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Abstract. Several shape similarity measures, based on shape skeletons,
are designed in the context of graph kernels. State-of-the-art kernels act
on bags of walks, paths or trails which decompose the skeleton graph,
and take into account structural noise through edition mechanisms. How-
ever, these approaches fail to capture the complexity of junctions inside
skeleton graphs due to the linearity of the patterns. To overcome this
drawback, tree patterns embedded in the plane have been proposed to
decompose the skeleton graphs. In this paper, we reinforce the behaviour
of kernel based on tree patterns by explictly incorporating an edition
mechanism adapted to tree patterns.
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1 Introduction

Several 2D shape representations and signatures have been proposed as a basis
of shape recognition and classification, in particular the medial axis (or skeleton)
and the associated medial axis transform. Indeed, the medial axis is a geometric
graph homotopic to the shape and the medial axis transform allows to recon-
struct the shape. However, the medial axis does not highlight enough the local
shape properties needed for shape comparison, especially for the design of simi-
larity measures. To overcome this drawback, suitable local shape properties are
attached to the elements of the graph encoding the skeleton, leading to graph-
based similarity measures.

Graph comparison can be performed by various methods, for example, graph
edit distance and graph matching algorithms [1] form a first family. However,
they are defined in graph space which almost contains no mathematical struc-
ture, thus prohibiting the use of many common tools. One solution is to project
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graphs into a richer (or more flexible) space. Such a projection can be done
through graph kernels. With appropriately defined kernels, graphs can be im-
plicitly (sometimes explicitly) mapped into a vector space whose dot product
corresponds to the kernel. Most of graph kernels rely on graph decomposition
into walks, paths or trails [2–5]. However, these patterns fail to capture the com-
plexity of junctions inside graphs, and so the branching points of the skeletons.
One solution has been proposed in the chemioinformatics framework, where sev-
eral graph kernels based on nonlinear patterns have been proposed. These pat-
terns include unlabeled subgraphs [6], tree patterns [7], i.e. trees where a node
can appear more than once, and subtrees of limited size [8]. Following [8], we
have recently proposed a kernel based on a decomposition of skeletons into bags
of subtrees embedded in the plane [9]. While this kernel provides good classi-
fication results compared to more sophisticated ones, it does not include any
mechanism that would allow to be robust to spurious branches inside skeletons.

As the skeleton is very sensitive to small variations of the shape boundary
(noise or small elongations), spurious nodes and edges (structural noise) are
present inside its graph structure. In order to tackle such problems, an edition
mechanism has been proposed for kernels based on bags of paths [4, 5]. Given a
pertinence measure of each egde and node, the idea is to compute for each path,
a sequence of reduced paths by successively removing their less pertinent part.
Then, the resulting graph kernels are based on hierarchical comparisons between
features attached to the elements of the rewritten paths.

This paper presents an extension of the treelet kernel proposed in [9] by in-
corporating an edition mechanism inspired by [4, 5]. First we recall our shape
representation, which is based on a combinatorial map encoding of the skeleton,
allowing to explicitly take into account its embedding in the plane (Section 2).
Based on this encoding, we describe our extension of the treelet kernel which
improves its robustness against structural noise (Section 3). Finally, several ex-
periments are proposed in order to evaluate the performance of the resulting
kernel and to measure the performances of our edition mechanism (Section 4).

2 Shape representation

Usual graph-based encoding of the skeleton of a 2D shape do not take into ac-
count its planar properties, and thus remain invariant for any permutation of
adjacent branches. To overcome this drawback, the skeleton can be encoded by
a 2D combinatorial map [9]. Such a model may be understood as an encoding
of a planar graph taking explicitly into account the orientation of the plane.

Combinatorial map encoding. As illustrated by Fig.1(b), a 2D combinato-
rial map (e.g. [10]) is defined by the triplet M =(D,σ, α), where D corresponds
to the set of darts (or half-edges) obtained by decomposing each edge into two
darts, σ :D→D is a permutation whose cycles correspond to the sequence of
darts encountered when turning counter-clockwise around each node. Note that
permutation σ explicitly encodes the orientation of edges around each node. Fi-
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Fig. 1. Skeleton encoding: σ=(−1)(1 2 3)(−2)(−3), α=(1 − 1)(2 − 2)(3 − 3).

nally, α :D→D is a fixed point free involution whose cycles correspond to pairs
of darts, each pair corresponding to an edge. The encoding of a skeleton by such
a map is performed by representing each branch by two darts defining one edge
(a cycle of α). The orientation of branches, around branching points, is explictly
encoded by the cycles of permutation σ.

