
HAL Id: hal-00768642
https://hal.science/hal-00768642

Submitted on 22 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A posteriori error estimations of a coupled mixed and
standard Galerkin method for second order operators

Emmanuel Creusé, Serge Nicaise

To cite this version:
Emmanuel Creusé, Serge Nicaise. A posteriori error estimations of a coupled mixed and standard
Galerkin method for second order operators. Journal of Computational and Applied Mathematics,
2008, 213 (1), pp.35-55. �10.1016/j.cam.2006.12.027�. �hal-00768642�

https://hal.science/hal-00768642
https://hal.archives-ouvertes.fr


A posteriori error estimations of a coupled

mixed and standard Galerkin method for

second order operators
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Abstract

In this paper, we consider a discretization method proposed by Wieners and Wohlmuth
[26] (see also [16]) for second order operators, which is a coupling between a mixed
method in a sub-domain and a standard Galerkin method in the remaining part
of the domain. We perform an a posteriori error analysis of residual type of this
method, by combining some arguments from a posteriori error analysis of Galerkin
methods and mixed methods. The reliability and efficiency of the estimator are
proved. Some numerical tests are presented and confirm the theoretical error bounds.

Key words: A posteriori estimates, coupled method
PACS: 65M60, 65M12, 65M15

1 Introduction

Let us fix a bounded domain Ω of R2, with a polygonal boundary. For the sake
of simplicity we assume that Ω is simply connected. The case of a multiply
connected domain can be treated as in [12].

In this paper we consider the following second order problem: For f ∈ L2(Ω),
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let θ ∈ H1
0 (Ω) be the unique solution of

div (A∇θ) = −f in Ω, (1)

where the matrix A ∈ L∞(Ω,R2×2) is supposed to be symmetric and uniformly
positive definite.

The domain Ω is decomposed into two nonoverlapping polygonal subdomains
Ω1 and Ω2 such that Ω̄ = Ω̄1∪ Ω̄2. We also assume that ∂Ω2 ∩∂Ω is of positive
measure. We further denote by Γ the (relative) interior of ∂Ω1 ∩ ∂Ω2, the
interface between Ω1 and Ω2 (for further purposes, it is easier to assume that
Γ is open). On Ω1 a mixed formulation of problem (1) is introduced, while
on Ω2 a standard Galerkin method is used, see [26,16]. This means that we
introduce as new unknowns ξ = (A∇θ)|Ω1

, θ1 = θ|Ω1
and θ2 = θ|Ω2

. These
unknowns will be coupled through the interface by the conditions

θ1 = θ2, ξ · n = A∇θ2 · n on Γ,

where n is the unit normal vector along Γ that is directed from Ω1 to Ω2.

For shortness, we denote by (·, ·)i, i = 1, 2, the L2-inner product in Ωi, namely

(θ, χ)i =
∫

Ωi

θ(x)χ(x) dx, ∀θ, χ ∈ L2(Ωi).

Obviously we use the same notation for vector fields. Similarly we denote by
(·, ·)Γ, the L2-inner product in Γ.

The coupling between the mixed and standard formulations leads to the fol-
lowing saddle point problem [26,16]: Find u = (ξ, θ2) in X and p = θ1 in M
solutions of





a(u, v) + b(v, p) = (f, χ)2, ∀v = (η, χ) ∈ X,

b(u, q) = −(f, q)1, ∀v ∈M,
(2)

where

X :=H(div ,Ω1) ×H1
D(Ω2),

M :=L2(Ω1),

H(div ,Ω1) := {η ∈ [L2(Ω1)]
2 : div η ∈ L2(Ω1)},

H1
D(Ω2) := {χ ∈ H1(Ω2) : χ = 0 on ∂Ω ∩ ∂Ω2}.

The space X is endowed with the natural norm

‖(η, χ)‖2
X := ‖η‖2

L2(Ω1) + ‖div η‖2
L2(Ω1) + ‖∇χ‖2

L2(Ω2).
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Moreover the bilinear forms a and b are defined by

a(u, v) := (A−1ξ, η)1 + (A∇θ2,∇χ)2

− (η · n, θ2)Γ + (ξ · n, χ)Γ, ∀u = (ξ, θ2), v = (η, χ) ∈ X,

b(u, q) := (div ξ, q)1, ∀u = (ξ, θ2) ∈ X, q ∈M.

Since the bilinear form a is coercive on X and the so-called inf-sup condition
is satisfied (see section 2.1 of [16] or [26]), problem (2) has a unique solution
[24, p.16], which is clearly given by ξ = (A∇θ)|Ω1

, θ1 = θ|Ω1
and θ2 = θ|Ω2

,
when θ is the unique solution of (1).

Problem (2) is approximated in a (not necessarily conforming) finite element
space Xh ×Mh of X ×M based on triangulations T1 and T2 of the domains
Ω1 and Ω2 made of isotropic elements. Under appropriate properties described
below, the discrete problem has a unique discrete solution (uh, ph) ∈ Xh×Mh.
We then consider an efficient and reliable residual a posteriori error estimator
for the errors ǫ 1 = ξ−ξ

h
in the L2(Ω2)-norm, e = θ1−θ1h in the L2(Ω1)-norm

and e2 = ∇θ2 −∇hθ2h in the L2(Ω2)-norm.

A posteriori error estimations are highly recommended for problem (1) since
the solution presents corner singularities [10,11,13,17,21] or boundary layers
[18,19], that can be even difficult to describe explicitly (if A has large oscilla-
tions for instance). A priori error estimations can then be compromised since
they require the explicit knowledge of the singularities or boundary layers.

On one hand, a posteriori error estimators of standard Galerkin methods for
elliptic boundary value problems is in our days well understood (see for in-
stance [25] and the references cited there). The analysis of isotropic a posteriori
error estimators for the mixed finite element method were initiated in [2,4,1]
and definitively fixed in [22]. On the other hand, the coupling between mixed
and standard Galerkin methods can have some interests. Namely it might be
interesting for the coupling of different models and materials, for meshes con-
struction reasons (simpler domains can be easily meshed independently), and
finally the quantity A∇θ of physical interest could be required only on a part
of the domain (recall that by a mixed method this quantity is directly approxi-
mated and is then obtained without any postprocessing). Such a coupling were
initiated in [26] and its a priori error analysis were performed in [16]. But to
our knowledge, the a posteriori error analysis of this coupled method was not
done yet. Therefore our goal is to derive this a posteriori error analysis in a
quite large setting allowing to include standard mixed methods in Ω1 and (not
necessarily conforming) Galerkin methods in Ω2.

