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Abstract. Graph kernels allow to define metrics on graph space and
constitute thus an efficient tool to combine advantages of structural and
statistical pattern recognition fields. Within the chemoinformatics frame-
work, kernels are usually defined by comparing number of occurences of
patterns extracted from two different graphs. Such a graph kernel con-
struction scheme neglects the fact that similar but not identical patterns
may lead to close properties. We propose in this paper to overcome this
drawback by defining our kernel as a weighted sum of comparisons be-
tween all couples of patterns. In addition, we propose an efficient com-
putation of the optimal edit distance on a limited set of finite trees. This
extension has been tested on two chemoinformatics problems.

1 Introduction

Chemoinformatics aims to predict molecule’s properties from their structural
similarity. Most of existing methods are based on fingerprints defined as col-
lections of descriptors such as boiling point, logP, molar refractivity, etc. An
alternative strategy consists to extract a set of descriptors directly from the
molecular graph G = (V,E, µ, ν), where the unlabeled graph (V,E) encodes the
structure of the molecule while µmaps each vertex to an atom’s label and ν char-
acterizes a type of bond between two atoms (single, double, triple or aromatic).
Considering this representation, similarity between molecules can be deduced
from the similarity of their molecular graphs.

Graph kernels can be understood as symmetric graph similarity measures.
Using a semi definite positive kernel, the value k(G,G′), where G and G′ en-
code two graphs, corresponds to a scalar product between two vectors ψ(G)
and ψ(G′) in an Hilbert space. Graph kernels provide thus a natural connection
between structural and statistical pattern recognition fields. A large family of
kernels is based on bags of patterns. These methods extract a bag of patterns
from each graph and deduce graph’s similarity from bag’s similarity by com-
paring the number of occurrences of each pattern within both graphs. Most of
existing methods are defined on linear patterns [6]. Such methods have generally
a low complexity but are limited by the lack of expressivity of linear patterns
on graphs. In order to use more structural information, some methods are based
on non linear patterns, such as the tree-pattern kernel [7]. This last method is
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Fig. 1. Set of sub structures enumerated from the graphs.

based on an implicit enumeration of tree patterns, ie. trees where a node can
appear more than once.

Another approach, called treelet kernel [4], computes an explicit enumeration
of a limited set of subtrees. Treelet kernel is a graph kernel defined as a kernel
between two sets of patterns extracted from both graphs to be compared. The set
of extracted patterns, called treelets and denoted T , is composed of all labeled
trees with a number of nodes lower than or equals to 6 (Figure 1). Based on
the enumeration of this set of substructures, each graph G is associated to a
vector f(G). Each component of this vector ft(G) is equals to the number of
occurrences of a given treelet t in G:

f(G) = (ft(G))t∈T (G) with ft(G) = |(tEG)| (1)

where T (G) denotes the set of treelets extracted from G and E the sub graph
isomorphism relationship. Using this vector representation, similarity between
treelet distributions is computed using a sum of sub kernels between treelet’s
frequencies:

KT (G,G
′) =

∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (2)

where k(., .) defines any positive definite kernel between real numbers such as
linear kernel, Gaussian kernel or intersection kernel. Unfortunately, similarity
of occurrences is only computed between isomorphic patterns and not between
similar patterns. From a mathematical point of view, computing similarities only
between isomorphic patterns relies to consider that each axis encoding a pattern
is orthogonal with all other axis. This assumption is dubious since large patterns
are composed by smaller ones, hence encoding partially the same information.
Moreover, from a chemical point of view, two sub structures may have a similar
influence on a chemical property if they slightly differ, hence showing the interest
of crossing information collected from differents treelets.

In order to capture this similarity, we propose to extend treelet kernel by
adding comparisons of non isomorphic treelets. In Section 2, we propose to weight
the influence of any pair of treelets by their edit distance. In Section 2.1, we
propose an efficient way to compute an exact edit distance between treelets.
Then, in Section 3, this treelet kernel extension is tested and discussed on an
experimental comparison involving two chemoinformatics problems.



