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Graph Kernels: Crossing Information from Different Patterns using Graph Edit Distance

Graph kernels allow to define metrics on graph space and constitute thus an efficient tool to combine advantages of structural and statistical pattern recognition fields. Within the chemoinformatics framework, kernels are usually defined by comparing number of occurences of patterns extracted from two different graphs. Such a graph kernel construction scheme neglects the fact that similar but not identical patterns may lead to close properties. We propose in this paper to overcome this drawback by defining our kernel as a weighted sum of comparisons between all couples of patterns. In addition, we propose an efficient computation of the optimal edit distance on a limited set of finite trees. This extension has been tested on two chemoinformatics problems.

Introduction

Chemoinformatics aims to predict molecule's properties from their structural similarity. Most of existing methods are based on fingerprints defined as collections of descriptors such as boiling point, logP, molar refractivity, etc. An alternative strategy consists to extract a set of descriptors directly from the molecular graph G = (V, E, µ, ν), where the unlabeled graph (V, E) encodes the structure of the molecule while µ maps each vertex to an atom's label and ν characterizes a type of bond between two atoms (single, double, triple or aromatic). Considering this representation, similarity between molecules can be deduced from the similarity of their molecular graphs.

Graph kernels can be understood as symmetric graph similarity measures. Using a semi definite positive kernel, the value k(G, G ′ ), where G and G ′ encode two graphs, corresponds to a scalar product between two vectors ψ(G) and ψ(G ′ ) in an Hilbert space. Graph kernels provide thus a natural connection between structural and statistical pattern recognition fields. A large family of kernels is based on bags of patterns. These methods extract a bag of patterns from each graph and deduce graph's similarity from bag's similarity by comparing the number of occurrences of each pattern within both graphs. Most of existing methods are defined on linear patterns [START_REF] Kashima | Kernels for graphs[END_REF]. Such methods have generally a low complexity but are limited by the lack of expressivity of linear patterns on graphs. In order to use more structural information, some methods are based on non linear patterns, such as the tree-pattern kernel [START_REF] Mahé | Graph kernels based on tree patterns for molecules[END_REF]. This last method is
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Fig. 1. Set of sub structures enumerated from the graphs.

based on an implicit enumeration of tree patterns, ie. trees where a node can appear more than once. Another approach, called treelet kernel [START_REF] Gaüzère | Two new graph kernels and applications to chemoinformatics[END_REF], computes an explicit enumeration of a limited set of subtrees. Treelet kernel is a graph kernel defined as a kernel between two sets of patterns extracted from both graphs to be compared. The set of extracted patterns, called treelets and denoted T , is composed of all labeled trees with a number of nodes lower than or equals to 6 (Figure 1). Based on the enumeration of this set of substructures, each graph G is associated to a vector f (G). Each component of this vector f t (G) is equals to the number of occurrences of a given treelet t in G:

f (G) = (f t (G)) t∈T (G) with f t (G) = |(t G)| (1) 
where T (G) denotes the set of treelets extracted from G and the sub graph isomorphism relationship. Using this vector representation, similarity between treelet distributions is computed using a sum of sub kernels between treelet's frequencies:

K T (G, G ′ ) = t∈T (G)∩T (G ′ ) k(f t (G), f t (G ′ )) (2) 
where k(., .) defines any positive definite kernel between real numbers such as linear kernel, Gaussian kernel or intersection kernel. Unfortunately, similarity of occurrences is only computed between isomorphic patterns and not between similar patterns. From a mathematical point of view, computing similarities only between isomorphic patterns relies to consider that each axis encoding a pattern is orthogonal with all other axis. This assumption is dubious since large patterns are composed by smaller ones, hence encoding partially the same information. Moreover, from a chemical point of view, two sub structures may have a similar influence on a chemical property if they slightly differ, hence showing the interest of crossing information collected from differents treelets. In order to capture this similarity, we propose to extend treelet kernel by adding comparisons of non isomorphic treelets. In Section 2, we propose to weight the influence of any pair of treelets by their edit distance. In Section 2.1, we propose an efficient way to compute an exact edit distance between treelets. Then, in Section 3, this treelet kernel extension is tested and discussed on an experimental comparison involving two chemoinformatics problems.