Since the meshes do not necessarily align at the interface, the resulting spaces
are necessarily nonconforming. Therefore our a posteriori error analysis com-
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bines some ideas from [9] developed for the a posteriori error analysis of non-
conforming Galerkin methods with the techniques from [4,22] for the a poste-
riori error analysis of mixed methods.

For the sake of simplicity we have restricted ourselves to the case of 2D prob-
lems and to the use of isotropic meshes. Combining the results from [7,22,8]
with our approach below, all presented results hold for 3D domains and for
anisotropic meshes (fulfilling standard assumptions from [15,22,8]).

The schedule of the paper is the following one: Section 2 recalls the discretiza-
tion of our problem and introduces some natural conditions on the finite el-
ement spaces. In section 3 we recall some interpolation error estimates for
Clément type interpolants. Since the meshes do not fit at the interface we pay
some attentions on the bubble functions along this interface. Moreover some
specific surjectivity results of the divergence operator are proved. The effi-
ciency and reliability of the error are established in section 4. Finally section
5 is devoted to numerical tests which confirm our theoretical analysis.

Let us finish this introduction with notation used in the whole paper: For
shortness the L2(D)-norm will be denoted by ‖ · ‖D. In the case D = Ω, the
index Ω will be dropped. The usual norm and seminorm of H1(D) are denoted
by ‖·‖1,D and | · |1,D, respectively. The notation u means that the quantity u is
a vector and ∇u means the matrix (∂jui)1≤i,j≤d (i being the index of row and
j the index of column). For a vector function u we denote by curl u = ∂1u2 −
∂2u1. On the other hand for a scalar function φ we write curl φ = (∂2φ,−∂1φ).
Finally, the notation a . b and a ∼ b means the existence of positive constants
C1 and C2 (which are independent of the mesh T and of the function under
consideration) such that a ≤ C2b and C1b ≤ a ≤ C2b, respectively.

2 Discretization of the problem

The domain Ωi, i = 1, 2 is discretized by a conforming mesh Ti, cf. [5]. All
elements are either triangles or rectangles. We assume that both triangulations
T1 and T2 are regular (or isotropic) but they do not need to fit at the interface
Γ. For convenience we denote by T = T1 ∪ T2, the mesh in the whole Ω.

An element will be denoted by T , Ti or T ′, its edges are denoted by E (sup-
posed to be open). The set of all edges included in Ωi, i = 1, 2 or belonging to
the boundary ∂Ω \ Γ of the triangulation Ti will be denoted by Ei. Clearly if
an edge E of an element T ∈ T1 is included into Γ, then E is not necessarily
an edge of an element T ′ of T2. Therefore the set EΓ is the set of intersection
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of such edges, namely

EΓ = {E1 ∩E2 : Ei is an edge of Ti ∈ Ti, i = 1, 2}.

The measure of an element or edge is denoted by |T | := meas2(T ) and |E| :=
meas1(E), respectively. As usual hT is the diameter of T and hE = |E| is the
diameter of E.

Let x denote a nodal point of Ti, i = 1, 2 (i.e. a vertex of an element of Ti),
and let NΩ̄i

be the set of nodes of the mesh Ti.

For an edge E of an element T , let n = (nx, ny)
⊤ be the outer normal vector.

Furthermore, for each edge E we fix one of the two normal vectors and denote
it by nE . We introduce additionally the tangent vector t = n⊥ := (−ny, nx)

⊤

such that it is oriented positively (with respect to T ). Similarly we set t E :=
n⊥

E .

The jump of some (scalar or vector valued) function v across an edge E at a
point y ∈ E is then defined as

[[v(y )]]
E

:=





lim
α→0+

v(y + αnE) − v(y − αnE) for an interior edge E,

v(y ) for an edge E ⊂ ∂Ωi ∩ ∂Ω.

Note that the sign of [[v]]E depends on the orientation of nE. However, terms
such as a gradient jump [[∇v nE ]]E are independent of this orientation.

Furthermore one requires local subdomains (also known as patches). If T ∈ T ,
let ωT be the union of all elements T ′ of T such that T ′ ∩ T is an edge of T
or of T ′. Similarly if E ∈ Ei (resp. x ∈ NΩ̄i

) let ωE (resp. ωx ) be the union of
elements of T having E as edge (resp. as node). Finally if E ∈ EΓ, then E is
included into an edge Ei of an element Ti of Ti, i = 1 and 2, and therefore we
set ωE = T1 ∪ T2.

2.1 Finite element spaces assumptions

The space H1
D(Ω2) is approximated by a (not necessarily conforming) finite

element space Vh but it is large enough to contain the space of piecewise P1

(or Q1) continuous functions on the triangulation T2. Namely if we set

PT = P1(T ) if T is a triangle,

PT = Q1(T ) if T is a rectangle,

5



then we set

S(Ω2, T2) := {vh ∈ C(Ω̄2) : vh|T ∈ PT , ∀T ∈ T2} ⊂ H1(Ω2). (3)

Our assumption on Vh is then

S(Ω2, T2) ∩H1
D(Ω2) ⊂ Vh. (4)

For a nonconforming space Vh we further assume that the following Crouzeix-
Raviart property holds (see [7]):

∫

E

[[vh]]E = 0, ∀vh ∈ Vh. (5)

These assumptions are quite weak and allows the use of standard conforming
element (like conforming piecewise Pk (or Qk) finite element spaces, k ≥ 1) or
standard nonconforming elements (like Crouzeix-Raviart elements [9,7,23]).

Note that the Crouzeix-Raviart property (5) directly implies that the discon-
tinuous H1-seminorm is a norm on Vh, namely

∀vh ∈ Vh : ‖∇hvh‖2
Ω2

= 0 ⇒ vh = 0, (6)

where ∇h is the broken gradient of vh:

(∇hvh)|T := ∇(vh|T ), ∀T ∈ T2.

