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Abstract

While the skeleton of a 2D shape corresponds to a

planar graph, its encoding by usual graph data struc-

tures does not allow to capture its planar properties.

Graph kernels may be defined on graph’s encoding of

the skeleton in order to define a similarity measure be-

tween shapes. Such graph kernels are usually based on

a decomposition of graphs into bags of walks or trails.

These linear patterns do not allow to fully encode the

structure of a skeleton on branching points, hence los-

ing important informations about the shape. This paper

aims to solve these two drawbacks by using an encoding

of the skeleton taking explicitly into account the orien-

tation of the plane and by decomposing the resulting

graph model into both linear and nonlinear patterns.

1. Introduction

The skeleton is a key feature within the shape recog-

nition framework. It is a thin set, homotopic to the

shape, and invariant under Euclidean transformations.

Due to the homotopic property, the skeleton of a 2D

shape is a planar structure. However, the set of points

composing a skeleton does not highlight the structure of

a shape. Consequently, the recognition step is usually

based on a graph comparison where graphs encode the

main properties of skeletons. Several encoding systems

have been proposed based on graphs, trees [13] or set

of paths [8]. All these encodings use various features

attached to nodes and edges, and vary according to the

type of highlighted properties of the skeleton. However,

usual graph or tree structures do not allow to capture the

orientation of the plane on which shapes are embedded.

The recognition of shapes using graph comparisons

may be tackled using various methods. A first family

of methods is based on graph edit distance and graph

matching algorithms [13]. These methods perform in

the graph space, which almost contains no mathemat-

ical structure, thus forbidding many common mathe-

matical tools. A solution consists to project graphs

into a richer space, which can be realized through

graph kernels. By using appropriate kernels, graphs can

be mapped either explicitly or implicitly into a vector

space whose dot product corresponds to the kernel func-

tion. Usual graph kernels, such as the random walk ker-

nel [9], are based on a decomposition of a graph into

linear patterns such as walks, paths or trails. These pat-

terns do not allow to fully capture the complex structure

of the skeleton on branching points. However, several

graph kernels based on nonlinear patterns have been

proposed in the chemioinformatics framework. These

patterns include unlabeled subgraphs [15], tree pat-

terns [11], i.e. trees where a node can appear more than

once, and subtrees of limited size [6]. Though, only ker-

nels based on linear patterns have been proposed within

the shape recognition framework.

The insights of this paper are twofolds: first we pro-

pose to modify the usual graph encoding of the skeleton

in order to take explicitly into account the planar em-

bedding of 2D shapes (section 2). Secondly, using this

encoding we define a new kernel based on an enumer-

ation of subtrees embedded onto the plane (Section 3).

The resulting kernel is evaluated through several exper-

iments in Section 4.

2. Shape representation

Planar properties of the skeleton are not encoded by

usual graph data structures. Indeed, these structures do

not encode the planar structure of the graph and remain
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Figure 1. Skeleton encoding.

invariant for any permutation of the edges incident to

a given node. To overcome this drawback, we propose

to encode the skeleton of a 2D shape by a 2D combi-

natorial map [3]. Such a model may be understood as

an encoding of a planar graph taking explicitly into ac-

count the orientation of the plane.

A 2D combinatorial map (Fig.1(b)) is defined by

the triplet M =(D,σ, α), where D corresponds to the

set of darts (or half-edges) obtained by decomposing

each edge into two darts, σ :D→D is a permuta-

tion whose cycles correspond to the sequence of darts

encountered when turning counter-clockwise around

each node. Note that permutation σ explicitly encodes

the orientation of edges around each node. Finally,

α :D→D is a fixed point free involution whose cycles

correspond to the two darts associated to a same edge.

The encoding of a skeleton by such a map is performed

by representing each branch by two darts defining one

edge (a cycle of α). The orientation of branches, around

branching points, is explictly encoded by the cycles of

permutation σ.

Our kernel between combinatorial maps (Section 3)

is based on their decomposition into trees of lim-

ited size, each tree being encoded by a sub combi-

natorial map. In order to identify similar subtrees,

an isomorphism relationship between combinatorial

maps must be defined [4]. An isomorphism of a

map M1 =(D1, σ1, α1) on a map M2 =(D2, σ2, α2)
is defined as a bijection ψ :D1 →D2 that satisfies

the two following properties: (i) ψ ◦α1 =α2 ◦ψ, and

(ii) ψ ◦σ1 =σ2 ◦ψ. In other terms, an isomorphism

maps the two darts of an edge onto two darts of a same

edge, and preserves the orientation of edges around

nodes. The set of such bijections forms the isomorphism

group Isom(M1,M2). IfM1 =M2, this set is called the

automorphism group of M1, denoted by Aut(M1).

