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Introduction

Let us fix a bounded plane domain Ω with a polygonal boundary. More precisely,

we assume that Ω is a simply connected domain and that its boundary Γ is the

union of a finite number of linear segments Γj , 1 ≤ j ≤ ne (Γj is assumed to be an

open segment). In this domain we consider the p-Laplace equation







−div (|∇u|p−2 ∇u) = f in Ω,

u = 0 on Γ,

(0.1)

where 1 < p < ∞, ∇u is the vector gradient of u,

|∇u| =

(

2
∑

i=1

(

∂u

∂xi

)2
)

1
2

,

and f is a given function in Lq(Ω) (q conjugate of p). This equation occurs in many

mathematical models of physical processes such as nonlinear diffusion and filtration,

power-law materials, and viscoelastic materials.

In Farhloul and Manouzi [1], these authors have introduced a mixed finite el-

ement method for problem (0.1) based on the introduction of σ = |∇u|p−2 ∇u

as a new unknown and its approximation by the lowest degree Raviart-Thomas

finite element (cf. Thomas [2], Raviart and Thomas [3]). The old unknown u is ap-

proximated by a piecewise constant function on the triangulation of Ω. They have

proved a priori error estimates without any restriction on p. In this paper, we are

concerned by the construction of reliable a posteriori error estimators for σ h the

approximation of σ and uh the approximation of u.

In section 1, we firstly introduce two residues R and r and we bound the norms

of the errors ||σ −σ h||0,q,Ω and ||u−uh||0,p,Ω in terms of these two residues (|| . ||0,p,Ω

denotes the Lp-norm in Ω and 1
q = 1 − 1

p ). In this part of the work, we distinguish

two cases : p ≥ 2 and 1 < p < 2. Secondly, using a Helmholtz type decomposition

for arbitrary vector field τ ∈ [Lq(Ω)]2, we establish a bound of the norm of R

in terms of a local error estimator η1 =

(

∑

K∈Th

η1(K)p

)
1
p

, where Th denotes the

triangulation of Ω and K an arbitrary triangle of Th. η1(K) is function of A (σ h) =

|σ h|q−2σ h, curl A (σ h), the tangential jump of A (σ h) at each interface of two

triangles
[[

A (σ h).t
]]

and the diameter hK of the triangle K.

The norm of r is easily bounded in terms of the local error estimator

η2 =

(

∑

K∈Th

η2(K)q

)
1
q

,

where η2(K) = ||f −P 0
hf ||0,q,K . P 0

hf is the function constant on each K ∈ Th equal

on K to the mean of f on K.
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In section 2 of our paper, we introduce the hybrid formulation of the discrete

mixed formulation by expressing that the normal component of σ h is continuous at

each interface between triangles of Th. We obtain in that way a nonlinear system

in the unknowns σ h, uh and λh where λh is in some sense an approximation of u

along the edges of the triangulation Th. We next want to solve this nonlinear system

by a simple Picard scheme by replacing the non linear term

∫

Ω

A (σ h). τ h dx by
∫

Ω

|σ m
h |q−2 σ m+1

h . τ h dx. Introducing the “generalized barycenter” of K:

x m
K =

∫

K

|σ m
h (x )|q−2 x dx

∫

K

|σ m
h (x )|q−2 dx

∈ K, (0.2)

and writing the lowest degree Raviart-Thomas vectorfield on K σ m+1
K = σ m+1

h |K ,

K ∈ Th, in the form

σ m+1
K (x ) = a m+1

K + cm+1
K (x − x m

K), ∀x ∈ K, (0.3)

where a m+1
K ∈ R

2
and cm+1

K ∈ R, we obtain the following expressions of σ m+1
K and

um+1
K = um+1

h |K in terms of the Lagrange multiplier λm+1
h |∂K

:

σ m+1
K (x ) =

∫

∂K

λm+1
h n K ds

∫

K

|σ m
K |q−2 dx

−
(

1

2|K|

∫

K

f dx

)

(x − x m
K) ∀x ∈ K, (0.4)

um+1
K =

1

4|K|2
∫

K

f dx

(
∫

K

|σ m
K(x )|q−2 |x − x m

K |2 dx

)

(0.5)

+
1

2|K|

∫

∂K

λm+1
h (x − x m

K). n K ds,

n K denoting the unitary normal vectorfield along the boundary of K. Expressing

the continuity of the normal component of the vectorfield σ m+1
h at each interface

(i.e. at each interior edge e) of the triangulation Th, and applying the Picard scheme,

we obtain at step m+1 a linear system in the unknowns λm+1
e = λm+1

h |e, e running

over the set of all interior edges of the triangulation Th of the polygonal domain Ω.

Once λm+1
h has been calculated, we then use it in formulas (0.4) and (0.5) in order

to obtain σ m+1
h and um+1

h , and continue the iterations.

Finally, in section 3, we present a numerical test in the square Ω =]−1/2; 1/2[2.

Denoting by r(x ) = r(x1, x2) the distance to the origin, we consider the bounded

function u defined in the square by

u(x ) =















(

1

4
− r2(x )

)2

e−r2(x )/ε if r(x ) ≤ 1
2 ,

0 if r(x ) > 1
2 .

(0.6)
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f = −div (|∇u|p−2 ∇u) is easily computed and shown to be equal to:

f(x ) = −2p−1gp−2(x )

(

2 +
1

ε
g(x )

)p−2

e−(p−1)
r2(x )

ε rp−2(x )

×
[

2(p − 1)

(

2 +
1

ε
g(x )

)

r2(x ) + 2(p − 1)g(x )

(

3 +
1

ε
g(x )

)

r2(x )

ε

− pg(x )

(

2 +
1

ε
g(x )

)]

, (0.7)

where

g(x ) =
1

4
− r2(x ). (0.8)

Ones verifies that f ∈ Lq(Ω) if the conjugate p > 1+
√

5
2 = 1.618... We test this

example for p = 1.8 and p = 3. For each of these two cases, four graphics are given:

||σ − σ h||0,q,Ω, ||u − uh||0,p,Ω, the ratio between ||σ − σ h||0,q,Ω and the estimated

error on σ h and finally the ratio between ||u− uh||0,p,Ω and the estimated error on

uh, all with respect to the number of degrees of freedom. One verifies the predicted

order of convergence given respectively by theorem 3.2 for p = 1.8 and theorem 3.1

for p = 3 of Farhloul and Manouzi [1] and that the ratios between the errors and

the estimated errors are asymptotically independent of the number of degrees of

freedom.

1. Definition of residues and bounds of the errors

Let us first recall the weak formulation of the mixed method for the p-Laplacian

introduced by Farhloul and Manouzi in [1]. Let M denotes the Banach space Lp(Ω)

(1 < p < +∞) and X the following:

X =
{

τ ∈ [Lq(Ω)]2; div τ ∈ Lq(Ω)
}

, (1.9)

where q denotes the harmonic conjugate of p. Endowed with the norm

||τ ||X =
(

||τ ||q0,q,Ω + ||div τ ||q0,q,Ω

)
1
q

,

X is also a Banach space. For every τ ∈ [Lq(Ω)]2, let us set A (τ ) = |τ |q−2τ .