Now the pair (H(div ,Ω1),M) involved in the mixed method in Ω1 is approx-
imated by a pair (X1h,Mh) that satisfies the next properties:

{q ∈ H(div ,Ω1) : q |T ∈ [P0(T )]d, ∀T ∈ T1} ⊂ X1h, (7)

X1h ⊂ {q ∈ H(div ,Ω1) : q |T ∈ [H1(T )]d, ∀T ∈ T1}, (8)

{v ∈ L2(Ω1) : v|K ∈ P0(K), ∀K ∈ T1} ⊂Mh, (9)

divX1h = Mh. (10)

We suppose that the commuting diagram property holds [3,4]: There exists
an interpolation operator Πh : W → X1h, where W = H(div ,Ω1) ∩ Ls(Ω1),
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with s > 2, such that the next diagram commutes

W
div→ M

Πh ↓ ↓ ρh

X1h
div→ Mh,

(11)

where ρh is the L2(Ω1)-orthogonal projection on Mh. This property implies in
particular that

div (Id− Πh)W ⊥Mh. (12)

This orthogonality holds for the L2(Ω1) inner product, and Id means the
identity operator.

We further assume that the interpolant satifies the global stability estimate

‖Πhq ‖Ω1
. ‖q ‖1,Ω1

, ∀q ∈ [H1(Ω1)]
2. (13)

It is well known (see e.g. Lemma 3.6 of [22]) that this assumption added to
(10) and (11) lead to the uniform discrete inf-sup condition.

Finally we assume that Πh satisfies the approximation property

∫

E

vh(q − Πhq ) · nE = 0, ∀q ∈W, vh ∈Mh, E ∈ E1 ∪ EΓ. (14)

Such properties are satisfied by standard elements, like the Raviart-Thomas
elements (in short RT), the Brezzi-Douglas-Marini elements (BDM), and the
Brezzi-Douglas-Fortin-Marini elements (BDFM).

For any element T ∈ T1, we recall in the next table the finite dimensional
spacesDk(T ) andMk(T ), where k ∈ N, for the RT, BDM and BDFM elements.

Name Element Mk(T ) Dk(T )

RT Triangle RTk := [Pk]
d + x P̃k Pk

RT Rectangle Pk+1,k × Pk,k+1 Qk

BDM Triangle [Pk+1]
d Pk

BDFM Triangle {q ∈ [Pk+1]
d : q · n ∈ Rk(∂T )} Pk
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Here Pk+1,k means the space of polynomials of degree k+1 in x1 and of degree

k in x2, P̃k means the space of homogeneous polynomials of degree k, while
Rk(∂T ) denotes the space of functions defined in ∂T which are polynomials
of degree at most k on each edge of T . With these sets we may define

Mh := {vh ∈M : vh|T ∈ Dk(T ), ∀T ∈ T1}, (15)

X1h := {p h ∈ H(div ,Ω1) : p h|T ∈Mk(T ), ∀T ∈ T1}. (16)

For these element pairs (X1h,Mh), the assumptions (10), (11), (13) and (14)
are checked in section III.3 of [3]; while (7), (8) and (9) clearly hold.

Our next upper error bound uses the following orthogonality property:

∫

E

θh(v − Πhv) · nE = 0, ∀v ∈ [H1(Ω1)]
2, θh ∈ Vh, E ∈ EΓ. (17)

This general assumption is made if Γ is not “smooth”, and can be avoided in
some particular cases (see subsection 3.3 below). Clearly the assumption (17)
holds if Vh is made of piecewise P1 (or Q1) elements and X1h is made of RT1

(or BDM1 or BDFM1) elements.

Finally the approximation space of X is defined by

Xh = X1h × Vh,

which is a (not necessarily conforming) approximation of X.

2.2 Discrete formulation

The discrete problem associated with (2) is to find (uh, ph) ∈ Xh ×Mh such
that





ah(uh, vh) + b(vh, ph) = (f, χh)2, ∀vh ∈ Xh,

b(uh, qh) = −(f, qh)1, ∀qh ∈Mh,
(18)

where

ah(uh, vh) := (A−1ξ
h
, ηh)1 + (A∇hθ2h,∇hχh)2

− (ηh · n, θ2h)Γ + (ξ
h
· n, χh)Γ, ∀uh = (ξ

h
, θ2h), vh = (ηh, χh) ∈ Xh.
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Since ah is coercive on Xh (due to (6)) and since the discrete inf-sup condition
holds, this problem has a unique solution.

Let us recall that the errors are defined by

E := u− uh = (ξ − ξ
h
, θ2 − θ2h), e := θ1 − θ1h = p− ph.

Therefore by (2) we directly get the defect equations:





ah(E, v) + b(v, e) = (f, χ)2 − ah(uh, v) − b(v, ph), ∀v = (η, χ) ∈ X,

b(E, q) = −(f, q)1 − b(uh, q), ∀q ∈M.
(19)

In particular taking v = vh ∈ X ∩ Xh and q = qh ∈ Mh, owing to (18) we
obtain the Galerkin orthogonality relations

ah(E, vh) + b(vh, e) = 0, ∀vh ∈ Xh ∩X, (20)

b(E, qh) = 0, ∀qh ∈Mh. (21)

For further purposes, we introduce the error ǫ defined by

ǫ =






ξ − ξ
h

in Ω1,

A(∇θ2 −∇hθ2h) in Ω2.

This expression may be understood as the error on the gradient of θ. Its
introduction is the key point of our analysis.

3 Analytical tools

3.1 Bubble functions, extension operators, and inverse inequalities

For the analysis of the lower bound we need to use some bubble functions
and extension operators that satisfy certain properties. A special attention
will be paid for the edges along the interface Γ since there the meshes do not
fit together (or the full mesh is nonconforming in a neighbourhood of Γ). For
that reason, we require the meshes to have the same size along Γ, namely

∀T1 ∈ T1, T2 ∈ T2 : T1 ∩ T2 = E ∈ EΓ then |E| ∼ hT1
∼ hT2

. (22)
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We need two types of bubble functions, namely bT and bE associated with an
element T and an edge E, respectively. For a triangle T , denoting by λaT

i
,

i = 1, · · · , 3, the barycentric coordinates of T and by aE,T
i , i = 1, 2 the vertices

of the edge E ⊂ ∂T we recall that

bT = 9
3∏

i=1

λaT
i

and bE,T = 4
2∏

i=1

λaE,T

i
.