Haussler's convolution kernels [START_REF] Haussler | Convolution kernels on discrete structures[END_REF] are defined on objects x ∈ X which can be associated to a decomposition into finite sets X x . Considering a sub kernel k : 2) can be reformulated as a convolution kernel:

X x ×X x → R, Haussler's convolution kernel K : X ×X → R is defined as follows: K(x, y) = (x ′ ,y ′ )∈Xx×Xy k(x ′ , y ′ ) (3) By considering a decomposition X G = {(t, f t (G))|t G} of each graph and a tensor product (k ⊗ k ′ ) of two kernels k ′ : T × T → R and k : R × R → R, treelet kernel (Equation
K(G, G ′ ) = (t,ft(G))∈X G (t ′ ,f t ′ (G ′ ))∈X G ′ (k ′ ⊗ k)(t, f t (G), t ′ , f t ′ (G ′ )) K(G, G ′ ) = (t,ft(G))∈X G (t ′ ,f t ′ (G ′ ))∈X G ′ k ′ (t, t ′ )k(f t (G), f t ′ (G ′ )) (4) 
where

k(f t (G), f t ′ (G ′ )) is defined as in Equation 2 and k ′ (t, t ′ ) = 1 ⇐⇒ t ≃ t ′ , 0 otherwise. Note that k ′ (t, t ′ ) is equal to 1 only if treelet t in T (G) is isomorphic to t ′
and thus belongs simultaneously to T (G) and T (G ′ ) (Equation 2). Such a definition of k ′ (t, t ′ ) restricts comparison of occurrences to isomorphic treelets.

In order to relax this restriction and based on the assumption that similar structures should have a similar chemical activity, we propose to define k ′ (t, t ′ ) in Equation 4as a measure of similarity between t and t ′ . This similarity measure is based on the graph edit distance defined as the sequence of operations transforming G into G ′ with a minimal cost [START_REF] Neuhaus | Bridging the gap between graph edit distance and kernel machines[END_REF]. Such a sequence, called an edit path, may include vertex or edge addition, removal and relabeling. Given a cost function c(.) associated to each operation, the cost of a sequence of operations is defined as the sum of each elementary operation's costs. A high edit distance indicates a low similarity between two graphs while a small one indicates a strong similarity. Unfortunately, trivial kernels defined on graph edit distance are not always semi definite positive and thus does not define valid kernels. In order to define semi definite positive kernels, we apply a regularization scheme as defined by [START_REF] Gaüzère | Two new graph kernels and applications to chemoinformatics[END_REF][START_REF] Neuhaus | Bridging the gap between graph edit distance and kernel machines[END_REF]. According to [START_REF] Neuhaus | Bridging the gap between graph edit distance and kernel machines[END_REF], the computational cost of the exact edit distance grows exponentially with the size of graphs. To overcome this problem, Fankhauser and al. [START_REF] Fankhauser | Speeding up graph edit distance computation through fast bipartite matching[END_REF] propose a method to compute an approximate edit distance in O(n 3 ) where n is equals to the number of nodes and to the maximal degree of both graphs. Such an edit distance computation provides an efficient way to compute an approximate edit distance between graphs at the cost of a lower precision.

Exact Treelet Edit Distance

Exact edit distance is hard to compute when considering the whole set of possible graphs. Given a finite set of n structures B = {(V 1 , E 1 ), . . . , (V n , E n )}, we thus restrict our study to sets of graphs D such that for any G = (V, E, µ, ν) ∈ D we have (V, E) ∈ B. We show in the remaining of this section that within this framework, exact edit distance may be computed within a reasonable computational time using ad hoc methods. In order to present such methods, let us introduce some common definitions. A graph

G ′ = (V ′ , E ′ , µ ′ , ν ′ ) is a structural sub graph of G = (V, E, µ, ν), denoted G ′ s G, iff V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ × V ′ ). In addition, if µ ′ |V ′ = µ and ν ′ |E ′ = ν, f | denoting the restriction of function f to a particular domain, then G ′ is a sub graph of G, denoted G ′ G. A graph G = (V, E, µ, ν) is structurally isomorphic to a graph G ′ = (V ′ , E ′ , µ ′ , ν ′ ), denoted G ≃ s G ′ iff there exists a bijective function f : V → V ′ such that (u, v) ∈ E ⇔ (f (u), f (v)) ∈ E ′ . If µ ′ • f = µ and ν ′ • f = ν, then G is isomorphic to G ′ , denoted G ≃ G ′ . If G = G ′ then f is called an automorphism. If f is only injective then it exists a sub graph isomorphism between G and G ′ . A graph Ĝ is a maximal common sub graph of G 1 and G 2 if it is a sub graph of G 1
and G 2 and if it is not a sub graph of any other common sub graph of G 1 and G 2 . A graph Ĝ is called a maximum common sub graph of G 1 and G 2 if it is a common sub graph of G 1 and G 2 with a maximal number of nodes.The notions of maximal structural sub graph and maximum structural sub graph are defined the same way using the notion of structural sub graph.