It is straightforward to check that when τ ∈ [Lq(Ω)]2, A (τ ) ∈ [Lp(Ω)]2. The

weak formulation of the mixed method related to the Dirichlet problem for the p-

Laplacian (0.1) reads as follows [1]: Find (σ , u) ∈ X × M such that the following

equations are satisfied:


















∫

Ω

A (σ ). τ dx +

∫

Ω

u div τ dx = 0 ∀τ ∈ X (i)

∫

Ω

(div σ ) v dx +

∫

Ω

f v dx = 0 ∀v ∈ M (ii)

(1.10)
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It is proved in [1] (theorem 2.1) that (1.10) possesses one and only one solution

(σ , u) and that u is the weak solution of (0.1) and σ = |∇u|p−2∇u. Now let us

consider a regular family of triangulations (Th)h>0 on Ω [4]. The following finite

element spaces are defined in [1]:

Xh =
{

τ h ∈ X; τ h|K ∈ RT0(K),∀K ∈ Th

}

, (1.11)

Mh =
{

vh ∈ M ; vh|K ∈ P0(K),∀K ∈ Th

}

, (1.12)

where P0(K) denotes the space of constant functions on the triangle K and [2, 3]:

RT0(K) = P0(K)2 ⊕ P0(K) x , x = (x1, x2). (1.13)

Then the finite element approximation to problem (1.10) is given by [1]: Find

(σ h, uh) ∈ Xh × Mh satisfying


















∫

Ω

A (σ h). τ h dx +

∫

Ω

uh div τ h dx = 0, ∀τ h ∈ Xh

∫

Ω

(div σ h) vh dx +

∫

Ω

f vh dx = 0, ∀vh ∈ Mh

(1.14)

The existence and uniqueness of the solution of the discrete problem (1.14) follows

from the uniform inf-sup condition [1]. A priori error estimates are also proved in

Farhloul and Manouzi [1]. Now, we define two residues R on X and r on M by:

< R, τ > = (A (σ h), τ ) + (div τ , uh), ∀τ ∈ X, (1.15)

< r, v > = (div σ h, v) + (f, v), ∀v ∈ M. (1.16)

R is a continuous linear form on X and r is a continuous linear form on M . When

we will speak of ||R|| (respectively ||r||), it will mean the norm of R (respectively

r) as a continuous linear form on X (respectively M). We have the following bound

of (A (σ h) − A (σ ), σ h − σ ) in terms of the norms of these two residues:

Proposition 1.1.

(A (σ h) − A (σ ), σ h − σ ) . ||R|| ||σ h − σ ||0,q,Ω

+ ||r|| sup
τ ∈X

(A (σ ) − A (σ h), τ )

||τ ||X
+ 2||r|| ||R|| (1.17)

Before proceeding to the proof, let us make the following remark:

Remark 1.1. For a, b ∈ R+, we use the notation a . b to mean that there exists

a positive constant C such that a 6 C b. Similarly, we write a ∼ b to mean that

there exists two strictly positive constants C1 and C2 such that C1 b ≤ a ≤ C2 b.

Proof. Using the definition of R (1.15) and the equation (1.10 (i)), we obtain:

(A (σ h) − A (σ ), τ ) + (div τ , uh − u) =< R, τ >, ∀τ ∈ X. (1.18)
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Substracting (1.10 (ii)) form (1.16), we obtain:

(div (σ h) − div (σ ), v) =< r, v >, ∀v ∈ M. (1.19)

Substracting (1.19) with v = uh − u from (1.18) with τ = σ h − σ , we obtain:

(A (σ h) − A (σ ), σ h − σ ) =< R, σ h − σ > − < r, uh − u > . (1.20)

By the inf-sup condition stated in proposition 2.1 of [1] and (1.18) it follows:

||uh − u||M . sup
τ ∈X

(div τ , uh − u)

||τ ||X

. sup
τ ∈X

< R, τ >

||τ ||X
+ sup

τ ∈X

(A (σ ) − A (σ h), τ )

||τ ||X

= ||R|| + sup
τ ∈X

(A (σ ) − A (σ h), τ )

||τ ||X
. (1.21)

From (1.20) and (1.21) it follows that:

(A (σ h) − A (σ ), σ h − σ ) . ||R|| ||σ h − σ ||X + ||r|| ||R||

+ ||r|| sup
τ ∈X

(A (σ ) − A (σ h), τ )

||τ ||X
(1.22)

But:

||σ h − σ ||X ∼ ||σ h − σ ||0,q,Ω + ||div (σ h − σ )||0,q,Ω

= ||σ h − σ ||0,q,Ω + sup
v∈Lp(Ω)

< div (σ h − σ ), v >

||v||0,p,Ω

= ||σ h − σ ||0,q,Ω + ||r|| (1.23)

by (1.19). The result follows now from (1.22) and (1.23).

Our purpose now is to bound the norms of the errors ||σ h − σ ||0,q,Ω and ||uh −
u||0,p,Ω in terms of the norms of the residues ||R|| and ||r||. We will have to distinct

two cases: p ≥ 2 and 1 < p < 2. We begin with the case p ≥ 2.

Firstly, we need the following inequality due to Sandri [5] (see also [1] p. 74):

Lemma 1.1. We suppose p ≥ 2. Then:

(A (σ h) − A (σ ), σ h − σ ) &
||σ h − σ ||20,q,Ω

||σ h||2−q
0,q,Ω + ||σ ||2−q

0,q,Ω

+

∫

Ω

|A (σ h) − A (σ )| |σ h − σ | dx. (1.24)

We will also need the following inequality:

Lemma 1.2. Supposing p ≥ 2, we have ∀τ ∈ X:

(A (σ ) − A (σ h), τ ) .

[
∫

Ω

|A (σ h) − A (σ )| |σ h − σ | dx

]
1
p

||τ ||0,q,Ω, (1.25)
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the multiplicative constant hidden in the sign . being independent of τ .

The proof of inequality (1.25) relies on the following technical lemma:

Lemma 1.3.

∀p ≥ 2, ∀x , y ∈ R
2
,

∣

∣|x |q−2x − |y |q−2y
∣

∣

p−1
. |x − y |. (1.26)

Proof.

(1) Let us first suppose that |x | = |y | = 1. In that particular case, inequality

(1.26) reduces to |x − y |p−1 . |x − y |. By hypothesis p ≥ 2, which implies

that p − 2 ≥ 0. Let us set ζ =
|x − y |

2
≤ 1 which implies ln(ζ) ≤ 0. Thus

ζp−2 = e(p−2) ln(ζ) ≤ 1, implying that ζp−1 ≤ ζ. Recalling the definition of ζ, it

follows that |x − y |p−1 ≤ 2p−2|x − y |, i.e. |x − y |p−1 . |x − y | establishing

inequality (1.26) in the particular case |x | = |y | = 1.

(2) One verifies easily that the left-hand side of inequality (1.26) is a homogeneous

function of degree 1, i.e. that

||tx |q−2tx − |ty |q−2ty |p−1 = t ||x |q−2x − |y |q−2y |

for every t > 0 which implies using the first step of our proof that inequality

(1.26) is still true under the weaker condition that |x | = |y |.