Similarly for a rectangle T and an edge E of T , bT is the unique element in
Q2(T ) such that

bT = 0 on ∂T,

and equal to 1 at the center of gravity of T ; while the function bE,T is the
unique element in Q2(T ) such that

bE,T = 0 on ∂T \ E,

and equal to 1 at the center of gravity of E.

For an edge E ∈ Ei, i = 1 or 2, the bubble function bE is defined on ωE by

bE|T = bE,T on T ⊂ ωE.

One recalls that

bT = 0 on ∂T, bE = 0 on ∂ωE , ‖bT‖∞,T = ‖bE‖∞,ωE
= 1.

If an edge E ′ ∈ EΓ with E ′ ⊂ T ∈ Ti, i = 1 or 2, is not a full edge of T , then
its associated bubble function bE′,T has to be modified (compare with section
4.3 of [8]). Indeed in that case, we introduce an artificial element T ′ such that
T ′ ⊂ T , E ′ is a full edge of T ′ and that satisfies

|T ′| ∼ |T |, hT . hT ′. (23)

If T is a triangle, then T ′ is the triangle obtained by joining E ′ to the vertex of
T opposite to the edge E of T containing E ′ (see Figure 1). If T is a rectangle,
then T ′ is the rectangle defined by T ′ = E ′ × I, when T = E× I, E being the
edge E of T containing E ′ (see Figure 2). Recalling that our mesh assumption
(22) means that |E ′| ∼ |E|, we directly get the properties (23).

With the help of this artificial element, we define bE′,T as follows:

bE′,T =





bE′,T ′ on T ′,

0 on T \ T ′.
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E ′

T ′

Fig. 1. Definition of T ′ for a triangle T .

E ′T ′

Fig. 2. Definition of T ′ for a rectangle T .

We finally define bE on ωE as before. Remark that the builded function bE
belongs to H1

0 (ωE).

For an edge Ê of the reference element T̂ included into the x̂-axis, the extension
Fext(v̂Ê) of v̂Ê ∈ C(Ê) to T̂ is defined by Fext(v̂Ê)(x̂, ŷ) = v̂Ê(x̂). For an edge
E ∈ Ei, i = 1 or 2, which is an edge of an element T ∈ Ti and vE ∈ C(Ē),
Fext(vE) is obtained using the affine mapping that sends T̂ to T and Ê to
E. For E ∈ EΓ, we proceed similarly by using the artificial element T ′ and
extension by zero outside T ′.

Now we may recall the so-called inverse inequalities that are proved using
classical scaling techniques (cf. [25] for the standard case and Lemma 4.9 of
[8] for the edges of Γ).

Lemma 3.1 (Inverse inequalities) Assume that (22) holds. Let T ∈ Ti and
E ∈ Ei ∪ EΓ, i = 1 or 2. Let vT ∈ Pk0

(T ) and vE ∈ Pk1
(E), for some nonneg-

ative integers k0 and k1. Then the following inequalities hold, the inequality
constants depending on the polynomial degree k0 or k1 but not on T , E or vT ,
vE.

‖vT b
1/2
T ‖T ∼‖vT‖T , (24)

‖∇(vT bT )‖T .h−1
T ‖vT‖T , (25)

‖vEb
1/2
E ‖E ∼‖vE‖E , (26)

‖Fext(vE)bE‖ωE
.h

1/2
E ‖vE‖E, (27)

‖∇(Fext(vE)bE)‖ωE
.h

−1/2
E ‖vE‖E . (28)
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3.2 Clément interpolation

For our analysis we need some interpolation operators that map a function
from H1(Ω2) to the usual space S(Ω2, T2). Hence Lagrange interpolation is
unsuitable, but Clément like interpolant is more appropriate.

Recall that the nodal basis function ϕx ∈ S(Ω2, T2) associated with a node x
is uniquely determined by the condition

ϕx (y ) = δx ,y ∀y ∈ NΩ̄2
.

Next, the Clément interpolation operator will be defined via the basis functions
ϕx ∈ S(Ω2, T2).

Definition 3.2 (Clément interpolation operator) We define the Clément
interpolation operator I

Cl
: H1(Ω2) → S(Ω2, T2) by

I
Cl
v :=

∑

x∈N
Ω̄2

1

|ωx |




∫

ωx

v


 ϕx .

Finally we may state the interpolation estimates.

Lemma 3.3 (Clément interpolation estimates) For any v ∈ H1(Ω2) and
any T ∈ T2 we have

‖v − I
Cl
v‖T .hT‖∇v‖ωT

, (29)

‖v − I
Cl
v‖E .h

1/2
T ‖∇v‖T , ∀E edge of T. (30)

Proof: The proof of the estimates (29) and (30) is given in [6] and simply use
some scaling arguments.

Note that if v ∈ H1
D(Ω2), then I

Cl
v does no more satisfy the Dirichlet boundary

condition on ∂Ω2∩∂Ω. Therefore we define another Clément interpolant I0
Cl
z in

order to satisfy this boundary condition. Namely I0
Cl

: H1
D(Ω2) → S(Ω2, T2) ∩

H1
D(Ω2) is defined by

I0
Cl
v :=

∑

x∈NΩ2∪Γ

1

|ωx |




∫

ωx

v


 ϕx ,

where NΩ2∪Γ is the set of nodes in Ω2 and on Γ. Clearly the estimates from
Lemma 3.3 remain valid for this second Clément interpolation operator.
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Obviously for a function inH1(Ω1) we can define its Clément interpolant based
on the triangulation T1 and similar results hold.

Thanks to the assumption (9) the same proof shows that the projection oper-
ator ρh on Mh satisfies an estimate like (29), namely we have the

Lemma 3.4 For all v ∈ H1(Ω1) we have

‖v − ρhv‖T . hT‖∇v‖T , ∀T ∈ T1. (31)

3.3 Surjectivity of the divergence operator

Here we focus on the surjectivity of the divergence operator from [H1(Ω)]2 to
L2(Ω1). First we consider the general case (proved in Lemma 3.5 of [22]) and
then consider a particular case.