Under mild assumptions [START_REF] Brun | Relationships between graph edit distance and maximal common unlabeled subgraph[END_REF], the sequence of edit operations encoding an edit path can be ordered into a sequence of deletions, substitutions and additions as illustrated in Figure 2(a). The first sequence transforms the initial graph G 1 into one of its sub graphs Ĝ1 by deleting a set of nodes corresponding to V 1 -V1 and a set of edges corresponding to E 1 -Ê1 . The second sequence represents the set of substitutions transforming Ĝ1 into Ĝ2 . This set of substitutions defines a one to one matching between V1 and V2 on the one hand and between Ê1 and Ê2 on the other. Substitutions matching two elements having a same label are denoted as identical substitutions. Finally, the last sequence corresponds to the addition of a set of nodes and edges in order to transform Ĝ2 into G 2 . Note that the set of operations transforming Ĝ1 into Ĝ2 is only composed of substitutions which do not modify the structure of graphs. Therefore, Ĝ1 and Ĝ2 have a same structure and correspond to two structurally isomorphic sub graphs of G 1 and G 2 . We define costs on edit operations as non negative constant functions for edges (c e * ) and vertex (c v * ) deletions (c * d ), insertions (c * i ) or substitutions (c * s ). In addition, the cost associated to an identical substitution is equals to 0 since such an operation does not modify the graph. Using the representation described in Figure 2(a) and cost functions previously defined, the cost of any edit path is equals to: [START_REF] Haussler | Convolution kernels on discrete structures[END_REF] with V f , resp. E f , denoting the number of non identical substitutions on nodes, resp. edges, required to transform Ĝ1 into Ĝ2 . Bunke have shown that under some slightly different conditions on edge operations, constraining the costs to c vd + c vi < c vs and c es < c vs induces that Ĝ1 ≃ Ĝ2 correspond to a maximum common sub graph of G 1 and G 2 [START_REF] Bunke | Error correcting graph matching: On the influence of the underlying cost function[END_REF]. However, maximum common sub graph of two graphs depends both on structure and labels. This last point does not allow us to use efficiently our assumption that the number of different structures of any set of graphs is bounded and known a priori. We propose to study if different conditions between costs can lead to a possible efficient algorithm to compute an exact edit distance. Proof. [START_REF] Brun | Relationships between graph edit distance and maximal common unlabeled subgraph[END_REF] Considering two graphs G 1 and G 2 , this first proposition ensures that sequences of structural operations transform G 1 and G 2 into one of their maximal common structural sub graphs. Since maximal common structural sub graph does not depend on labeling information, the set of maximal common structural sub graphs may be pre computed between any pair of structure belonging to B. However, this number may be large hence forbidding an efficient pre computation of the exact edit distance. By restricting conditions on costs, we obtain a relationship leading to a reduced set of sub structures: Proposition 2. Let us suppose that c ed = c ei = 0 and c es ≤ c vs . Given two graphs G 1 and G 2 , let us further denotes by δ v the number of vertices of their maximum common structural sub graphs and by δ e the maximal number of edges of all maximum common structural sub graphs. Then if c vd +cvi cvs ≥ δ v + δ e , Ĝ1 is a maximum common structural sub graph of G 1 and G 2 .

γ(P ) = |V 1 -V1 |c vd +|E 1 -Ê1 |c ed +V f c vs +E f c es +|V 2 -V2 |c vi +|E 2 -Ê2 |c ei
Proof. [START_REF] Brun | Relationships between graph edit distance and maximal common unlabeled subgraph[END_REF] of 183 acyclic molecules and prediction is performed using a 10-fold cross validation. The first line of Table 1 shows results obtained by random walks kernel [START_REF] Kashima | Kernels for graphs[END_REF].