(3) Thus it remains to prove inequality (1.26) when |x | 6= |y |. x and y playing a

symmetric role in inequality (1.26), we may suppose |x | > |y |. Considering y

and λx with λ =
|y |
|x | so that |λx | = |y |, it follows by the previous step of our

work that

||y |q−2y − |λx |q−2λx |p−1 . |y − λx |. (1.27)

But

|y − λx | ≤ |y − x | + |x ||1 − λ|

= |y − x | + |x | |1 −
|y |
|x | |

≤ 2 |y − x |. (1.28)

From (1.27) and (1.28), it follows that

||y |q−2y − |λx |q−2λx |p−1 . |y − x |. (1.29)

On the other hand:

||λx |q−2λx − |x |q−2x |p−1 =

∣

∣

∣

∣

∣

(

( |y |
|x |

)q−1

− 1

)

|x |q−2x

∣

∣

∣

∣

∣

p−1

= ||y |q−1 − |x |q−1|p−1. (1.30)
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But it is elementary to prove that for s ≥ 1 and α ≥ 0, β ≥ 0:

|α1/s − β1/s|s ≤ |α − β|. (1.31)

Applying (1.31) with α = |y |, β = |x | and s = p − 1, we get:

||y |q−1 − |x |q−1|p−1 ≤ ||y | − |x || ≤ |y − x |. (1.32)

From (1.30) and (1.32), it follows that:

||λx |q−2λx − |x |q−2x |p−1 ≤ |x − y |. (1.33)

From (1.29) and (1.33) we obtain:

||y |q−2y − |x |q−2x |p−1 ≤ 2p−1
(

||y |q−2y − |λx |q−2λx |p−1 + ||λx |q−2λx − |x |q−2x |p−1
)

. |x − y |,

what was to be proved.

Now we give the proof of lemma 1.2:

Proof.

(A (σ ) − A (σ h), τ ) .

(
∫

Ω

|A (σ ) − A (σ h)|p dx

)1/p

||τ ||0,q,Ω

=

(
∫

Ω

||σ |q−2σ − |σ h|q−2σ h|p dx

)1/p

||τ ||0,q,Ω

=

(
∫

Ω

||σ |q−2σ − |σ h|q−2σ h|p−1|A (σ ) − A (σ h)| dx

)1/p

||τ ||0,q,Ω

.

[
∫

Ω

|σ − σ h||A (σ ) − A (σ h)| dx

]1/p

||τ ||0,q,Ω (1.34)

due to lemma 1.3. This proves the result.

Using lemma 1.1, 1.2 and inequality (1.22), we are now in a position to prove

the following result:

Proposition 1.2. Supposing p ≥ 2, we have the following bounds in terms of the

norms of the residues:

||σ h − σ ||20,q,Ω . ||R||2 + ||r||q + ||r|| ||R|| (1.35)

and
∫

Ω

|A (σ h) − A (σ )| |σ h − σ | dx . ||R||2 + ||r||q + ||r|| ||R||. (1.36)



A posteriori error estimation for the mixed method for the p-Laplacian 9

Proof. Reading inequality (1.24) from right to left and using inequality (1.17), we

obtain:

||σ h − σ ||20,q,Ω

||σ h||2−q
0,q,Ω + ||σ ||2−q

0,q,Ω

+

∫

Ω

|A (σ h) − A (σ )| |σ h − σ | dx

. ||R|| ||σ h − σ ||0,q,Ω + ||r|| sup
τ ∈X

(A (σ ) − A (σ h), τ )

||τ ||X
+ 2||r|| ||R||

. ||R|| ||σ h − σ ||0,q,Ω + ||r||
[
∫

Ω

|A (σ h) − A (σ )| |σ h − σ | dx

]1/p

+ 2||r|| ||R||

(1.37)

by lemma 1.2. Now using Young’s inequality, i.e. ∀a ≥ 0, ∀b ≥ 0, ab ≤ 1
pap+ 1

q bq,

we obtain ∀ ε > 0 and ∀ ε > 0 from the previous inequality:

||σ h − σ ||20,q,Ω

||σ h||2−q
0,q,Ω + ||σ ||2−q

0,q,Ω

+

∫

Ω

|A (σ h) − A (σ )| |σ h − σ | dx

. ε−1(||σ h||2−q
0,q,Ω + ||σ ||2−q

0,q,Ω)||R||2 + ε
||σ h − σ ||20,q,Ω

||σ h||2−q
0,q,Ω + ||σ ||2−q

0,q,Ω

+(ε)
−q||r||q + (ε)p

∫

Ω

|A (σ h) − A (σ )| |σ h − σ | dx + ||r|| ||R||. (1.38)

Choosing adequately ε > 0 and ε > 0, it follows from the previous inequality the

two following ones:

||σ h − σ ||20,q,Ω . (||σ h||2−q
0,q,Ω + ||σ ||2−q

0,q,Ω)

×
{

(||σ h||2−q
0,q,Ω + ||σ ||2−q

0,q,Ω) ||R||2 + ||r||q + ||r|| ||R||
}

(1.39)

and
∫

Ω

|A (σ h)−A (σ )| |σ h−σ | dx . (||σ h||2−q
0,q,Ω+||σ ||2−q

0,q,Ω)||R||2+||r||q+||r|| ||R||.(1.40)

On the other hand, following the proof of theorem 2.1 of [6] (see also theorem 2.1

of [1]), we have

||σ ||X ≤ ||f ||0,q,Ω and ||σ h||X ≤ ||f ||0,q,Ω. (1.41)

Using this fact in the right-hand side of (1.39) (respectively (1.40)), we obtain the

inequality (1.35) (respectively (1.36)).

From (1.21), lemma 1.2 and (1.36), it follows that:

Corollary 1.1. Supposing p ≥ 2, we have the following bound for the norm of the

error u − uh in terms of the norms of the residues:

||uh − u||0,p,Ω . ||R|| + (||R||2 + ||r||q + ||r|| ||R||)1/p. (1.42)

We now turn to the case 1 < p < 2. Firstly, we are going to bound the norm of

the error on σ h, i.e. ||σ h − σ ||0,q,Ω.
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Proposition 1.3. Supposing 1 < p < 2, we have the following bound on the norm

of the error on σ h:

||σ h − σ ||0,q,Ω . ||R||p/q + ||r||2/q + (||r|| ||R||)1/q. (1.43)

Proof. By inequality (3.14) of [1] (see also Sandri [5]), we have:

||σ h − σ ||q0,q,Ω +

∫

Ω

(|σ | + |σ h|)q−2|σ h − σ |2 dx . (A (σ h) − A (σ ), σ h − σ ).(1.44)

Using inequality (1.17) from proposition 1.1, it follows from the previous inequality

||σ h − σ ||q0,q,Ω +

∫

Ω

(|σ | + |σ h|)q−2|σ h − σ |2 dx

. ||R|| ||σ h − σ ||0,q,Ω + ||r|| sup
τ ∈X

(A (σ ) − A (σ h), τ )

||τ ||X
+ 2||r|| ||R||. (1.45)

By inequality (3.15) of [1],

||A (σ )−A (σ h)||0,p,Ω .

[
∫

Ω

(|σ | + |σ h|)q−2|σ h − σ |2 dx

]1/2

[||σ ||0,q,Ω + ||σ h||0,q,Ω]
q−2
2 ,

and Young’s inequality, we obtain from inequality (1.45) that, ∀ε > 0 and ∀ε > 0,

||σ h − σ ||q0,q,Ω +

∫

Ω

(|σ | + |σ h|)q−2|σ h − σ |2 dx

. εq||σ h − σ ||q0,q,Ω +
1

εp
||R||p + ε

∫

Ω

(|σ | + |σ h|)q−2|σ h − σ |2 dx

+
1

ε
[||σ ||0,q,Ω + ||σ h||0,q,Ω]

q−2 ||r||2 + ||r|| ||R||. (1.46)

Choosing adequately ε > 0 and ε > 0, il follows from the previous inequality the

following one:

||σ h − σ ||q0,q,Ω . ||R||p + [||σ ||0,q,Ω + ||σ h||0,q,Ω]
q−2 ||r||2 + ||r|| ||R||. (1.47)

Using (1.41), it follows that

||σ h − σ ||q0,q,Ω . ||R||p + ||r||2 + ||r|| ||R||,

and taking the two-sides of this inequality to the power 1
q , we obtain the result.