Lemma 3.5 Let g be an arbitrary function in L2(Ω1), then there exists v ∈
[H1(Ω)]2 such that

div v = g in Ω1, (32)

div v = 0 in Ω2, (33)

‖v‖1,Ω . ‖g‖Ω1
. (34)

Proof: We follow the proof of Lemma 3.5 of [22] but slightly adapted in order
to guarantee (33). Consider a domain D with a smooth boundary such that
Ω̄ ⊂ D. We extend g by zero outside Ω1 to get g̃ in L2(D). Let ψ ∈ H1

0 (D) be
the unique solution of

∆ψ = g̃ in D.

As g̃ ∈ L2(D) and D has a smooth boundary, ψ belongs to H2(D) with the
estimate

‖ψ‖2,D . ‖g̃‖D = ‖g‖. (35)

Therefore v defined in Ω by

v = ∇ψ in Ω

belongs to [H1(Ω)]2 and satisfies (32), (33) as well as (34) as a consequence of
(35).

This lemma does not take into account the smoothness of Ω1 and therefore
no boundary conditions on v are imposed on the boundary of Ω1. For further
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purposes, let us look at the case when Ω1 is convex near Γ (convex in the
following sense) :

Lemma 3.6 Assume that Ω1 is convex near Γ in the sense that there exists a
convex domain D of R2 such that Ω̄1 ⊂ D and Γ ⊂ ∂D. Let g be an arbitrary
function in L2(Ω1), then there exists v ∈ [H1(Ω1)]

2 satisfying (32), (34) and
the boundary condition

v · n = 0 on Γ. (36)

Proof: Fix a domain D as in the statement of the Lemma. We extend g by a
constant outside Ω to get g̃ in L2(D) with a zero mean, i.e.,

∫

D

g̃ = 0.

Let ψ ∈ H1(D) satisfy
∫
D ψ = 0 and be the unique solution of the Neumann

problem

∆ψ = g̃ in D,
∂ψ

∂n
= 0 on ∂D.

As g̃ ∈ L2(D) and D is convex, ψ belongs to H2(D) with the estimate (see
[20] or Theorems 3.2.4.1 and 3.2.4.2 of [14])

‖ψ‖2,D . ‖g̃‖D . ‖g‖Ω1
. (37)

Therefore v defined in Ω1 by

v = ∇ψ in Ω1

belongs to [H1(Ω1)]
2 and satisfies all requested properties.

Corollary 3.7 Let the assumption of Lemma 3.6 be satisfied, and assume
that X1h is made of RTk, k ≥ 0 (or BDMk or BDFMk) elements. Then the
interpolant Πhv of the function v from Lemma 3.6 satisfies

Πhv · n = 0 on Γ.

Consequently the identity (17) holds for this function v.
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4 Error estimators

4.1 Residual error estimators

The exact element residual RT is defined as follows:

RT = (f + div ξ
h
)|T = (f − ρhf)|T if T ∈ T1,

RT = (f + divA∇hθ2h)|T if T ∈ T2.

From the first expression we see that for T ∈ T1, the exact element residual
RT is already an approximation term. For the sake of simplicity if T ∈ T2,
we do not replace the exact element residual RT by an approximate element
residual rT . Nevertheless our analysis below could be made in that case as
well.

For ξ
h
∈ X1,h and θ2h ∈ Vh we define the tangential and normal jumps across

an edge E by

JE,t :=






[[A−1ξ
h
· t E ]]

E
if E ∈ E1,

[[∇hθ2h · t E]]E if E ∈ E2,

(∇hθ2h − A−1ξ
h
) · t E if E ∈ EΓ,

JE,n :=






0 if E ∈ E2 ∩ ∂Ω,
[[A∇hθ2h · nE]]E if E ∈ E2 \ ∂Ω,
(A∇hθ2h − ξ

h
) · nE if E ∈ EΓ.

Definition 4.1 (Residual error estimator) For any T ∈ T1, the local resid-
ual error estimator is defined by

η2
T :=h2

T‖curl (A−1ξ
h
)‖2

T

+ h2
T min

qh∈Mh

‖A−1ξ
h
−∇qh‖2

T +
∑

E⊂∂T

hE‖JE,t‖2
E.

On the other hand for any T ∈ T2, the local residual error estimator is defined
by
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η2
T := h2

T‖RT‖2
T +

∑

E⊂∂T

hE(‖JE,t‖2
E + ‖JE,n‖2

E).

The global residual error estimator is simply

η2 :=
∑

T∈T

η2
T .

Furthermore the local and global approximation terms are denoted by

ζT = hT‖f − ρhf‖T , ∀T ∈ T1, ζ2 =
∑

T∈T1

ζ2
T .

If for all T ∈ T2 an approximate element residual rT is used, then

ζT = hT‖rT − RT‖T , ∀T ∈ T2,

and the global approximation term should be defined by

ζ2 =
∑

T∈T

ζ2
T .

4.2 Proof of the upper error bound

The use of Lemma 3.5 allows to prove the following error bound on e = θ1−θ1h.

Lemma 4.2 The next estimate holds:

‖θ1 − θ1h‖Ω1
. ‖A−1(ξ − ξ

h
)‖Ω1

+ ‖∇θ2 −∇hθ2h‖Ω2
+ η. (38)

Proof: Owing to Lemma 3.5 there exists a solution v ∈ [H1(Ω)]2 of (32) with
g = e and that satisfies (33) and (34). By (32) we may write

‖e‖2
Ω1

=
∫

Ω1

(θ1 − θ1h)div v.

By Green’s formula and the fact that ∇θ1 = A−1ξ (recall that θ1 = 0 on
∂Ω1 \ Γ) we get

‖e‖2
Ω1

= −
∫

Ω1

(A−1ξ) · v +
∫

Γ

θ1v · n−
∫

Ω1

θ1hdiv v.