2 Inter Treelet Kernel based on Edit Distance

Haussler’s convolution kernels [5] are defined on objects x ∈ X which can be
associated to a decomposition into finite sets Xx. Considering a sub kernel k :
Xx×Xx → R, Haussler’s convolution kernel K : X ×X → R is defined as follows:

K(x, y) =
∑

(x′,y′)∈Xx×Xy

k(x′, y′) (3)

By considering a decomposition XG = {(t, ft(G))|t E G} of each graph and a
tensor product (k⊗k′) of two kernels k′ : T ×T → R and k : R×R → R, treelet
kernel (Equation 2) can be reformulated as a convolution kernel:

K(G,G′) =
∑

(t,ft(G))∈XG

(t′,ft′ (G
′))∈XG′

(k′ ⊗ k)(t, ft(G), t
′, ft′(G

′))

K(G,G′) =
∑

(t,ft(G))∈XG

(t′,ft′ (G
′))∈XG′

k′(t, t′)k(ft(G), ft′(G
′)) (4)

where k(ft(G), ft′(G
′)) is defined as in Equation 2 and k′(t, t′) = 1 ⇐⇒ t ≃ t′, 0

otherwise. Note that k′(t, t′) is equal to 1 only if treelet t in T (G) is isomorphic
to t′ and thus belongs simultaneously to T (G) and T (G′) (Equation 2). Such a
definition of k′(t, t′) restricts comparison of occurrences to isomorphic treelets.
In order to relax this restriction and based on the assumption that similar struc-
tures should have a similar chemical activity, we propose to define k′(t, t′) in
Equation 4 as a measure of similarity between t and t′. This similarity mea-
sure is based on the graph edit distance defined as the sequence of operations
transforming G into G′ with a minimal cost [8]. Such a sequence, called an edit
path, may include vertex or edge addition, removal and relabeling. Given a cost
function c(.) associated to each operation, the cost of a sequence of operations
is defined as the sum of each elementary operation’s costs. A high edit dis-
tance indicates a low similarity between two graphs while a small one indicates
a strong similarity. Unfortunately, trivial kernels defined on graph edit distance
are not always semi definite positive and thus does not define valid kernels. In
order to define semi definite positive kernels, we apply a regularization scheme
as defined by [4, 8]. According to [8], the computational cost of the exact edit
distance grows exponentially with the size of graphs. To overcome this problem,
Fankhauser and al. [3] propose a method to compute an approximate edit dis-
tance in O(n3) where n is equals to the number of nodes and to the maximal
degree of both graphs. Such an edit distance computation provides an efficient
way to compute an approximate edit distance between graphs at the cost of a
lower precision.

2.1 Exact Treelet Edit Distance

Exact edit distance is hard to compute when considering the whole set of possible
graphs. Given a finite set of n structures B = {(V1, E1), . . . , (Vn, En)}, we thus



restrict our study to sets of graphs D such that for any G = (V,E, µ, ν) ∈ D we
have (V,E) ∈ B. We show in the remaining of this section that within this frame-
work, exact edit distance may be computed within a reasonable computational
time using ad hoc methods. In order to present such methods, let us introduce
some common definitions. A graph G′ = (V ′, E′, µ′, ν′) is a structural sub graph
of G = (V,E, µ, ν), denoted G′ Es G, iff V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′).
In addition, if µ′

|V ′ = µ and ν′|E′ = ν, f| denoting the restriction of function

f to a particular domain, then G′ is a sub graph of G, denoted G′ E G. A
graph G = (V,E, µ, ν) is structurally isomorphic to a graph G′ = (V ′, E′, µ′, ν′),
denoted G ≃s G′ iff there exists a bijective function f : V → V ′ such that
(u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′. If µ′ ◦f = µ and ν′ ◦f = ν, then G is isomorphic
to G′, denoted G ≃ G′. If G = G′ then f is called an automorphism. If f is only
injective then it exists a sub graph isomorphism between G and G′. A graph
Ĝ is a maximal common sub graph of G1 and G2 if it is a sub graph of G1

and G2 and if it is not a sub graph of any other common sub graph of G1 and
G2. A graph Ĝ is called a maximum common sub graph of G1 and G2 if it is a
common sub graph of G1 and G2 with a maximal number of nodes.The notions
of maximal structural sub graph and maximum structural sub graph are defined
the same way using the notion of structural sub graph.

Under mild assumptions [1], the sequence of edit operations encoding an edit
path can be ordered into a sequence of deletions, substitutions and additions
as illustrated in Figure 2(a). The first sequence transforms the initial graph G1

into one of its sub graphs Ĝ1 by deleting a set of nodes corresponding to V1− V̂1
and a set of edges corresponding to E1− Ê1. The second sequence represents the
set of substitutions transforming Ĝ1 into Ĝ2. This set of substitutions defines a
one to one matching between V̂1 and V̂2 on the one hand and between Ê1 and
Ê2 on the other. Substitutions matching two elements having a same label are
denoted as identical substitutions. Finally, the last sequence corresponds to the
addition of a set of nodes and edges in order to transform Ĝ2 into G2. Note that
the set of operations transforming Ĝ1 into Ĝ2 is only composed of substitutions

(a) Different steps describing an edit
path.

