For a given crater diameter D, the impactor size d is16

known from the successive use of the above equations, from equation (A.63)17

to equation (A.59).18
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Fig. 1. Impact probability per year on Earth, for impactors larger than a given
diameter. Estimates come from atmospheric records or Öpik probabilities derived
from telescopic observations (black triangles: Halliday et al. (1996); black diamonds:
ReVelle (2001); grey triangles: Brown et al. (2002); grey squares and white triangles:
Rabinowitz et al. (2000); grey circles: Harris, A. W. (2002); white circles: Morbidelli
et al. (2002); black squares: Stuart and Binzel (2004)). Our compilation at large sizes
is augmented by including the observed size-frequency distribution of Mars-crossing
objects with sizes greater than 4 km, scaled to the terrestrial impact rates of Stuart
and Binzel (2004) (grey diamonds). The red curve is the best fit polynomial.
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Fig. 2. Model production function of lunar craters, for one year, in comparison
with the Hartmann and Neukum measured production functions, and the model
production function of Marchi et al. (2009). Respective megaregolith thicknesses of
700 and 250 m allow to fit either the Neukum or Hartmann production functions in
the diameter range 2–20 km. The thin dotted red curve is obtained by using only
the non-porous scaling relation.
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Table 1
Impactor size distribution: log s(> d) =

∑10
i=0 si(log dkm)i.

s0 s1 s2 s3 s4 s5

1.0 3.1656E-01 1.0393E-01 5.7091E-02 -8.1475E-02 -2.9864E-02

s6 s7 s8 s9 s10

1.3977E-02 5.8676E-03 -4.6476E-04 -3.8428E-04 -3.7825E-05
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Table 2
Planetary crater size-frequency distributions for 1 year (km−2): log C̄(> D) =∑10

i=0 Ci(log Dkm)i, D ∈ [0.1− 1000] km.
Moon Moon Mercury Mercury Venus

non-porous porous non-porous porous non-porous

C0 -0.1049E+02 -0.1206E+02 -0.9939E+01 -0.1159E+02 -0.1073E+02

C1 -0.4106E+01 -0.3578E+01 -0.3994E+01 -0.3673E+01 -0.4024E+01

C2 -0.8715E+00 0.9917E+00 -0.1116E+01 0.9002E+00 -0.4503E-01

C3 0.1440E+01 0.7884E+00 0.1269E+01 0.9609E+00 0.1374E+01

C4 0.1000E+01 -0.5988E+00 0.1272E+01 -0.5239E+00 0.2433E+00

C5 -0.8733E+00 -0.2805E+00 -0.8276E+00 -0.3622E+00 -0.7040E+00

C6 -0.2725E+00 0.1665E+00 -0.3718E+00 0.1508E+00 -0.3962E-01

C7 0.2373E+00 0.3732E-01 0.2463E+00 0.5224E-01 0.1541E+00

C8 0.9500E-02 -0.1880E-01 0.2091E-01 -0.1843E-01 -0.8944E-02

C9 -0.2438E-01 -0.1529E-02 -0.2756E-01 -0.2510E-02 -0.1289E-01

C10 0.3430E-02 0.7058E-03 0.3659E-02 0.8053E-03 0.2102E-02

Earth Mars (long term) Mars (long term) Mars (today) Mars (today)

non-porous non-porous porous non-porous porous

C0 -0.1099E+02 -0.1089E+02 -0.1213E+02 -0.1082E+02 -0.1207E+02

C1 -0.3996E+01 -0.4068E+01 -0.3124E+01 -0.4072E+01 -0.3134E+01

C2 0.2334E+00 0.2279E+00 0.1295E+01 0.2157E+00 0.1293E+01

C3 0.1333E+01 0.1422E+01 0.1542E+00 0.1426E+01 0.1713E+00

C4 0.2286E-02 0.2470E-01 -0.7519E+00 0.3330E-01 -0.7518E+00

C5 -0.6476E+00 -0.7150E+00 0.3125E-01 -0.7171E+00 0.2232E-01

C6 0.2875E-01 0.2056E-01 0.1779E+00 0.1856E-01 0.1786E+00

C7 0.1313E+00 0.1535E+00 -0.2311E-01 0.1540E+00 -0.2129E-01

C8 -0.1410E-01 -0.1526E-01 -0.1369E-01 -0.1510E-01 -0.1396E-01

C9 -0.1006E-01 -0.1252E-01 0.2623E-02 -0.1255E-01 0.2492E-02

C10 0.1810E-02 0.2247E-02 0.5521E-05 0.2246E-02 0.3212E-04
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Table 3
Impact rate, mean impact velocity and surface gravity for the inner planets, nor-
malized to the Moon’s.