Now using the commuting property (12) we obtain

‖e‖2
Ω1

= −
∫

Ω1

(A−1ξ) · v +
∫

Γ

θ1v · n−
∫

Ω1

θ1hdiv Πhv.
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The discrete mixed formulation (18) with vh = (Πhv, 0) then leads to

‖e‖2
Ω1

=−
∫

Ω1

(A−1(ξ − ξ
h
)) · v −

∫

Ω1

(A−1ξ
h
) · (v − Πhv)

+
∫

Γ

(θ1v · n− θ2hΠhv · n).

Green’s formula on each element and properties (12) and (14) imply that

∑

T∈T1

∫

T

∇qh · (v − Πhv) = 0, ∀qh ∈Mh.

Therefore, we have

‖e‖2
Ω1

=−
∫

Ω1

(A−1(ξ − ξ
h
)) · v

−
∑

T∈T1

∫

T

(A−1ξ
h
−∇qh) · (v − Πhv)

+
∫

Γ

(θ1v · n− θ2hΠhv · n), ∀qh ∈Mh.

As θ1 = θ2 on Γ and recalling the property (17), namely

∫

Γ

θ2h(v − Πhv) · n = 0,

we arrive at

‖e‖2
Ω1

=−
∫

Ω1

(A−1(ξ − ξ
h
)) · v (39)

−
∑

T∈T1

∫

T

(A−1ξ
h
−∇qh) · (v − Πhv)

+
∫

Γ

(θ2 − θ2h)v · n, ∀qh ∈Mh.

We now transform the last term of this right-hand side. Indeed, elementwise
integration by parts and the property (33) yield

∫

Γ

(θ2 − θ2h)v · n=
∫

Ω2

∇h(θ2 − θ2h) · v
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−
∑

E∈E2

∫

E

[[θ2 − θ2h]]Ev · nE .

Since θ2 is “continuous” through the interior edges of Ω2 and using the Crouzeix-
Raviart property (5), we obtain

∫

Γ

(θ2 − θ2h)v · n=
∫

Ω2

∇h(θ2 − θ2h) · v

+
∑

E∈E2

∫

E

[[θ2h]]E(v −MEv) · nE,

where MEv = |E|−1
∫
E v is the mean of v. Inserting this identity in (39) we

arrive at

‖e‖2
Ω1

=−
∫

Ω1

(A−1(ξ − ξ
h
)) · v

−
∑

T∈T1

∫

T

(A−1ξ
h
−∇qh) · (v − Πhv)

+
∫

Ω2

∇h(θ2 − θ2h) · v

+
∑

E∈E2

∫

E

[[θ2h]]E(v −MEv) · nE , ∀qh ∈Mh.

Now Cauchy-Schwarz’s inequality leads to

‖e‖2
Ω1

≤‖A−1(ξ − ξ
h
)‖Ω1

‖v‖Ω1
+ ‖∇h(θ2 − θ2h)‖Ω2

‖v‖Ω2

+
∑

T∈T1

‖A−1ξ
h
−∇qh‖T‖v − Πhv‖T

+
∑

E∈E2

‖[[θ2h]]E‖E‖v −MEv‖E , ∀qh ∈ Mh.

Scaling arguments yield

‖v − Πhv‖T . hT‖∇v‖ωT
,

‖v −MEv‖E . h
1/2
E ‖∇v‖TE

, ∀E ∈ E2,

where TE is one triangle of T2 having E as edge. In the same manner due to
(5), we have

‖[[θ2h]]E‖E . hE‖[[∇hθ2h · t E ]]E‖E, ∀E ∈ E2.

These three estimates in the previous one allow to obtain
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‖e‖2
Ω1

.
(
‖A−1(ξ − ξ

h
)‖Ω1

+ ‖∇θ2 −∇hθ2h‖Ω2

+ (
∑

T∈T1

h2
T‖A−1ξ

h
−∇qh‖2

T )1/2 + (
∑

E∈E2

h3
E‖[[∇hθ2h · t E ]]E‖2

E)1/2
)
‖v‖1,Ω,

for any qh ∈Mh. The conclusion follows from the estimate (34).

From the above proof and Corollary 3.7 we see that the assumption (17) can
be avoided if Ω1 is convex near Γ and if the space X1h is well chosen.

It remains to estimate the error on ǫ 1 and on e2. These estimates are obtained
using a Helmholtz like decomposition of the error ǫ .

Lemma 4.3 There exist z ∈ H1
0(Ω) and β ∈ H1(Ω) such that

ǫ = A∇z + curl β, (40)

with the estimates

|z|1,Ω . ‖ǫ ‖, (41)

|β|1,Ω . ‖ǫ ‖. (42)

Proof: First we consider z ∈ H1
0 (Ω) as the unique solution of div (A∇z) =

div ǫ , i.e., solution of
∫

Ω

(A∇z) · ∇w =
∫

Ω

ǫ · ∇w, ∀w ∈ H1
0 (Ω),

which clearly satisfies (41). Secondly we remark that ǫ − A∇z is divergence
free so by Theorem I.3.1 of [13], there exists β ∈ H1(Ω) such that

curl β = ǫ − A∇z

with the estimate
|β|1,Ω . ‖ǫ − A∇z‖,

which leads to (42) thanks to (41).

Lemma 4.4 The next estimate holds

‖ǫ ‖ . η + ζ. (43)

Proof: By (40) we may write
∫

Ω

(A−1ǫ ) · ǫ =
∫

Ω

ǫ · ∇z +
∫

Ω

ǫ · A−1curl β. (44)
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We now estimate separately the two terms of this right-hand side. For the first
one, applying Green’s formula in Ω1 and on each triangle T of Ω2, we get

∫

Ω

ǫ · ∇z=−
∫

Ω1

zdiv (ξ − ξ
h
) −

∫

Γ

ξ
h
· nz (45)

−
∑

T∈T2

∫

T

zdivA∇(θ2 − θ2h)

−
∑

E∈E2

∫

E

[[A∇hθ2h · n]]Ez

+
∑

E∈EΓ

∫

E

A∇hθ2h · nz.

On the other hand the first identity of (18) with vh = (0, I0
Cl
z) leads to

(A∇hθ2h,∇I0
Cl
z)2 +

∫

Γ

ξ
h
· nI0

Cl
z = (f, I0

Cl
z)2.