(b) Possible edit paths passing through
maximum common structural sub
graphs {Ĝ1

1
, . . . , Ĝn

1
} and {Ĝ1

2
, . . . , Ĝn

2
}.

Dashed lines correspond to structural
operations, other to substitutions.

Fig. 2. General edit path scheme and edit paths passing through maximum common
structural sub graphs.



which do not modify the structure of graphs. Therefore, Ĝ1 and Ĝ2 have a same
structure and correspond to two structurally isomorphic sub graphs of G1 and
G2. We define costs on edit operations as non negative constant functions for
edges (ce∗) and vertex (cv∗) deletions (c∗d), insertions (c∗i) or substitutions (c∗s).
In addition, the cost associated to an identical substitution is equals to 0 since
such an operation does not modify the graph. Using the representation described
in Figure 2(a) and cost functions previously defined, the cost of any edit path is
equals to:

γ(P ) = |V1−V̂1|cvd+|E1−Ê1|ced+Vfcvs+Efces+|V2−V̂2|cvi+|E2−Ê2|cei (5)

with Vf , resp. Ef , denoting the number of non identical substitutions on nodes,

resp. edges, required to transform Ĝ1 into Ĝ2. Bunke have shown that under
some slightly different conditions on edge operations, constraining the costs to
cvd + cvi < cvs and ces < cvs induces that Ĝ1 ≃ Ĝ2 correspond to a maximum
common sub graph of G1 and G2 [2]. However, maximum common sub graph of
two graphs depends both on structure and labels. This last point does not allow
us to use efficiently our assumption that the number of different structures of
any set of graphs is bounded and known a priori. We propose to study if different
conditions between costs can lead to a possible efficient algorithm to compute
an exact edit distance.

Proposition 1. Given two graphs G1, G2, let us denote by δv the number of

vertices of their maximum structural common sub graph and by δe, the maximal

number of edges, of their structural common sub graphs. If cvd+cvi

cvs
≥ δv +

ces
cvs
δe

and ced+cei
ces

≥ δe +
cvs

ces
δv , then Ĝ1 is a maximal common structural sub graph

of G1 and G2.

Proof. [1]

Considering two graphs G1 and G2, this first proposition ensures that sequences
of structural operations transform G1 and G2 into one of their maximal common
structural sub graphs. Since maximal common structural sub graph does not de-
pend on labeling information, the set of maximal common structural sub graphs
may be pre computed between any pair of structure belonging to B. However,
this number may be large hence forbidding an efficient pre computation of the
exact edit distance. By restricting conditions on costs, we obtain a relationship
leading to a reduced set of sub structures:

Proposition 2. Let us suppose that ced = cei = 0 and ces ≤ cvs. Given two

graphs G1 and G2, let us further denotes by δv the number of vertices of their

maximum common structural sub graphs and by δe the maximal number of edges

of all maximum common structural sub graphs. Then if cvd+cvi

cvs
≥ δv + δe, Ĝ1 is

a maximum common structural sub graph of G1 and G2.

Proof. [1]



Proposition 2 states that under some hypothesis on the costs c∗d, c∗i and c∗s any
optimal edit path between two graphs G1 and G2 should pass through one of
their maximum common structural sub graphs. Let us consider two graphs G1

and G2 and without loss of generality let us suppose that these two graphs share
only one maximum common structural sub graph Ĝ = (V̂ , Ê). Let us denote

as {Ĝ0
1, . . . , Ĝ

i
1, . . . , Ĝ

n1

1 } and {Ĝ0
2, . . . , Ĝ

i
2, . . . , Ĝ

n2

2 } the sets of sub graphs of
G1 and G2 structurally isomorphic to G (Figure 2(b)). By Proposition 2, any
optimal edit path P between G1 and G2 should pass through one Gi

1 and Gj
2.