The kernel between two shapes, described in Section 3, is based on the
decomposition of their associated combinatorial maps into submaps having a
tree structure. The identification of similar submaps relies on the computation
of the symmetry group between submaps. The symmetry group Sym(M1,M2)
from a map M1 =(D1, σ1, α1) to a map M2 =(D2, σ2, α2) defines the set of bi-
jections ψ :M1 →M2 that align the edges of M1 onto the edges of M2, while
preserving or reversing their orientation around the nodes. Such bijections de-
scribe both rotational and mirror symmetries needed to align the two maps.
They satisfy the following relations: (i) ψ ◦α1 =α2 ◦ψ, and (ii) ψ ◦σ1 =σ2 ◦ψ or
(iii) ψ ◦σ1 =σ−1

2 ◦ψ. Relations (i) and (ii) correspond to a rotational symmetry,
in which case ψ is a map isomorphism [11]. Relations (i) and (iii) correspond to
a mirror symmetry and ψ is considered as a reflection [9, 12]. If M1 =M2 =M ,
then the symmetry group Sym(M1,M2) is equal to the set of permutations
ψ :M→M which satisfy (i), and (ii) or (iii). This set is respectively composed
of the automorphism group of M , noted Aut(M), and the automorphism group
of the trivial mirror symmetric of M 4, noted AutR(M) [9]. These two groups
can be computed by Cori’s algorithm (see [11, 12] for more details).

Shape features. In order to attach features to a combinatorial map encod-
ing a skeleton, we define a set of node and edge labels (V and E), each node and
edge label being respectively associated to a single cycle σ and α of the map [10].
We use mainly the same shape features as [9]. Let fE =(fE,i(e))i be the features
attached to each edge of E, and fV =(fV,i(v))i the ones attached to each node.

Following [3, 5], a first edge feature corrresponds to the 4 polynomial coeffi-
cients of a regression polynomial of order 4 that modelize the evolution of the
radius (of the inscribed disk) along the branch. The second edge feature asso-
ciates the length of the shape boundary which contributes to the creation of
the branch, normalized by the total length of the shape boundary in order to be
invariant to scaling (see [5] for more details). This measure, defined as a function

4 The trivial mirror symmetric of M is the map M ′ =(D,σ−1, α) constructed by
reversing the orientation of the darts around nodes (see Fig.1(c)).
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Fig. 2. The set T of tree patterns.

w :E→R+, may thus be understood both as a relevant feature of an edge and
as a measure of its relevance according to the shape.

Regarding nodes of V , the first feature corresponds to the sum of the rel-
evances of its incident edges. The second feature associates to each node its
Euclidean distance to the gravity center of the shape, normalized by the square
root of the shape area in order to be invariant to scaling.

3 Shape similarity

Based on the previous combinatorial map representation, similarity between two
shapes relies on a decomposition of each map into a bag of subtrees [9], and on
a hierarchical kernel between these subtrees in order to be robust to structural
noise. This kernel replaces the edition mechanisms proposed in [5] in the context
of subtrees.

3.1 Bag of treelets

Given a shape represented by a combinatorial map M , and features attached
to its nodes and edges, M is transformed into a bag of submaps having a tree
structure. Each submap, together with its corresponding features, represent a
part of the shape. Following [8, 9], the enumeration of the submaps is restricted
to unlabeled and unrooted trees having between 2 and 6 nodes. As illustrated by
Fig. 2, these trees of limited size form a dictionary of 13 tree patterns, denoted by
T= {Tp}p=2,...,13. The choice of the bounds on the number of nodes corresponds
to a compromise between the expressiveness of the resulting bag and the time
required to enumerate predefined subtrees.

An instance t of a tree pattern of T in M is called a treelet. It is represented
as a 5-uplet (V,E, fV , fE , w), where fV and fE denote the features associated
to the part of the shape described by t, and w(t)=

∑

e∈E(t) w(e) represents

its relevance according to the shape (the normalized boundary length induced
by the edges of t). In practice, a treelet can be encoded by the index p of the
corresponding tree pattern Tp ∈T, and an injection from edges of Tp to edges of
M . The extraction of all the treelets fromM can be performed by an enumeration
process similar to the one proposed by [8]. The only difference is the preservation
of the orientation of edges around each node.
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3.2 Kernel between bags of treelets

Let B and B′ denote two bags of treelets extracted from combinatorial maps
M and M ′ respectively. Inspired by marginalized kernels [2], we have proposed
in [9] a kernel defined as a weighted sum of minor kernels between all pairs of
treelets of (B×B′) \ {(t, t′)∈B×B′ : |V (t)|= |V (t′)|=2} (we do not consider
treelets isomorphic to tree pattern T1):

KT(M,M ′) = 1
|B||B′|

∑

t∈B

∑

t′∈B′

λB(t)λB′(t′)K(t, t′). (1)

Kernel K corresponds to a minor kernel between treelets (see the following sec-
tions). The function λB :B→R+ represents the relevance of each treelet rela-
tively to its bag, which is defined by λB(t)=w(t)/maxt′∈B w(t

′). This weight
allows to reduce the influence of treelets encoding non relevant parts of a shape.