Applying elementwise Green’s formula we then obtain

−
∑

T∈T2

∫

T

(f + divA∇θ2h)I
0
Cl
z

+
∑

E∈E2

∫

E

[[A∇hθ2h · n]]EI0
Cl
z

+
∑

E∈EΓ

∫

E

(ξ
h
−A∇hθ2h) · nI0

Cl
z = 0.

Inserting this identity in (45), we arrive at

∫

Ω

ǫ · ∇z=
∫

Ω1

z(f + div ξ
h
)

+
∑

T∈T2

∫

T

(f + divA∇θ2h)(z − I0
Cl
z)

−
∑

E∈E2

∫

E

[[A∇hθ2h · n]]E(z − I0
Cl
z)

−
∑

E∈EΓ

∫

E

(ξ
h
−A∇hθ2h) · n(z − I0

Cl
z).

Finally we remark that the second identity of (18) means that

div ξ
h

= −ρhf,
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and therefore the above identity becomes (recalling that z− I0
Cl
z is equal to 0

on ∂Ω)

∫

Ω

ǫ · ∇z=
∫

Ω1

(z − ρhz)(f + div ξ
h
)

+
∑

T∈T2

∫

T

(f + divA∇θ2h)(z − I0
Cl
z)

−
∑

E∈E2\∂Ω

∫

E

[[A∇hθ2h · n]]E(z − I0
Cl
z)

−
∑

E∈EΓ

∫

E

(ξ
h
−A∇hθ2h) · n(z − I0

Cl
z).

Continuous and discrete Cauchy-Schwarz’s inequalities then yield

∣∣∣∣∣∣

∫

Ω

ǫ · ∇z
∣∣∣∣∣∣
.




∑

T∈T1

h−2
T ‖z − ρhz‖2

T




1

2




∑

T∈T1

h2
T‖f + div ξ

h
‖2

T




1

2

(46)

+




∑

T∈T2

h−2
T ‖z − I0

Cl
z‖2

T





1

2




∑

T∈T2

h2
T‖f + divA∇θ2h‖2

T





1

2

+




∑

E∈E2

h−1
E ‖z − I0

Cl
z‖2

E





1

2




∑

E∈E2\∂Ω

hE‖[[A∇hθ2h · n]]E‖2
E





1

2

+




∑

E∈EΓ

h−1
E ‖z − I0

Cl
z‖2

E




1

2




∑

E∈EΓ

hE‖(ξh
− A∇hθ2h) · n‖2

E




1

2

.

Lemmas 3.3 and 3.4 and the estimate (41) finally lead to

∣∣∣∣∣∣

∫

Ω

ǫ · ∇z
∣∣∣∣∣∣
. (η + ζ)‖ǫ ‖. (47)

For the second term of the right-hand side of (44) we first apply the Galerkin
orthogonality relation (20) with vh = (curl I

Cl
β, 0) ∈ Xh ∩X, to see that

(A−1(ξ − ξ
h
), curl I

Cl
β)1 −

∫

Γ

curl I
Cl
β · n(θ2 − θ2h) = 0. (48)

On the other hand applying Green’s formula in each element T of Ω2, we have
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∫

Ω2

∇h(θ2 − θ2h) · curl I
Cl
β=−

∫

Γ

curl I
Cl
β · n(θ2 − θ2h)

+
∑

E∈E2

∫

E

curl I
Cl
β · n[[θ2h]]E .

Due to the Crouzeix-Raviart property (5), this second term is zero and there-
fore

∫

Ω2

∇h(θ2 − θ2h) · curl I
Cl
β = −

∫

Γ

curl I
Cl
β · n(θ2 − θ2h). (49)

The two identities (48) and (49) imply that

∫

Ω

ǫ · A−1curl I
Cl
β = 0,

and therefore we may write

∫

Ω

ǫ · A−1curl β =
∫

Ω

ǫ · A−1curl (β − I
Cl
β).

Splitting the integral and using the definition of ǫ , we see that

∫

Ω

ǫ · A−1curl β =
∫

Ω

∇θ · curl (β − I
Cl
β) (50)

−
∫

Ω1

A−1ξ
h
· curl (β − I

Cl
β) −

∫

Ω2

∇hθ2h · curl (β − I
Cl
β).

For the first term of this right-hand side, Green’s formula in Ω directly yields

∫

Ω

∇θ · curl (β − I
Cl
β) = 0,

reminding that θ = 0 on ∂Ω. For the second and third terms applying Green’s
formula on each element T we get

∫

Ω1

A−1ξ
h
· curl (β − I

Cl
β) +

∫

Ω2

∇hθ2h · curl (β − I
Cl
β) =

∑

T∈T1

∫

T

curl (A−1ξ
h
) · (β − I

Cl
β)

−
∑

E∈E1∪E2∪EΓ

∫

E

JE,t · (β − I
Cl
β).

Continuous and discrete Cauchy-Schwarz’s inequalities then yield

22



∣∣∣∣∣∣

∫

Ω

ǫ · A−1curl β

∣∣∣∣∣∣
≤




∑

T∈T1

h2
T‖curl (A−1ξ

h
)‖2

T




1/2 


∑

T∈T1

h−2
T ‖β − I

Cl
β‖2

T




1/2

+




∑

E∈E1∪E2∪EΓ

hE‖JE,t‖2
E




1/2 


∑

E∈E1∪E2∪EΓ

h−1
E ‖β − I

Cl
β‖2

E




1/2

.

By Lemma 3.3 we obtain
∣∣∣∣∣∣

∫

Ω

ǫ · A−1curl β

∣∣∣∣∣∣
. η‖∇β‖.

According to (42) we arrive at the estimate

∣∣∣∣∣∣

∫

Ω

ǫ ·A−1curl β

∣∣∣∣∣∣
. η‖ǫ ‖. (51)

The conclusion directly follows from the identity (44) and the estimates (47)
and (51).

Using the two above Lemmas we have obtained the

Theorem 4.5 (Upper error bound) The error is bounded globally from
above by

‖θ1 − θ1h‖Ω1
+ ‖A∇θ1 − ξ

h
‖Ω1

+ ‖∇θ2 −∇hθ2h‖Ω2
. η + ζ. (52)

4.3 Proof of the lower error bound

The main point is the next error equation (compare with Lemma 3.1 of [9]).