The combinatorial map encoding a skeleton is

invariant to translations, rotations, and scaling (as

long as the skeleton remains also invariant). However,

a reflection transforms a map M =(D,σ, α) onto a

map M ′ =(D,σ−1, α), hence reversing the orien-

tation of the map (Fig 1(c)). The map M ′ is called

the trivial mirror symmetric of M . More generally,

we say that two maps M1 and M2 are mirror (or

orientation-reversing) symmetric if it exists a bijec-

tion φ :D1 →D2 satisfying: (i) φ ◦α1 =α2 ◦φ, and

(ii) φ ◦σ1 =σ−1
2 ◦φ. The set of such bijections forms

the group of mirror symmetries Mir(M1,M2). The

set of bijections reversing the orientation of a map M
is denoted by AutR(M). Such a set may be deduced

from Aut(M) by composing each automorphism

of Aut(M) with the trivial symmetry operation [2].

Finally, we say that two combinatorial maps are sym-

metric (or equivalent) if they are orientation-preserving

or orientation-reversing symmetric. We denote by

Sym(M1,M2)= Isom(M1,M2)∪ Mir(M1,M2) the

set of such bijections from M1 to M2.

Shape features. In order to attach features to a

combinatorial map encoding a skeleton, we define a set

of node and edge labels (V and E), each node and edge

label being respectively associated to a single cycle σ
and α of the map [3].

Following [8], our edge and node attributes combine

local and global features. After several experiments we

selected 2 features (fE,i(e))i attached to each edge of

E, and 2 features (fV,i(v))i attached to each node of V .

Following [8, 5], we model the evolution of the ra-

dius of the maximal inscribed disk along a branch by

a regression polynomial of order 4. A first edge fea-

ture corrresponds thus to the 4 polynomial coefficients

modeling the evolution of the radius along the branch.

The second feature associates, to each edge, the

length of the shape boundary which contributes to the

creation of its associated branch, normalized by the to-

tal length of the shape boundary [5]. Such a feature

encodes the part of the shape boundary implied in the

creation of the branch. This measure, defined as a func-

tionw :E→R+, may thus be understood both as a rele-

vant feature of an edge and as a measure of its relevance

according to the shape.

Regarding nodes, our first feature assigns to each

node of V the sum of the relevances of its incident

edges. Our second feature, associates to each node its

minimal geodesic distance, inside the shape, to the set

of geodesic centroids. Geodesic centroids correspond

to the points of the skeleton having a maximal inscribed

disk radius. Such points can thus be efficiently deduced

from the skeleton. This distance is normalized by the

square root of the shape area.

3. Shape similarity

Our kernel between combinatorial maps is based on

a decomposition of each combinatorial map into a bag

of submaps. Similarly to [6], the submaps are restricted

to unlabeled and unrooted trees having between 3 and 6
nodes. As illustrated by Fig. 2, these trees form a dic-



Figure 2. Our set T of 12 tree patterns.

tionary of tree patterns, denoted by T. This choice cor-

responds to a compromise between the expressiveness

of our kernel and the time required to enumerate sub-

trees. Tree patterns of T are extracted [6] using a depth

first search strategy from each extremity of paths and

from each node having a degree greater than 3. Their

enumeration, in a given combinatorial map M , is per-

formed in O(|V |d5), where |V | is the number of nodes

and d is the maximal node’s degree in M .

Each instance of a tree pattern, obtained from an

enumeration, is called a treelet. Note that unlike [6],

the orientation of edges around each node of a treelet is

encoded by a combinatorial map.

Kernel between maps. Let B and B′ denote two

bags of treelets extracted from combinatorial maps

M and M ′ respectively. Inspired by marginalized

kernels [9], our kernel is defined as a weighted sum of

minor kernels between all pairs of treelets of B×B′:

KT(M,M ′) = 1
|B||B′|

∑

t∈B

∑

t′∈B′

λB(t)λB′(t′)K(t, t′).

Kernel K corresponds to a minor kernel between

treelets, while the function λB :B→R+ represents the

relevance of each treelet. Following [5] in the case of

trail patterns, the relevance of a treelet, relatively to its

bag, is defined by λB(t)=w(t)/maxt′∈B w(t
′), where

w(t)=
∑

e∈t w(e). This weight allows to reduce the

influence of treelets encoding non relevant parts of a

shape.

Treelet kernel. Our minor kernel between two

treelets t and t′ is set to 0 if Sym(t, t′)= ∅. In such a

case, both treelets correspond to different tree patterns.