Proposition 1.4. Supposing 1 < p < 2, we have the following bound on the norm

of the error on uh:

||u − uh||0,p,Ω . ||R|| + ||r|| + ||R||p/2. (1.48)

Proof. By the definition of R (see (1.15)) and equation (1.10 (i)), we have

(A (σ h) − A (σ ), τ ) + (div τ , uh − u) =< R, τ >, ∀τ ∈ X. (1.49)
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By the inf-sup inequality (cf. proposition 2.1 of [1]) and the previous equation, we

have the following bound on ||uh − u||0,p,Ω:

||uh − u||0,p,Ω . sup
τ ∈X

< R, τ >

||τ ||X
+ sup

τ ∈X

(A (σ h) − A (σ ), τ )

||τ ||X
. ||R|| + ||A (σ h) − A (σ )||0,p,Ω. (1.50)

By inequality (3.15) of [1] and (1.41), it follows that

||A (σ h) − A (σ )||0,p,Ω .

[
∫

Ω

(|σ | + |σ h|)q−2|σ h − σ |2 dx

]1/2

. (1.51)

On the other hand, inequality (1.46) implies
∫

Ω

(|σ | + |σ h|)q−2|σ h − σ |2 dx . ||R||p + ||r||2 + ||r|| ||R||. (1.52)

From (1.50), (1.51) and (1.52), it follows that

||u − uh||0,p,Ω . ||R|| + (||R||p + ||r||2 + ||r|| ||R||)1/2

. ||R|| + ||R||p/2 + ||r|| + ||r||1/2||R||1/2

. ||r|| + ||R|| + ||R||p/2.

Now, in both cases p ≥ 2 and 1 < p < 2, we are reduced to bound the norms of

the residues R and r in terms of computed or known quantities. This is immediate

for r.

Proposition 1.5. ||r|| = η2 where η2 =

(

∑

K∈Th

η2(K)q

)1/q

and

η2(K) = ||f − P 0
hf ||0,q,K , ∀K ∈ Th.

Proof. r has been defined by equation (1.16) as being div σ h+f . But by the second

equation of the discretized mixed formulation (1.14), we have div σ h = −P 0
hf , where

P 0
h denotes the projection operator defined by:

P 0
h : Lq(Ω) −→ Mh

v 7−→ P 0
hv, (1.53)

P 0
hv being the function constant on each triangle K equal to the mean of v on K.

Thus r = f − P 0
hf and

||r|| = sup
v∈M\{0}

< r, v >

||v||M
= ||f − P 0

hf ||Lq(Ω) =

(

∑

K∈Th

η2(K)q

)1/q

.

We turn now, to the far more serious problem to bound the norm of R which has

been defined by equation (1.15). To do that we need the Helmholtz decomposition

of arbitrary vectorfields τ ∈ [Lq(Ω)]2 with estimates.
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Theorem 1.1. Let q ∈]1, +∞[. For an arbitrary vectorfield τ ∈ [Lq(Ω)]2 such that

div τ ∈ Lq(Ω), there exists a function z ∈ W 2,q(Ω) and a function Φ ∈ W 1,q(Ω)

such that:

τ = ∇ z + curl Φ (1.54)

||z||W 2,q(Ω) + ||Φ||W 1,q(Ω) . ||τ ||0,q,Ω + ||div τ ||0,q,Ω. (1.55)

Proof. Let D be a bounded domain of the plane, with a regular boundary and

containing Ω. Let us denote by (div τ )∼ the extension of div τ to D by 0 out of Ω.

Of course, (div τ )∼ ∈ Lq(D). In D, we consider the boundary value problem:






∆S = (div τ )∼ in D

S|∂D = 0.

(1.56)

This problem possesses one and only one solution in H1
0 (D). Moreover by theorem

2.4.2.5 of [7] p 124-125, the variational solution S ∈ W 2,q(D). It follows from the

closed graph theorem that also:

||S||W 2,q(D) . ||(div τ )∼||0,q,D = ||div τ ||0,q,Ω. (1.57)

Let us set z = S|Ω. Consequently, we have:

||z||W 2,q(Ω) . ||div τ ||0,q,Ω. (1.58)

By (1.56), we have that div (∇ z) = div τ . Let us set:

v = τ −∇ z. (1.59)

v is a divergence-free vectorfield in Ω, v ∈ [Lq(Ω)]2 and

||v ||0,q,Ω . ||τ ||0,q,Ω + ||div τ ||0,q,Ω (1.60)

by inequality (1.58). We now suppose that q ≥ 2 (the proof in the case 1 < q < 2

will be done later). This hypothesis implies that v ∈ [L2(Ω)]2. This allows us to

apply theorem I.3.1 p 37 of [8] which tells us that there exists one and only one

function Φ ∈ H1(Ω) ∩ L2
0(Ω) such that the divergence-free vectorfield v may be

written in the form

v = curl Φ. (1.61)

Obviously, |Φ|W 1,q(Ω) = ||v ||0,q,Ω as v1 = ∂Φ
∂x2

and v2 = − ∂Φ
∂x1

. Moreover by Sobolev’s

imbedding theorem and Poincaré’s inequality for functions in H1(Ω) of mean zero

[9]:

||Φ||0,q,Ω . ||Φ||H1(Ω) . |Φ|H1(Ω) . |Φ|W 1,q(Ω).

Putting these two facts together, it follows that:

||Φ||W 1,q(Ω) . ||v ||0,q,Ω. (1.62)
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Using inequalities (1.62) and (1.60), we obtain that

||Φ||W 1,q(Ω) . ||τ ||0,q,Ω + ||div τ ||0,q,Ω. (1.63)

Adding the two inequalities (1.58) and (1.63), we obtain (1.55). Also from the

equalities (1.59) and (1.61) follows (1.54).

We now turn to the case 1 < q < 2. The proof of this case requires the following

density lemma.

Lemma 1.4. Let us suppose that q ∈]1, 2[. The vectorial subspace {v ∈
[L2(Ω)]2; div v = 0} is dense in the vectorial space {v ∈ X; div v = 0} for the

norm of X.

Proof. By lemma 1.1.2 p. 16 of Mghazli’s thesis [10], we know that [D(Ω)]2 is

dense in X. Let v ∈ X such that div v = 0 be given. There exists a sequence of

vectorfields (v ∗
k)k≥1 ⊂ [D(Ω)]2 such that (v ∗

k)k≥1 tends to v in the sense of the

norm of X. Proceeding like in (1.56)-(1.58) but with the vectorfield v ∗
k instead of

τ in the right-hand side of the first equation of (1.56), we construct a sequence

(zk)k≥1 ⊂ W 2,q(Ω) (theorem 2.4.2.5 of [7] p 124-125 that we have used is also true

in the case 1 < q < 2) such that

||zk||W 2,q(Ω) . ||div v ∗
k||0,q,Ω (1.64)

and div (∇ zk) = div v ∗
k, ∀k ≥ 1. Let us set v k = v ∗

k − ∇ zk. v k is a square

integrable vectorfield and also divergence-free. Thus v k belongs to the vectorial

subspace {v ∈ [L2(Ω)]2; div v = 0}. It remains to prove that the sequence (v k)k≥1

tends to v in the sense of the norm of X.

||v k − v ||X ≤ ||v ∗
k − v ||X + ||∇ zk||X . (1.65)

v ∗
k tends to v in the sense of the norm of X. On the other hand by inequality

(1.64) :

||∇ zk||X . ||div v ∗
k||0,q,Ω (1.66)

and as div v ∗
k tends to div v = 0 in Lq(Ω) as k → +∞, it follows that ||∇ zk||X → 0

as k → +∞. From these two facts and inequality (1.65) it follows that ||v k−v ||X →
0 as k → +∞.