The cost associated to P can be decomposed into two parts: a structural cost
γstruc(P ), corresponding to insertion and deletion operations, and a substitution

cost γlabel(P ), corresponding to the label substitutions required to transform Ĝi
1

into
ˆ
G

j
2:

γ(P ) = γstruc(P ) + γlabel(P ) (6)

Following Equation 5, we have:
{

γstruc(P ) = |V1 − V̂1|cvd + |E1 − Ê1|ced + |V2 − V̂2|cvi + |E2 − Ê2|cei

γlabel(P ) = Vfcvs + Efces
(7)

For any i ∈ {1, . . . , n1}, since Ĝi
1 EG1, we have V̂ i

1 ⊆ V1 and Êi
1 ⊆ E1 and thus:

{

|V̂ i
1 − V1| = |V1| − |V̂ i

1 | = |V1| − |V̂ |

|Êi
1 − E1| = |E1| − |Êi

1| = |E1| − |Ê|
(8)

Similarly, the same holds for G2 and
ˆ
G

j
2 for any j ∈ {1, . . . , n2}. Structural cost

corresponding to edit path P is thus equals to:

γstruct(P ) =|V1|cvd + |V2|cvi + |E1|ced + |E2|cei

− |V̂ |(cvd + cvi)− |Ê|(ced + cei)
(9)

Computing substitution cost γlabel(P ) (Equation 7) relies on computing the num-
ber of non identical node substitutions Vf and edge substitutions Ef transform-

ing Ĝi
1 into

ˆ
G

j
2. Let Φ(Ĝ) denotes the set of structural automorphisms of Ĝ.

Given both sub graphs Ĝi
1 and

ˆ
G

j
2, each automorphism φ ∈ Φ(Ĝ) induces a

mapping of Ĝi
1 onto

ˆ
G

j
2 and thus a substitution of the label of each vertex v

(resp. edge e) of Gi
1 onto the label of φ(v) (resp. φ(e)) in

ˆ
G

j
2. More precisely,

let us denote by Pi,j,φ the edit path associated to the triplet (Ĝi
1,

ˆ
G

j
2, φ). the

number of non identical substitutions Vf and Ef induced by Pi,j,φ is equals to:

Vf (Pi,j,φ) = |{v ∈ V̂1 | µ̂i
1(v) 6= µ̂

j
2(φ(v))}|

Ef (Pi,j,φ) = |{(v, v′) ∈ Ê1 | ν̂i1(v, v
′)) 6= ν̂

j
2(φ(v), φ(v

′))}|
(10)

Substitution cost of edit path Pi,j,φ is thus equals to γlabel(Pi,j,φ) = Vf (Pi,j,φ)cns+
Ef (Pi,j,φ)ces. Let us denotes by Popt the edit path minimizing the substitution



cost:

Popt = Pi0,j0,φ0
with (i0, j0, φ0) = argmin

(i,j,φ)∈{1,...,n1}×{1,...,n2}×Φ(Ĝ)

γlabel(Pi,j,φ)

(11)
Since γstruct(Pi,j,φ) is the same for any (i, j, φ) ∈ {1, . . . , n1}×{1, . . . , n2}×Φ(Ĝ)
(Equation 9), Popt is an edit path having a minimal cost. Therefore, under our
assumptions, the edit path associated to the edit distance is the one which passes
through the pair of maximum common structural sub graphs and which mini-
mizes the number of substitutions (Equation 11). This exact edit distance com-
putation algorithm can be applied to treelets since the set of treelets is composed
of 14 different structures. In addition, by restricting the set of edit paths to the
ones which preserve the connectedness of intermediate graphs [1], we can obtain
a lower bound on the ratio between substitutions and insertion/deletion costs.

Proposition 3. Considering edit paths preserving connectedness and given two

trees T1, T2 ∈ T , if cvd+cvi

cvs
≥ δv and ced+cei

ces
≥ δv − 1, then Ĝ1 is a maximum

common structural sub tree of T1 and T2.

Proof. [1]

When computing tree edit distance on the set of treelets, δv is bounded by 6
and if we define costs as symmetric, i.e. cvd = cvi and ced = cei, bounds on
costs lead to: cvd > 3cvs and ced > 2.5ces. Since the set of treelets represents all
trees having a size lower than or equals to 6, the maximum common structural
sub tree of two treelets T1 and T2 is a treelet. The set of possible sub graphs
and automorphisms for any pair of treelets can be easily pre computed since
we have to consider only 14 patterns. Therefore, computing exact edit distance
between two treelets consists in comparing at most maxi,j∈{0,...,13}(ni∗nj ∗|Φij |)
label sequences where Φij denotes the set of automorphisms of the maximum

common structural subtree T̂ of treelets Ti and Tj and ni, nj the numbers of

sub trees of Ti and Tj isomorphic to T̂ . The value of this product on the set of
treelets is bounded by 120, hence inducing a constant time complexity for the
computation of the exact tree edit distance. Note that, without our restriction
to a set of specific tree structures, the complexity of the edit distance calcula-
tion between labeled unordered unrooted trees is NP-Complete [9]. In addition,
given a trainset D, our kernel is defined as the 0-extension of the kernel defined
by matrix