If Sym(t, t′) 6= ∅, both treelets are considered as

structurally equivalent and their similarity must be de-

fined from the similarities of the features attached to

their respective nodes and edges. The set of map-

pings between nodes and edges of both treelets, which

preserve (or inverse) the orientation, corresponds to

Sym(t, t′). The proposed kernel is given by:

K(t, t′) = 1
| Sym(t,t′)|

∑

ψ∈Sym(t,t′)

Kψ(t, t
′). (1)

Kernel Kψ is defined as the product of the similarities

between each pair of nodes and each pair of edges pro-

vided by the mapping ψ : t→ t′:

Kψ(t, t
′) =

∏

v∈V (t)

KV (v, ψ(v))
∏

e∈E(t)

KE(e, ψ(e)),

where kernel KV (resp. KE) encodes the similarity be-

tween node’s features (resp. edge’s feature). It is de-

fined as a tensor product of Gaussian kernels between

each feature:

KA(a, a
′) =

nA
∏

k=1

exp

(

−
‖fA,k(a)− fA,k(a

′)‖2

2σ2
k

)

,

whereA corresponds to V orE and a corresponds alter-

natively to a node v or an edge e. This last kernel being

definite positive, kernel KT is also definite positive.

Evaluation of (1) supposes to traverse Sym(t, t′)
when this set is non empty. In such a case, t and t′ are

equivalent and one can easily show [2] that Sym(t, t′)
corresponds to Aut(tp)∪ AutR(tp), where tp is the

tree pattern of T isomorphic to both t and t′. Such

a set can be pre-computed [4, 2] for any tree pattern

of T. The maximal size of this set for any pattern of T

is equal to 5. Note that Sym(t, t′) contains much less

elements than the set of usual graph isomorphisms. In-

deed, Sym(t, t′) does not contain bijections of edges

and nodes which violate the orientation constraint. The

evaluation of (1), using combinatorial maps, is thus

both more precise and more efficient than its counter-

part based on graphs.

4. Experiments

The behaviour of the treelet-based kernel is ana-

lyzed through two datasets: Kimia25 and Kimia99 [14],

which contain respectively 25 and 99 discrete shapes,

which are organized into 6 and 11 classes respectively.

Two experiments are performed, one involving indexa-

tion and one classification.

k-NN matching. The first experiment computes,

for each shape of Kimia25 dataset, its k=1, 2, 3
closest shapes according to a given similarity measure,

ours being defined by kernel KT. Values displayed

in Table 1 represent, for each value of k, the number

of closest shapes belonging to the same class than the

input one [10].

The parameters of our kernel KT (the σk associated

to each feature) have been optimized through exper-

iments in order to obtain the best global match. As

shown by lines 2 and 5 of Table 1, the use of nonlinear

patterns, over linear ones, improves the efficiency of



Table 1. Matching on Kimia25 dataset.
Method k=1 k=2 k=3

1 SID [14] 23 21 20

2 KT (paths only) 24 22 21

3 Syntactic matching [7] 25 21 19

4 Shape Context [1] 25 24 22

5 KT 25 24 22

6 ID-Shape Context [10] 25 24 25

Table 2. Classification accuracy.

Method

Accuracy

Kimia25 Kimia99

k-NN Maha. k-NN Maha.

Edit distance [12] 0.89 0.84 0.927 0.907

Trails [5] 0.96 0.952 0.921 0.92

KT 0.953 0.946 0.936 0.933

our kernel KT. Results obtained using KT (line 5)

are only outperfomed by [10], which provides a result

very close to the optimum. A similar behaviour has

been observed on Kimia99 dataset. Note that [10]

proposed a matching method which does not induce a

definite positive similarity measure. Such a drawback

prevents [10] to readily combine its similarity measure

with complex numerical tools such as PCA or SVM.

Classification. In this experiment, we compare the

kernel KT with two state-of-the-art kernels. These two

other methods use edition mechanisms to deal with

the structural noise inside graphs. For each method,

the best kernel parameters have been estimated with a

cross-validation on a reduced training set of Kimia25

or Kimia99 datasets. Then, a k-fold cross-validation,

based on a Mahalanobis distance to each class and a

k-NN, is computed to evaluate the efficiency of the

kernels (k=4 for Kimia25, and k=5 for Kimia99).

The resulting accuracies (number of true positive

divided by the total number of shapes) are reported in

Table 2. Our kernel outperforms the one based on a

Gaussian edit distance [12], and obtains a result close to

the one provided by trail kernels, which uses rewriting

and covering mechanisms [5]. Note that our kernel

seems to be robust against structural noise despite the

fact that it does not integrate any edition mechanism.

5. Conclusion

We have defined a new kernel based on a decompo-

sition of combinatorial maps into tree patterns for shape

recognition. Such a kernel is more expressive than ker-

nels based on linear patterns and takes explicitly into

account the orientation of the branches of a skeleton

around each branching point. Experiments have shown

the competitiveness of our kernel relatively to methods

incorparating edition mechanisms. Such mechanisms

will be studied in a future work in order to improve the

robustness of our kernel against structural noise.
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