We now turn back to the proof of theorem 1.1 when 1 < q < 2.

(Proof of theorem 1.1 when 1 < q < 2.)

By the preceding lemma, there exists a sequence (v k)k≥1 of square-integrable

divergence-free vectorfields on Ω converging to the vectorfield v defined by (1.59) in

the sense of the norm of X. Applying theorem I.3.1 p. 37 of [8] to the vectorfield v k,

there exists one and only one function φk ∈ H1(Ω)∩L2
0(Ω) such that curl φk = v k.

As v k → v in [Lq(Ω)]2, the sequence (∇φk)k≥1 is a Cauchy sequence in [Lq(Ω)]2.
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Moreover, by a compacity argument similar to that used to prove lemma 1.8 in [11],

it is easily seen that the mapping:

W 1,q(Ω) → R+ : Ψ 7→
∣

∣

∣

∣

∣

∣

∣

∣

∂Ψ

∂x1

∣

∣

∣

∣

∣

∣

∣

∣

0,q,Ω

+

∣

∣

∣

∣

∣

∣

∣

∣

∂Ψ

∂x2

∣

∣

∣

∣

∣

∣

∣

∣

0,q,Ω

+

∣

∣

∣

∣

∫

Ω

Ψ dx

∣

∣

∣

∣

(1.67)

is an equivalent norm on W 1,q(Ω). In view of (1.67) and the fact that the functions

φk, k ≥ 1, are all of mean 0, it follows that (φk)k≥1 is a Cauchy sequence in

W 1,q(Ω). Let us set Φ = limk→+∞ φk in W 1,q(Ω). Φ is also of mean 0 and curl Φ =

v . By these facts and (1.67), it follows:

||Φ||W 1,q(Ω) . |Φ|W 1,q(Ω) = ||v ||0,q,Ω. (1.68)

Using (1.68), (1.60) and (1.58), we obtain inequality (1.55). By (1.59) and v =

curl Φ follows (1.54).

Lemma 1.5. For every τ ∈ X:

< R, τ > =
∑

K∈Th

(A (σ h),∇ z − πh∇ z)

+
∑

K∈Th

(curl (A (σ h)), Φ − Icl(Φ))

−
∑

E∈Eh

<
[[

A (σ h). t
]]

E
, Φ − Icl(Φ) >E (1.69)

where:

• (z, Φ) ∈ W 2,q(Ω)×W 1,q(Ω) denotes the Helmholtz decomposition of the vector-

field τ ∈ X,

• Icl(Φ) is the Clément interpolate of Φ (see [8] p. 109-111),

• σ h is defined by (1.14),

• Eh denotes the set of all edges of the triangulation Th,

•
[[

A (σ h)). t
]]

E
denotes the tangential jump of A (σ h),

• πh∇ z is the Raviart-Thomas interpolate of lowest degree of ∇ z.

Proof. By (1.15) for every τ ∈ X,

< R, τ >= (A (σ h), τ ) + (div τ , uh). (1.70)

By theorem 1.1, for every τ ∈ X, there exists (z, Φ) ∈ W 2,q(Ω) × W 1,q(Ω) such

that τ = ∇ z +curl Φ and the estimates (1.55) holds. Using this Helmholtz decom-

position, (1.70) may be rewritten:

< R, τ >= (A (σ h),∇ z) + (A (σ h), curl Φ) + (div (∇ z), uh). (1.71)

Now, ∇ z ∈ [W 1,q(Ω)]2 and thus its Raviart-Thomas interpolate of the lowest degree

is well defined (see (14) of [11]). Let us denote it πh(∇ z). We have:

(div πh(∇ z), vh) = (div (∇ z), vh),∀vh ∈ Mh.
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Thus (1.71) may be rewritten:

< R, τ >= (A (σ h),∇ z) + (A (σ h), curl Φ) + (div (πh(∇ z)), uh). (1.72)

Now by the first equation of the discrete formulation (1.14):

(A (σ h), τ h) + (uh, div τ h) = 0, ∀τ h ∈ Xh. (1.73)

Applying (1.73) with τ h = πh(∇ z) and τ h = curl (Icl(Φ)) successively, we obtain

the following equations:

(div (πh(∇ z)), uh) = −(A (σ h), πh(∇ z)) (1.74)

and

(A (σ h), curl (Icl(Φ))) = 0. (1.75)

Injecting the relations (1.74) and (1.75) in the right-hand side of (1.72), we obtain :

< R, τ > = (A (σ h),∇ z − πh(∇ z)) + (A (σ h), curl (Φ − Icl(Φ)))

= (A (σ h),∇ z − πh(∇ z)) +
∑

K∈Th

(A (σ h), curl (Φ − Icl(Φ)))

= (A (σ h),∇ z − πh(∇ z))

+
∑

K∈Th

{(curlA (σ h), Φ − Icl(Φ))− < A (σ h).t , Φ − Icl(Φ) >∂K}

(by Green’s formula by adapting (1.31) p. 19 of [10])

=
∑

K∈Th

(A (σ h),∇ z − πh(∇ z)) +
∑

K∈Th

(curlA (σ h), Φ − Icl(Φ))

−
∑

E∈Eh

<
[[

A (σ h). t
]]

E
, Φ − Icl(Φ) >E . (1.76)

Remark 1.2. The summation
∑

E∈Eh
<

[[

A (σ h). t
]]

E
, Φ − Icl(Φ) >E appearing

in the right-hand side of formula (1.76) contains the terms <
[[

A (σ h). t
]]

E
,Φ −

Icl(Φ) >E where E is an edge of the triangulation Th contained in the boundary

of Ω; in this case it must be understood that A (σ h). t is 0 outside of Ω. Note also

that
[[

A (σ ). t
]]

E
= 0 for every E ∈ Eh contained in ∂Ω.

We now define the error estimator η1:

Definition 1.1. For each K ∈ Th, we define η1(K) by:

η1(K)p = hp
K ||A (σ h)||p0,p,K + hp

K ||curl (A (σ h))||p0,p,K

+
∑

E⊂∂K

hE ||
[[

A (σ h).t
]]

E
||p0,p,E

and we define η1 by

η1 =

[

∑

K∈Th

η1(K)p

]1/p

.
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We are now in a position to bound ||R|| by a constant times the error estimator

η1.