Moon Mercury Venus Earth Mars Mars

(long term) (today)

impact rate ratio 1 1.82 1.75 1.58 2.76 3.20

mean velocity ratio 1 2.16 1.28 1.04 0.53 0.54

surface gravity ratio 1 2.2 5.3 5.9 2.2 2.2
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Table 4
Unnormalized associated Legendre functions

l,m Plm(sinλ)

0, 0 1

1, 1 cos λ

2, 0 1
2(3 sin2 λ− 1)

2, 2 3 cos2 λ

3, 1 3
2(5 sin2 λ− 1) cos λ

4, 0 1
8(35 sin4 λ− 30 sin2 λ + 3)
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Table 5
Spherical harmonic coefficients of the lunar relative impact flux ∆φ(λ, ϕ) for Earth–
Moon separations of 30, 45, and 60 Earth radii.

Clm 30 Earth radii 45 Earth radii 60 Earth radii

C0,0 1 1 1

C1,−1 −1.7779020× 10−1 −1.4591830× 10−1 −1.2670400× 10−1

C2,0 −6.3209891× 10−2 −6.2923420× 10−2 −6.2755592× 10−2

C2,2 −1.7937283× 10−3 −1.2524090× 10−3 −9.8998262× 10−4

C4,0 −9.9735381× 10−3 −1.0141450× 10−2 −1.0222370× 10−2
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Table 6
Spherical harmonic coefficients of the lunar relative cratering rate ∆C(D > 1, λ, ϕ)
for Earth–Moon separations of 30, 45, and 60 Earth radii.

Clm 30 Earth radii 45 Earth radii 60 Earth radii

C0,0 1 1 1

C1,−1 −2.2715950× 10−1 −1.8571530× 10−1 −1.6092760× 10−1

C2,0 −1.3954110× 10−1 −1.3874170× 10−1 −1.3831914× 10−1

C2,2 −3.3499412× 10−3 −2.2729362× 10−3 −1.7822560× 10−3

C3,−1 2.9040180× 10−3 2.3263713× 10−3 1.9948010× 10−3

C4,0 2.7412530× 10−3 2.7863080× 10−3 2.8083000× 10−3
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Table 7
Spherical harmonic coefficients of the relative impact flux ∆φ(λ) for the terrestrial
planets.

Planet C00 C20 C40

Mercury 1 3.7395410× 10−2 −7.9170623× 10−3

Venus 1 7.3546990× 10−3 −6.0267052× 10−3

Earth 1 −2.6165971× 10−2 −1.8682412× 10−3

Mars (today) 1 1.6254980× 10−1 −1.0738801× 10−2

Mars (long-term average) 1 8.7425552× 10−2 4.7442493× 10−3
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Table 8
Spherical harmonic coefficients of the relative cratering rate ∆C(D > 1, λ) for the
terrestrial planets.

Planet C00 C20 C40

Mercury 1 4.5850560× 10−2 2.4749320× 10−3

Venus 1 −1.8545722× 10−3 3.5865970× 10−4

Earth 1 −7.6586370× 10−2 2.4353234× 10−4

Mars (today) 1 3.3900970× 10−1 2.2655340× 10−3

Mars (long-term average) 1 1.7986312× 10−1 −4.3484250× 10−4

88



  

Table 9
Lunar crater chronology calibration points used in this study, and their spatial
correction.

Geologic unit Location Age Measured Globally averaged

crater density crater density

(Ga) (10−4 km−2) (10−4 km−2)

1 Cone crater -3.7◦N, -17.5◦E 0.025 0.21 0.169

2 North Ray crater -9◦N, -15.6◦E 0.053 0.44 0.390

3 Tycho crater -43.4◦N, -11.1◦E 0.109 0.90 0.824

4 Copernicus 9.7◦N, -20.1◦E 0.80 7.15 5.77

5 Ocean Procellarum (A12) 18.4◦N, -57.4◦E 3.15 36 29.7

6 Mare Crisium (L24) 17.0◦N, 59.1◦E 3.22 30 30.2

7 Mare Imbrium (A15) 32.8◦N,-15.6◦E 3.30 32 27.7

8 Mare Fecunditatis (L16) -7.8◦N,51.3◦E 3.41 33 32.4

9 Mare Tranquilitatis (young) (A11) 8.5◦N,31.4◦E 3.58 64 60.1

10 Mare Serenitatis (A17) 28.0◦N,17.5◦E 3.75 100 93.6

11 Mare Tranquilitatis (old) (A11) 8.5◦N,31.4◦E 3.80 90 84.5

12 Imbrium/Apennines 18.9◦N,-3.7◦E 3.85 350 301

13 Fra Mauro (A14) -3.7◦N,-17.5◦E 3.85 370 298

14 Descartes (A16) -9.0◦N,15.6◦E 3.85 340 306
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