3.3 Treelet kernel

Let t and t′ be two treelets representing parts of shapes. When they correspond
to the same tree pattern Tp ∈T (t and t′ are structurally isomorphic to Tp), they
can differ according to the features attached to their nodes and edges. Also,
depending on the tree pattern, several matches between the two treelets are
possible. In order to take into account both rotational and mirror symmetries of
the shapes, the set of mappings between t and t′ must preserve their orientations,
but also reverse their orientations. This set corresponds to the symmetry group
Sym(t, t′), which is equivalent to Aut(Tp)∪ AutR(Tp), and which can thus be
easily pre-computed for each tree pattern [12].

In order to measure the similarity between the treelets, we have proposed in
[9] a positive-definite kernel defined as the average of similarities between their
different matches derived from Sym(t, t′):

Ktreelet(t, t
′) =











1
| Sym(t,t′)|

∑

ψ∈Sym(t,t′)

Kψ(t, t
′) if Sym(t, t′) 6= ∅,

0 else.

(2)

KernelKψ is defined as the product of the similarities between each pair of nodes
and each pair of edges provided by the mapping ψ : t→ t′:

Kψ(t, t
′) =

∏

v∈V (t)

KV (v, ψ(v))
∏

e∈E(t)

KE(e, ψ(e)),

where kernelKV (resp.KE) encodes the similarity between node’s features (resp.
edge’s feature). It is defined as a tensor product of Gaussian kernels between each
feature:

KA(a, a
′) =

nA
∏

k=1

exp

(

−
‖fA,k(a)− fA,k(a

′)‖2

2σ2
k

)

,
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Fig. 3. Edition rules for the tree patterns of T. Arcs represent transitions between
treelets by either node suppression or edge contraction.

where A corresponds to V or E and a corresponds to a node v or an edge e.
Kernel KSym can be seen as an extension of kernels on paths, trails or walks [2,
5] to trees embedded in the plane.

Experiments in [9] show the efficiency of treelet kernel Ktreelet. In particular,
the results are close to the one obtained by [5], which includes an edition pro-
cess to reduce structural noise and to enhance similarity between closely related
treelets. In the sequel, we extend this process to treelets in order to improve the
robustness of kernel KT.

3.4 Hierarchical treelet kernel

Since shape skeletons are sensitive to small deformations of the shape, the sim-
ilarity measure Ktreelet between two treelets can be affected by structural noise.
Also, two treelets not corresponding to the same tree pattern (Sym(t, t′)= ∅)
may be similar up to some node suppressions or edge contractions. Following
[5] in the case of paths, each treelet of a bag is transformed into a sequence of
smaller ones through an edition process. Since deformations of the shape can be
formalized by additions of nodes and edges, the two operations used to construct
the sequence of treelets are node suppression and edge contraction. Node sup-
pression corresponds to cut the parts of the shape connected to the treelet by
the node. Edge contraction corresponds to a contraction of the shape. Each edge
of the treelet is candidate to this operation. Node suppression is restricted to
nodes of degree 2. This operation is topologically equivalent to the contraction
of one of the two edges incident to the node. The set of possible rewritings of
treelets defines an acyclic graph on the set T of tree patterns (see Fig. 3).

Let t be a treelet with k nodes, structurally equivalent to a tree pattern
Tp ∈T. Depending on Tp, several nodes or edges can be suppressed or contracted
in order to obtain a treelet with k− 1 nodes. The operation which induces a
minimal distortion of the shape is retained. In order to encode this notion of
distortion, a cost is assigned to each operation. This cost corresponds to the
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Table 1. Matching on Kimia25 dataset.