(

e−d(ti,tj)
)

(i,j)∈{1,...,n}2
, where n is the number of different treelets

extracted from D. Note that this regularisation has to be performed only once
since this kernel only operates on treelets and not directly on graphs.

3 Experiments

Our first experiment evaluates our inter treelet kernel on a regression problem
which consists in predicting molecule’s boiling points3. This dataset is composed

3 All databases are available on the IAPR TC15 Web page:
http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry



Table 1. Boiling point prediction.

Method RMSE (◦C)

1 Random Walks Kernel 18.72
2 Gaussian edit distance 10.27
3 Tree Pattern Kernel 11.02
4 Treelet Kernel 8.10
5 Treelet Kernel with backward selection 6.75
6 Inter Treelet Kernel with approximate edit distance 6.09
7 Inter Treelet Kernel with exact edit distance 5.89

of 183 acyclic molecules and prediction is performed using a 10-fold cross valida-
tion. The first line of Table 1 shows results obtained by random walks kernel [6].
Due to the limited expressivity of linear patterns, this method does not permit
to predict correctly molecule’s boiling points. Line 2 shows results obtained by
a Gaussian kernel applied on graph edit distance [8]. This last method based on
global similarity of graphs obtains a better result than kernel based on linear
patterns. In the same way, tree pattern [7] and treelet kernels (Table 1, Lines
3 and 4) improve the accuracy of prediction model based on linear patterns
by including information encoded by non linear patterns. Then, Line 5 shows
results obtained by combining treelet kernel with a variable selection step [4]
which leads to a better prediction accuracy (Table 1, Line 5) on this dataset,
at the price of an high computation time. Lines 6 and 7 show results obtained
using our inter treelet kernel. First, inter treelet kernel obtains a better predic-
tion accuracy than using treelet kernel restricted to the comparison of similar
treelets, hence showing the relevance of including pairs of non isomorphic treelets
within kernel computation. Second, we can note that the use of an exact edit
distance provides a slightly more accurate weighting than using an approximate
edit distance (Table 1, Lines 6 and 7).

Our second experiment is defined as a classification problem on the monoamine
oxidase (MAO) dataset which is composed of 68 molecules divided into two
classes: 38 molecules inhibit the monoamine oxidase (antidepressant drugs) and
30 do not. Classification accuracy is measured for each method using a leave one
out procedure with a two-class SVM. This classification scheme is made for each
of the 68 molecules of the dataset. In this experiment, best results are obtained

Table 2. Classification accuracy on the monoamine oxidase (MAO) dataset.

Method Classification Accuracy

1 Random Walks Kernel 82% (56/68)
2 Gaussian edit distance 90% (61/68)
3 Tree Pattern Kernel 96% (65/68)
4 Treelet Kernel 91% (62/68)
5 Inter Treelet Kernel with approximate edit distance 93% (63/68)
6 Inter Treelet Kernel with exact edit distance 94% (64/68)



using a Tree Pattern Kernel (Table 2, Line 3). Methods based on non linear
patterns (Table 2, Lines 3 to 6) outperform methods based on linear patterns
(Table 2, Line 1) and graph edit distance (Table 2, Line 2). In addition, the
better accuracy obtained by methods crossing information from differents pat-
terns (Table 2, Lines 5 and 6) shows the relevance of the proposed extension. As
highlighted on our first experiment, difference between the two methods may be
explained by the better accuracy provided by the exact edit distance.

4 Conclusion

In this article, we have presented an extension of the Treelet Kernel which con-
sists in crossing information encoded by non isomorphic treelets according to
their structural similarities. In addition, we have defined a new relation between
edit distance and maximum common structural sub graphs which leads to an
efficient computation of edit distance between treelets. The relevance of this
extension has been validated by obtaining a better prediction accuracy than
original Treelet Kernel on two chemoinformatics problems. One major perspec-
tive of this work is to define the weighting of non isomorphic treelet pairs using
their relevance according to a property to predict and no more by an a priori
similarity measure such as edit distance.
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