Due to the limited expressivity of linear patterns, this method does not permit to predict correctly molecule's boiling points. Line 2 shows results obtained by a Gaussian kernel applied on graph edit distance [START_REF] Neuhaus | Bridging the gap between graph edit distance and kernel machines[END_REF]. This last method based on global similarity of graphs obtains a better result than kernel based on linear patterns. In the same way, tree pattern [START_REF] Mahé | Graph kernels based on tree patterns for molecules[END_REF] and treelet kernels (Table 1, Lines 3 and 4) improve the accuracy of prediction model based on linear patterns by including information encoded by non linear patterns. Then, Line 5 shows results obtained by combining treelet kernel with a variable selection step [START_REF] Gaüzère | Two new graph kernels and applications to chemoinformatics[END_REF] which leads to a better prediction accuracy (Table 1, Line 5) on this dataset, at the price of an high computation time. Lines 6 and 7 show results obtained using our inter treelet kernel. First, inter treelet kernel obtains a better prediction accuracy than using treelet kernel restricted to the comparison of similar treelets, hence showing the relevance of including pairs of non isomorphic treelets within kernel computation. Second, we can note that the use of an exact edit distance provides a slightly more accurate weighting than using an approximate edit distance (Table 1, Lines 6 and 7).

Our second experiment is defined as a classification problem on the monoamine oxidase (MAO) dataset which is composed of 68 molecules divided into two classes: 38 molecules inhibit the monoamine oxidase (antidepressant drugs) and 30 do not. Classification accuracy is measured for each method using a leave one out procedure with a two-class SVM. This classification scheme is made for each of the 68 molecules of the dataset. In this experiment, best results are obtained 2, Line 2). In addition, the better accuracy obtained by methods crossing information from differents patterns (Table 2, Lines 5 and 6) shows the relevance of the proposed extension. As highlighted on our first experiment, difference between the two methods may be explained by the better accuracy provided by the exact edit distance.

Conclusion

In this article, we have presented an extension of the Treelet Kernel which consists in crossing information encoded by non isomorphic treelets according to their structural similarities. In addition, we have defined a new relation between edit distance and maximum common structural sub graphs which leads to an efficient computation of edit distance between treelets. The relevance of this extension has been validated by obtaining a better prediction accuracy than original Treelet Kernel on two chemoinformatics problems. One major perspective of this work is to define the weighting of non isomorphic treelet pairs using their relevance according to a property to predict and no more by an a priori similarity measure such as edit distance.

  (a) Different steps describing an edit path. (b) Possible edit paths passing through maximum common structural sub graphs { Ĝ1 1 , . . . , Ĝn 1 } and { Ĝ1 2 , . . . , Ĝn 2 }. Dashed lines correspond to structural operations, other to substitutions.
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 2 Fig. 2. General edit path scheme and edit paths passing through maximum common structural sub graphs.

Proposition 1 .

 1 Given two graphs G 1 , G 2 , let us denote by δ v the number of vertices of their maximum structural common sub graph and by δ e , the maximal number of edges, of their structural common sub graphs. If c vd +cvi cvs ≥ δ v + ces cvs δ e and c ed +cei ces ≥ δ e + cvs ces δ v , then Ĝ1 is a maximal common structural sub graph of G 1 and G 2 .

Table 1 .

 1 Boiling point prediction.

	Method	RMSE ( • C)
	1 Random Walks Kernel	18.72
	2 Gaussian edit distance	10.27
	3 Tree Pattern Kernel	11.02
	4 Treelet Kernel	8.10
	5 Treelet Kernel with backward selection	6.75
	6 Inter Treelet Kernel with approximate edit distance	6.09
	7 Inter Treelet Kernel with exact edit distance	5.89

Table 2 .

 2 Classification accuracy on the monoamine oxidase (MAO) dataset. Tree Pattern Kernel (Table2, Line 3). Methods based on non linear patterns (Table2, Lines 3 to 6) outperform methods based on linear patterns (Table2, Line 1) and graph edit distance (Table

	Method	Classification Accuracy
	1 Random Walks Kernel	82% (56/68)
	2 Gaussian edit distance	90% (61/68)
	3 Tree Pattern Kernel	96% (65/68)
	4 Treelet Kernel	91% (62/68)
	5 Inter Treelet Kernel with approximate edit distance	93% (63/68)
	6 Inter Treelet Kernel with exact edit distance	94% (64/68)

Proposition 2 states that under some hypothesis on the costs c * d , c * i and c * s any optimal edit path between two graphs G 1 and G 2 should pass through one of their maximum common structural sub graphs. Let us consider two graphs G 1 and G 2 and without loss of generality let us suppose that these two graphs share only one maximum common structural sub graph Ĝ = ( V , Ê). Let us denote as { Ĝ0 1 , . . . , Ĝi 1 , . . . , Ĝn1 1 } and { Ĝ0 2 , . . . , Ĝi 2 , . . . , Ĝn2 2 } the sets of sub graphs of G 1 and G 2 structurally isomorphic to G (Figure 2(b)). By Proposition 2, any optimal edit path P between G 1 and G 2 should pass through one G i 1 and G j 2 . The cost associated to P can be decomposed into two parts: a structural cost γ struc (P ), corresponding to insertion and deletion operations, and a substitution cost γ label (P ), corresponding to the label substitutions required to transform Ĝi