Method k=1 k=2 k=3

1 Edit distance [13] 23 19 18

2 SID [14] 23 21 20

3 KT with Ktreelet only restricted to paths [9] 24 22 21

4 Syntactic matching [15] 25 21 19

5 Shape Context [16] 25 24 22

6 KT with Ktreelet only [9] 25 24 22

7 ID-Shape Context [17] 25 24 25

8 KT with Kedit 25 25 24

boundary of the part of the shape which is deleted: the relevance of the edge in
the case of contraction, and the sum of relevances of the deleted edges in the case
of suppression (see [5] for more details). The retained operation is the one having
a minimal cost. Let κ be the application of this cheapest treelet edition, and let
κk be the application of k successive editions. Then, the similarity between two
treelets is measured by the kernel:

Kedit(t, t
′) = 1

max(mt,mt′
)+1

mt
∑

k=0

m
t′
∑

l=0

exp

(

−
wk(t)+wl(t

′)

2σ2
edit

)

Ktreelet(κ
k(t), κl(t′))

wheremt is the number of editions needed to transform t into a treelet equivalent
to the tree pattern T1 (an edge), and wk(t) is the cost associated to each reduced
treelet operation κk(t), defined as the sum of the costs of the k editions. Each
feature associated to a reduced treelet is defined as a modification of the initial
features associated to t according to the deformation of the shape (see [5] for
more details).

Contrary toKtreelet,Kedit allows to compare two treelets which are not equiv-
alent to a same tree pattern. Also, one can note that Kedit relies upon reacher
structures than its counterpart based on paths [5], and thus more candidate op-
erations need to be tested during the construction of the sequence of reduced
treelets. But the sequences can be easily pre-computed for each treelet during
the construction of the bags, as well as the associated features which have been
modified by the edition process. So the proposed extension does not affect the
computation of the kernel, and since the maximal number of editions is always
4, it is less time consuming than [5] (as long as the number of editions used in
[5] is more than 4).

4 Experiments

In order to illustrate the behaviour of the proposed kernel KT with the treelet
kernel Kedit, we have considered the same experiments as in [9], that is k-NN
matching and classification of the shapes of Kimia25 and Kimia99 datasets [14].
They contain respectively 25 and 99 discrete shapes, which are organized into 6
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Table 2. Classification accuracy.

Method

Accuracy

Kimia25 Kimia99

k-NN Maha. k-NN Maha.

Edit distance [13] 0.89 0.84 0.927 0.907

Trails [5] 0.96 0.952 0.921 0.92

KT with Ktreelet only [9] 0.953 0.946 0.936 0.933

KT with Kedit 0.981 0.975 0.962 0.958

and 11 classes.

k-NN matching. For each shape of Kimia25 dataset, its k=1, 2, 3 closest
shapes are computed according to a similarity measure, ours being defined by
kernel KT. Values displayed in Table 1 represent, for each value of k, the number
of closest shapes belonging to the same class than the input one. The parameters
of KT (the σk associated to each feature as well as σedit) have been optimized
through experiments in order to obtain the best global match. As shown by lines
3 and 6 of Table 1, the use of nonlinear patterns over linear ones improves the
efficiency of kernel KT. Line 8 shows the improvement obtained by incorporating
Kedit into KT. One can also remark that the proposed kernel provides a result
very close to the optimum, and slightly improves the one obtained by [17]. A sim-
ilar behaviour has been observed on Kimia99 dataset. Note that [17] proposed a
matching method which does not induce a definite positive similarity measure.
Such a drawback prevents [17] to readily combine its similarity measure with
complex numerical tools such as PCA or SVM.

Classification. The second experiment compares the proposed kernel KT with
two state-of-the-art kernels. For each method, the best kernel parameters have
been estimated with a cross-validation on a reduced training set of Kimia25
or Kimia99 datasets. Then, a k-fold cross-validation, based on a Mahalanobis
distance to each class and a k-NN, is computed to evaluate the efficiency of
the kernels (k=4 for Kimia25, and k=5 for Kimia99). The resulting accuracies
(number of true positive divided by the total number of shapes) are reported in
Table 2. Again, our kernel with edition outperforms our previous kernel based
on treelets, as well as the the one based on a Gaussian edit distance [13] and the
one provided by trail kernels [5]. Note that this last kernel also use convering
mechanisms to reduce the size of the bags.

5 Conclusion

To measure the similarity between 2D shapes, we have presented an extension of
the kernel based on a decomposition of skeleton graphs into treelets embedded
in the plane [9]. The extension, designed to take explicitly into account struc-
tural noise, relies on a hierarchical comparison of the treelets through an edition
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mechanism. Experiments show that the proposed kernel improves the results
obtained with our previous kernel without edition mechanisms, as well as the
ones obtained by several state-of-the-art methods.
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