Theorem 1.2.

||R|| . η1. (1.77)

Proof. It follows from lemma 1.5 that for every τ ∈ X:

| < R, τ > | .
∑

K∈Th

||A (σ h)||0,p,K ||∇ z − πh∇ z||0,q,K

+
∑

K∈Th

||curlA (σ h)||0,p,K||Φ − Icl(Φ)||0,q,K

+
∑

E∈Eh

||
[[

A (σ h). t
]]

E
||0,p,E ||Φ − Icl(Φ)||0,q,E . (1.78)

By (3.6) p. 72 of [1] (see also lemma 3.1 p. 125 of [6]):

||∇ z − πh∇ z||0,q,K . hK |∇ z|1,q,K . (1.79)

By lemma 3.1 p. 57 of [12]:

||Φ − Icl(Φ)||0,q,K . hK |Φ|1,q,ωK
(1.80)

and

||Φ − Icl(Φ)||0,q,E . h
1/p
E |Φ|1,q,ωE

. (1.81)

Let us recall that ωK denotes the union of K with all the triangles from the tri-

angulation Th adjacent to the triangle K and that ωE denotes the union of the at

most two triangles of Th admitting E as an edge. Using inequalities (1.79)-(1.81) to

bound the right-hand side of inequality (1.78), we obtain:

| < R, τ > | .
∑

K∈Th

hK ||A (σ h)||0,p,K |∇ z|1,q,K

+
∑

K∈Th

hK ||curlA (σ h)||0,p,K|Φ|1,q,ωK

+
∑

E∈Eh

h
1/p
E ||

[[

A (σ h).t
]]

E
||0,p,E |Φ|1,q,ωE

.

(

∑

K∈Th

hp
K ||A (σ h)||p0,p,K

)1/p

|∇ z|1,q,Ω

+

(

∑

K∈Th

hp
K ||curlA (σ h)||p0,p,K

)1/p

|Φ|1,q,Ω

+

(

∑

E∈Eh

hE ||
[[

A (σ h). t
]]

E
||p0,p,E

)1/p

|Φ|1,q,Ω
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and so:

| < R, τ > | .

{

∑

K∈Th

(

hp
K ||A (σ h)||p0,p,K + hp

K ||curlA (σ h)||p0,p,K

+
∑

E⊂∂K

hE ||
[[

A (σ h). t
]]

E
||p0,p,E

)}1/p
{

|∇ z|q1,q,Ω + |Φ|q1,q,Ω

}1/q

.

Using (1.55) and definition 1.1, we obtain:

| < R, τ > | .

(

∑

K∈Th

η1(K)p

)1/p

(||τ ||0,q,Ω + ||div τ ||0,q,Ω)

. η1 ||τ ||X (1.82)

This proves (1.77).

Remark 1.3. As already said in the introduction:

||r|| = ||f − P 0
hf ||0,q,Ω =

(

∑

K∈Th

η2(K)q

)1/q

,

where

η2(K) = ||f − P 0
hf ||0,q,K , ∀K ∈ Th. (1.83)

Thus ||r|| is immediately bounded in terms of the data. We may now turn to the

hybridization of the discretized mixed formulation (1.14).

2. Hybridization of the discrete mixed formulation

The construction of a basis of vectorfields in Xh presents the difficulty that for

a vectorfield τ h to be in Xh, its normal component must be continuous at each

interface between two adjacent triangles of the triangulation Th. To overcome this

difficulty, we introduce the enlarged space

X̃h =
{

τ̃ h ∈ [Lq(Ω)]2; τ̃ h|K ∈ RT0(K),∀K ∈ Th

}

(2.84)

and also the space of Lagrange multipliers

M̃h =
{

µh : ∂Th → R; µh|◦e is constant for every edge e of Th

and µh|◦e = 0 if the edge e ⊂ ∂Ω
}

. (2.85)

In (2.85), ∂Th denotes the “skeleton” of the triangulation Th, i.e. the union of all the

edges of the triangulation Th and for an edge e of Th,
◦
e denotes its “interior”, that
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is to say the edge e without its extremities. We are now in a position to introduce

the “hybrid formulation” of (1.14): find (σ̃ h, ũh, λh) ∈ X̃h × Mh × M̃h such that:























































∫

Ω

A (σ̃ h).τ̃ hdx +
∑

K∈Th

∫

K

ũhdiv τ̃ hdx

−
∑

K∈Th

∫

∂K

λh τ̃ h. n Kds = 0 ∀τ̃ h ∈ X̃h,

∑

K∈Th

∫

K

(div σ̃ h)vhdx +

∫

Ω

fvhdx = 0 ∀vh ∈ Mh,

∑

K∈Th

∫

∂K

µh σ̃ h. n Kds = 0 ∀µh ∈ M̃h.

(2.86)

In (2.86), n K denotes the unit exterior normal to the triangle K. Arguing as in [11]

p. 527, it is easily seen that if (σ̃ h, ũh, λh) ∈ X̃h × Mh × M̃h is a solution of the

hybrid formulation (2.86), then necessarily σ̃ h = σ h and ũh = uh. Now let us prove

that (2.86) possesses at most one solution. Thus, let (σ̃ h, ũh, λh) ∈ X̃h×Mh×M̃h be

a solution of (2.86). We know already that this implies that σ̃ h = σ h and ũh = uh.

Let us consider for τ̃ h ∈ X̃h the vectorfield τ̃ K,e ∈ X̃h such that for the edge e of

the triangle K ∈ Th, τ̃ K,e. n K equals 1 on e and 0 on the two other sides of the

triangle K, and τ̃ K,e is null on all other triangles K ′ 6= K of the triangulation Th.

Putting it into the first equation of (2.86), we obtain:

|e|λh|e =

∫

K

A (σ h). τ̃ K,edx +

∫

K

uh div τ̃ K,edx. (2.87)

Equation (2.87) shows that the Lagrange multiplier λh is also completely deter-

mined. Note that the existence of the above vectorfield τ̃ h is proved in lemma 2.2

of [11]. Thinking a bit to equation (2.87) shows that it proves also the existence of

a solution to the nonlinear system (2.86). Taking σ̃ h = σ h and ũh = uh, we can

define λh by equation (2.87) noting that these special vectorfields τ̃ K,e form a basis

of the space X̃h. Let us observe that if e has two adjacent triangles K1 and K2,

we may choose any in the right-hand side of equation (2.87) as it gives the same

result. This follows from equation (1.14)(i) with τ h equals to τ̃ K1,e on K1, −τ̃ K2,e

on K2 and 0 on the other triangles of Th. Note also that if the edge e is contained

in the boundary of Ω, then τ̃ K,e ∈ Xh and thus by the first equation of (1.14), the

right hand side of (2.87) is zero showing that λh|e = 0 in this case. We have thus

established the following result:

Proposition 2.1. The hybrid formulation (2.86) possesses one and only one solu-

tion (σ̃ h, ũh, λh) ∈ X̃h × Mh × M̃h. Moreover, σ̃ h = σ h and ũh = uh.

Numerically, we may try to solve the nonlinear problem (2.86) by a simple Picard

scheme also called the method of successive substitutions. Thus we construct a

sequence (σ m, um, λm) ∈ X̃h×Mh×M̃h by the following iterative algorithm: Given
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(σ m, um, λm) ∈ X̃h × Mh × M̃h, compute (σ m+1, um+1, λm+1) ∈ X̃h × Mh × M̃h

solution of the linear system






















































∫

Ω

|σ m|q−2σ m+1. τ̃ hdx +
∑

K∈Th

∫

K

um+1div τ̃ hdx

−
∑

K∈Th

∫

∂K

λm+1τ̃ h. n Kds = 0 ∀τ̃ h ∈ X̃h,

∑

K∈Th

∫

K

(div σ m+1)vhdx +

∫

Ω

fvhdx = 0 ∀vh ∈ Mh,

∑

K∈Th

∫

∂K

µh σ m+1. n Kds = 0 ∀µh ∈ M̃h.