Following Equation 5, we have:

For any i ∈ {1, . . . , n 1 }, since Ĝi

Similarly, the same holds for G 2 and Ĝj 2 for any j ∈ {1, . . . , n 2 }. Structural cost corresponding to edit path P is thus equals to:

Computing substitution cost γ label (P ) (Equation 7) relies on computing the number of non identical node substitutions V f and edge substitutions E f transforming Ĝi 1 into Ĝj 2 . Let Φ( Ĝ) denotes the set of structural automorphisms of Ĝ. Given both sub graphs Ĝi 1 and Ĝj 2 , each automorphism φ ∈ Φ( Ĝ) induces a mapping of Ĝi 1 onto Ĝj 2 and thus a substitution of the label of each vertex v (resp. edge e) of G i 1 onto the label of φ(v) (resp. φ(e)) in Ĝj 2 . More precisely, let us denote by P i,j,φ the edit path associated to the triplet ( Ĝi 1 , Ĝj 2 , φ). the number of non identical substitutions V f and E f induced by P i,j,φ is equals to:

Substitution cost of edit path P i,j,φ is thus equals to γ label (P i,j,φ ) = V f (P i,j,φ )c ns + E f (P i,j,φ )c es . Let us denotes by P opt the edit path minimizing the substitution cost:

P opt = P i0,j0,φ0 with (i 0 , j 0 , φ 0 ) = argmin (i,j,φ)∈{1,...,n1}×{1,...,n2}×Φ( Ĝ)

γ label (P i,j,φ ) (11) Since γ struct (P i,j,φ ) is the same for any (i, j, φ) ∈ {1, . . . , n 1 }×{1, . . . , n 2 }×Φ( Ĝ) (Equation 9), P opt is an edit path having a minimal cost. Therefore, under our assumptions, the edit path associated to the edit distance is the one which passes through the pair of maximum common structural sub graphs and which minimizes the number of substitutions (Equation 11). This exact edit distance computation algorithm can be applied to treelets since the set of treelets is composed of 14 different structures. In addition, by restricting the set of edit paths to the ones which preserve the connectedness of intermediate graphs [START_REF] Brun | Relationships between graph edit distance and maximal common unlabeled subgraph[END_REF], we can obtain a lower bound on the ratio between substitutions and insertion/deletion costs. Proposition 3. Considering edit paths preserving connectedness and given two trees

then Ĝ1 is a maximum common structural sub tree of T 1 and T 2 .

Proof. [START_REF] Brun | Relationships between graph edit distance and maximal common unlabeled subgraph[END_REF] When computing tree edit distance on the set of treelets, δ v is bounded by 6 and if we define costs as symmetric, i.e. c vd = c vi and c ed = c ei , bounds on costs lead to: c vd > 3c vs and c ed > 2.5c es . Since the set of treelets represents all trees having a size lower than or equals to 6, the maximum common structural sub tree of two treelets T 1 and T 2 is a treelet. The set of possible sub graphs and automorphisms for any pair of treelets can be easily pre computed since we have to consider only 14 patterns. Therefore, computing exact edit distance between two treelets consists in comparing at most max i,j∈{0,...,13} (n i * n j * |Φ ij |) label sequences where Φ ij denotes the set of automorphisms of the maximum common structural subtree T of treelets T i and T j and n i , n j the numbers of sub trees of T i and T j isomorphic to T . The value of this product on the set of treelets is bounded by 120, hence inducing a constant time complexity for the computation of the exact tree edit distance. Note that, without our restriction to a set of specific tree structures, the complexity of the edit distance calculation between labeled unordered unrooted trees is NP-Complete [START_REF] Zhang | On the editing distance between unordered labeled trees[END_REF]. In addition, given a trainset D, our kernel is defined as the 0-extension of the kernel defined by matrix e -d(ti,tj ) (i,j)∈{1,...,n} 2 , where n is the number of different treelets extracted from D. Note that this regularisation has to be performed only once since this kernel only operates on treelets and not directly on graphs.

Experiments

Our first experiment evaluates our inter treelet kernel on a regression problem which consists in predicting molecule's boiling points 3 . This dataset is composed