(2.88)

It is not evident that the linear system (2.88) possesses one and only one solution

(σ m+1, um+1, λm+1) ∈ X̃h × Mh × M̃h. Let us observe that if (σ m+1, um+1, λm+1)

is a solution to (2.88), then a fortiori (σ m+1, um+1) ∈ Xh × Mh due to the third

equation of (2.88) and is solution of the following linear system:


















∫

Ω

|σ m|q−2σ m+1. τ hdx +

∫

Ω

um+1div τ hdx = 0 ∀τ h ∈ Xh,

∫

Ω

div σ m+1vhdx +

∫

Ω

fvhdx = 0 ∀vh ∈ Mh.

(2.89)

We first give a sufficient condition for the linear system (2.89) to have one and only

one solution.

Proposition 2.2. If for every triangle K of the triangulation Th, σ m
|K 6≡ 0,

then the linear system (2.89) possesses one and only one solution (σ m+1, um+1) ∈
Xh × Mh.

Proof. By corollary I.4.1 of [8] it suffices to prove that the bilinear form

a(., .) : Xh × Xh → R : (τ
′

h, τ
′′

h) 7→
∫

Ω

|σ m|q−2τ
′

h. τ
′′

hdx

is coercive on Vh = {τ h ∈ Xh;

∫

Ω

div τ hvhdx = 0,∀vh ∈ Mh}. One must in fact

check also that the bilinear form

b(., .) : Xh × Mh → R : (τ h, vh) 7→
∫

Ω

div τ hvhdx

satisfies the inf-sup condition but this results from proposition 3.1 of [1]. Let us

consider τ h ∈ Vh. As τ h|K ∈ RT0(K),∀K ∈ Th, it follows immediately from the

condition τ h ∈ Vh that τ h must be constant on each triangle K of the triangulation

Th. Thus for such a vectorfield, one has:

a(τ h, τ h) =

∫

Ω

|σ m|q−2|τ h|2dx =
∑

K∈Th

|τ h|K |2
∫

K

|σ m|q−2dx > 0.
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Due to our hypothesis on σ m, it follows that:

c = inf
K∈Th

1

|K|

∫

K

|σ m|q−2dx > 0.

Thus:

a(τ h, τ h) ≥ c





(

∑

K∈Th

|K| |τ h|K |2
)1/2





2

∼ ||τ h||2,

all norms being equivalent on finite dimensional vector spaces. This proves the

coercivity of the bilinear form a(., .) on Vh.

Now, it remains to prove that under the same condition on σ m, that the linear

system (2.88) possesses one and only one solution (σ m+1, um+1, λm+1) ∈ X̃h×Mh×
M̃h. This is the purpose of the following corollary.

Corollary 2.1. If for every triangle K of the triangulation Th, σ m
|K 6≡ 0, then the

linear system (2.88) possesses one and only one solution (σ m+1, um+1, λm+1) ∈
X̃h × Mh × M̃h.

Proof. We know already that the linear system (2.89) possesses one and only one

solution (σ m+1, um+1) ∈ Xh ×Mh. Now, we put that solution in system (2.88) and

define λm+1 by the first equation of (2.88). More precisely, we define λm+1
|e by:

|e|λm+1
|e =

∫

K

|σ m|q−2σ m+1. τ̃ K,edx +

∫

K

um+1div τ̃ K,edx, (2.90)

where K is an arbitrary adjacent triangle to the edge e and τ̃ K,e is the same

vectorfield that appears in formula (2.87). Let us note that if the edge e is contained

in the boundary of Ω, then τ̃ K,e ∈ Xh and thus the first equation of (2.89) implies

that λm+1
|e defined by (2.90) must be 0. Thus λm+1 ∈ M̃h which proves that the

linear system (2.88) possesses one and only one solution.

Definition 2.1. In the sequel, we will denote for a triangle K ∈ Th by x m
K the

barycenter of the probability measure of density
|σ m

|K |q−2

∫
K

|σ m
|K |q−2dx

with respect to

Lebesgue measure on R
2

restricted to K that is ([13] p. 146):

x m
K =

1
∫

K

|σ m
|K |q−2dx

∫

K

x |σ m(x )|q−2dx.

It is well defined for every K ∈ Th under the hypothesis of proposition 2.2 on

σ m.

Proposition 2.3. Under the hypothesis of proposition 2.2 on σ m, for every triangle

K of the triangulation Th we have:

(σ m+1
|K)(x ) =

∫

∂K
λm+1n Kds

∫

K
|σ m|q−2dx

−
∫

K
fdx

2|K| (x − x m
K) ∀x ∈ K, (2.91)
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where |K| denotes the area of the triangle K.

Proof. Let K be an arbitrary triangle of the triangulation Th. Putting in the first

equation of (2.88), any vector field τ̃ h constant on K and nul outside K, we obtain :
∫

K

|σ m
|K |q−2σ m+1

|Kdx =

∫

∂K

λm+1n Kds. (2.92)

Writing the unknown vectorfield σ m+1
|K in the form:

σ m+1
|K(x ) = a + c(x − x m

K) (2.93)

where a ∈ R
2
, c ∈ R and x m

K has been defined in definition (2.1), it follows from

equation (2.92):

a

∫

K

|σ m
|K |q−2dx =

∫

∂K

λm+1n Kds. (2.94)

Thus we have:

a =

∫

∂K

λm+1n Kds
∫

K
|σ m

|K |q−2dx
. (2.95)

By the second equation of (2.88):

div σ m+1
|K = − 1

|K|

∫

K

fdx. (2.96)

By (2.93), we have also

div σ m+1
|K = 2c (2.97)

From (2.93), (2.95), (2.96) and (2.97) follows our claim (2.91).

For um+1
|K , we have the following formula:

Proposition 2.4. Under the hypothesis of proposition 2.2 on σ m, for every triangle

K of the triangulation Th we have:

um+1
|K =

(
∫

K

|σ m
|K |q−2|x − x m

K |2dx

)

∫

K
fdx

4|K|2

+
1

2|K|

∫

∂K

λm+1(x − x m
K). n Kds.

(2.98)

Proof. Let us take for the vectorfield τ̃ h in the first equation of (2.88), the vec-

torfield equals to x − x m
K in the triangle K and to 0 outside of K. We obtain using

(2.91) and the fact that
∫

K
|σ m(x )|q−2(x − x m

K)dx = 0:

−
∫

K

|σ m|q−2(x )|x − x m
K |2dx .

1

2|K|

∫

K

fdx + 2|K|um+1
|K

=

∫

∂K

λm+1(x − x m
K). n Kds.
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From this last equation, (2.98) follows easily.

Remark 2.1. Equations (2.91) and (2.98) show that σ m+1
|K and um+1

|K are com-

pletely defined by the restriction of the Lagrange multiplier λm+1 to the boundary

of K. Thus, we are reduced to the determination of the Lagrange multiplier λm+1.

To obtain the linear system from which λm+1 is the solution, it suffices to express

that σ m+1 has its normal component continuous across each interior edge e of the

triangulation Th.

Proposition 2.5. The Lagrange multiplier λm+1 is the solution of the linear system

obtained by associating to each interior edge e of the triangulation the equation:

1
∫

K1

|σ m
K1

|q−2dx

[

|e|λm+1
|e − |d1|2 + |e|2 − |g1|2

2|e| λm+1
|d1

− |g1|2 + |e|2 − |d1|2
2|e| λm+1

|g1

]

+
1

∫

K2

|σ m
K2

|q−2dx

[

|e|λm+1
|e − |d2|2 + |e|2 − |g2|2

2|e| λm+1
|d2

− |g2|2 + |e|2 − |d2|2
2|e| λm+1

|g2

]

=

(

1

2|K1|

∫

K1

f(y)dy

)

(x − x m
K1

). n K1|e +

(

1

2|K2|

∫

K2

f(y)dy

)

(x − x m
K2

). n K2|e

(2.99)

In equation (2.99), K1 and K2 denote the two triangles of Th sharing in common

the edge e. d1 and g1 (resp. d2 and g2) denote the two other sides than e of the

triangle K1 (resp. K2) (for an arbitrary edge b of Th, |b| denotes its length). In

the right-hand side of equation (2.99), x denotes an arbitrary point of the edge e

(usually we will take its midpoint).

Proof. Before beginning really the proof, let us explain why x is an arbitrary point

of e in the right-hand side of (2.99). Let us take two arbitrary points x ′ and x ′′ on

e. Then

(x ′ − x m
Ki

). n Ki|e = (x ′′ − x m
Ki

). n Ki|e (2.100)

for i = 1, 2 as x ′ − x ′′ is orthogonal to n Ki|e. Now let us prove (2.99). To do that,

let us express that

σ m+1
|K1

. n K1|e + σ m+1
|K2

. n K2|e = 0

using formula (2.91). To alleviate the notations, we will write in the sequel n e
Ki

for

n Ki|e, (i = 1, 2). We obtain from (2.91):
∫

∂K1
λm+1n K1 . n

e
K1

ds
∫

K1

|σ m|q−2dx

+

∫

∂K2
λm+1 n K2 .n

e
K2

ds
∫

K2

|σ m|q−2dx

=

∫

K1

fdx

2|K1|
(x − x m

K1
). n e

K1
+

∫

K2

fdx

2|K2|
(x − x m

K2
). n e

K2
(2.101)
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for every x ∈ e; but due to (2.100) it suffices to express it for one x ∈ e. Decom-

posing each of the integral above on ∂Ki (i = 1, 2) as sums of integrals on each

side, we obtain:

1
∫

K1
|σ m|q−2dx

[

|e|λm+1
|e − |d1| cos α1λ

m+1
|d1

− |g1| cos β1λ
m+1
|g1

]

+
1

∫

K2
|σ m|q−2dx

[

|e|λm+1
|e − |d2| cos α2λ

m+1
|d2

− |g2| cos β2λ
m+1
|g2

]

=

∫

K1
fdx

2|K1|
(x − x m

K1
). n e

K1
+

∫

K2
fdx

2|K2|
(x − x m

K2
). n e

K2
, (2.102)

where αi (resp. βi) denotes the angle in the triangle Ki between the sides di and e

(resp. gi and e), (i = 1, 2). Using the law of cosines we have:

cos αi =
|di|2 + |e|2 − |gi|2

2|di||e|
and cos βi =

|gi|2 + |e|2 − |di|2
2|gi||e|

,

and replacing in (2.102) we obtain (2.99).

3. Numerical Experiments

The following experiments will underline and confirm our theoretial predictions.

These numerical tests consists in solving the mixed formulation of the p-Laplace

equation (0.1) for the value of f given by (0.7) with ε = 0.05 on the unit square Ω =

]−1/2, 1/2[2, using the Raviart-Thomas finite element of degree 0. The correponding

exact solution is given by (0.6) and displayed on Figure 1.

The computations are performed for p = 1.8 and p = 3.0, each of these two

values ensuring that f ∈ Lq(Ω), with 1
p + 1

q = 1. Firstly, with the knowledge of the

exact solution u given by (0.6), the order of convergence (function of p) is verified,

using theorem 3.2 of [1] for p = 1.8 and theorem 3.1 of [1] for p = 3.0 (one verifies

that (σ , u) ∈ W 1,q(Ω)2 × W 1,p(Ω) for p = 1.8 or p = 3.0). Secondly, the ratios

between the errors and the estimators are plotted, to verify the reliability of the

estimators. The numerical tests are performed using quasi-uniform meshes similar

to the one displayed on Figure 2, and characterized by the number of nodes n in

each direction of space. If we note h the diameter of any triangle and DoF the

number of degree of freedom associated to the mesh (i.e. the number of segments),

we have h =
√

2/(n − 1) and DoF = (n − 1)(3n − 1).

3.1. Order of convergence of the methods

Let us quantify how the numerical solution converges towards the exact one. To

this end, we plot the curves :

• ||σ h − σ ||0,q,Ω as a function of DoF (see Fig. 3),

• ||u − uh||0,p,Ω as a function of DoF (see Fig. 4).
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The predicted orders of convergence in h are given in [1], and summarized in table

1. The corresponding order of convergence in DoF are mentionned into brackets

(DoF = O(h−2)).

||σ h − σ ||0,q,Ω ||u − uh||0,p,Ω

p = 1.8
8

9

(

−4

9

)

1

(

−1

2

)

p = 3
3

4

(

−3

8

)

1

2

(

−1

4

)

Table 1. The predicted orders of convergence in h (and in DoF ).

For p = 1.8, the numerical results always give slightly better orders of conver-

gence asymptotically whatever the error considered. For p = 3.0, the good order of

convergence is asymptotically achieved for the error on σh, and a better order of

convergence than the one expected by the theory is obtained for the error on uh.

3.2. Reliability of the estimators

Proposition 1.5 proves that ||r|| = η2, and theorem 1.2 allows to bound ||R|| by a

constant times the error estimator η1. As a consequence, following proposition 1.3

(resp. proposition 1.4), we plot on figure 5 the ratio r1 (resp. r2) defined for p = 1.8

by :


























r1 =
||σ h − σ ||0,q,Ω

η
p/q
1 + η

2/q
2 + (η2η1)1/q

,

r2 =
||u − uh||0,p,Ω

η1 + η2 + η
p/2
1

.

Similarly, following proposition 1.2 (resp. corollary 1.1), we plot on figure 6 the ratio

r3 (resp. r4) defined for p = 3.0 by :























r3 =
||σ h − σ ||0,q,Ω

√

η2
1 + ηq

2 + η2η1

,

r4 =
||u − uh||0,p,Ω

η1 + (η2
1 + ηq

2 + η2η1)1/p
.

The meshes used are the same than the ones involved in part (3.1). We see that

whatever the ratio ri chosen (1 ≤ i ≤ 4), the ratio is asymptotically constant. In

other words, it appears that all these ratios are asymptotically independent of the

number of degrees of freedom DoF associated to the mesh. As a consequence, it

shows that the estimators are actually reliable.
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Remark 3.1. Our computations show that the effectivity index, which is equal

to 1/ri, 1 ≤ i ≤ 4, is very high for some of the examples. This fact is due to the

presence of unknown constants that enter into the calculation. Using recovery type

estimators, one can adjust these constants properly to match the predictions of the

residual and recovery estimators.

Remark 3.2. Computations have been performed with the use of the code Simula+

developed by the LAMAV laboratory (University of Valenciennes, France) and the

LPMM laboratory (ENSAM of Metz, France).
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Fig. 1. The exact solution u.

Fig. 2. Quasi-uniform mesh with n = 5.
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Fig. 3. ||σ h − σ ||0,q,Ω as a function of DoF : p = 1.8 (left) and p = 3.0 (right). The slope of the
dashed line corresponds to predicted results and the squared-composed line to computed results.
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Fig. 4. ||u − uh||0,p,Ω as a function of DoF : p = 1.8 (left) and p = 3.0 (right). The slope of the
dashed line corresponds to predicted results and the squared-composed line to computed results.
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Fig. 5. r1(left) and r2 (right) as a function of DoF for p = 1.8.
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Fig. 6. r3(left) and r4 (right) as a function of DoF for p = 3.0.