Lemma 4.6 For all w ∈ H1
0 (Ω) and ϕ ∈ H1(Ω), we have

∫

Ω

A−1ǫ · (A∇w + curl ϕ) =
∑

T∈T

∫

T

RTw

−
∑

T∈T1

∫

T

curl (A−1ξ
h
)ϕ

−
∑

E∈E1∪E2∪EΓ

∫

E

JE,tϕ−
∑

E∈E2∪EΓ

∫

E

JE,nw.

Proof: Use Green’s formula on each element T of Ti, i = 1, 2.
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Combining some arguments from [9] (see also [23]) and from [4] (or [15,7,22]),
we can state the

Theorem 4.7 (Lower error bound) Assume that (22) holds. Assume fur-
ther that there exists k ∈ N such that (A−1ξ

h
)|T belongs to Pk, for all T ∈ T1.

Then for all elements T , the following local lower error bound holds:

ηT . ‖ξ − ξ
h
‖ωT

+ ‖θ1 − θ1h‖T + ‖∇θ2 −∇hθ2h‖ωT
+

∑

T ′∈T1,T ′⊂ωT

ζT ′. (53)

Proof: The Curl residual ‖curl (A−1ξ
h
)‖T was estimated in Theorem 5.2 of

[22], where it was proved that

hT‖curl (A−1ξ
h
)‖T . ‖ξ − ξ

h
‖T , ∀T ∈ T1. (54)

Similarly Theorem 5.2 of [22] estimates the tangential jump for edges from E1

and for the element residual ‖A−1p h −∇θ1h‖T , namely

h
1/2
E ‖JE,t‖E . ‖ξ − ξ

h
‖ωE

, ∀E ∈ E1, (55)

hT‖A−1ξ
h
−∇θ1h‖T . ‖ξ − ξ

h
‖T + ‖θ1 − θ1h‖T , ∀T ∈ T1. (56)

Similarly using the arguments from [9], namely by taking v = RT bT and ϕ = 0
in Lemma 4.6 for the element residual ‖RT‖T for T ∈ T2; by taking v = 0 and
ϕ = bEJE,t in Lemma 4.6 for the tangential jump ‖JE,t‖E for E ∈ E2, and by
taking v = bEJE,n and ϕ = 0 in Lemma 4.6 for the normal jump ‖JE,n‖E for
E ∈ E2 and using inverse estimates, we obtain

hT‖RT‖T . ‖∇θ2 −∇θ2h‖T , ∀T ∈ T2, (57)

h
1/2
E (‖JE,t‖E + ‖JE,n‖E). ‖∇θ2 −∇hθ2h‖ωE

, ∀E ∈ E2. (58)

It therefore remains to estimate the normal and tangential jumps for edges on
Γ. This is proved as before. We give the details for the sake of completeness.

For E ∈ EΓ, we set

wE := Fext(JE,t)bE ,

which belongs to H1
0 (ωE). The inverse inequality (26) yields

‖JE,t‖2
E .

∫

E

JE,twE.
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Now we apply Lemma 4.6 with w = wE and ϕ = 0 and obtain

∫

E

JE,t · wE =
∫

ωE

ǫ · ∇wE −
∑

T∈T ,T⊂ωE

∫

T

RTwE.

Using Cauchy-Schwarz’s inequality we obtain

‖JE,t‖2
E ≤ ‖ǫ ‖ωE

‖∇wE‖ωE
+

∑

T∈T ,T⊂ωE

‖RT‖T‖wE‖T .

Using the inverse inequality (27) and (28) we get

‖JE,t‖E . h
−1/2
E ‖ǫ ‖ωE

+
∑

T∈T ,T⊂ωE

h
1/2
T ‖RT‖T .

By the estimate (57) and the definition of ζT , we obtain

h
1/2
E ‖JE,t‖E . ‖ǫ ‖ωE

+
∑

T∈T1,T⊂ωE

ζT , ∀E ∈ EΓ. (59)

Similarly using Lemma 4.6 with v = 0 and ϕ = Fext(JE,n)bE , inverse estimates
and (54) we have

h
1/2
E ‖JE,n‖E . ‖ǫ ‖ωE

, ∀E ∈ EΓ. (60)

The estimates (54) to (60) provide the desired bound (53).

5 Numerical experiments

The following experiments will underline and confirm our theoretical predic-
tions. In the first example, we consider a regular solution in a non convex
domain, while the second example treats the case of a singular solution in a
non convex domain.

5.1 The regular solution

The first example consists in solving the two dimensional equation (1) with
A = Id on the L-shape domain Ω, defined by Ω = Ω1 ∪ Ω2, with Ω1 =
(0, 2)2 and Ω2 = (2, 3) × (0, 1). Each of these two squares is discretized using
cartesian and uniform meshes composed of triangles. The accuracy of the mesh
is characterized by the parameter n, corresponding to the number of segments
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of the mesh on the left boundary of Ω1 (see Fig. 3 for n = 8). As a consequence,

we have for each edge E of the mesh the property hE ∼ 1

n
.

(0, 0) (2, 0) (3, 0)

(0, 2)

(3, 1)

(2, 2)

Γ

Fig. 3. The computational domain Ω and the associated mesh for n = 8, regular
case.

We consider the discrete formulation (18), and look for (uh, ph) ∈ Xh ×Mh,
with Vh made of piecewise P1 (conforming) elements, X1h made of RT0 ele-
ments, and Mh made of P0 elements. If we define ns1 the number of edges
contained in the mesh of Ω1, nt1 the number of triangles contained in the
mesh of Ω1, and nn2 the number of nodes contained in the mesh of Ω2 \ ∂Ω,
we can write the unknowns of the discretized problem in the form

ξ
h

=
ns1∑

i=1

αi (ξ
h
)i , θ2h =

nn2∑

i=1

βi Φi , ph =
nt1∑

i=1

γi Ψi ,

when (ξ
h
)i (1 ≤ i ≤ ns1), Φi (1 ≤ i ≤ nn2) and Ψi (1 ≤ i ≤ nt1) are the

global basis functions associated with the spaces X1h, Vh and Mh, respectively.
Moreover, if we denote by α, β and γ the vectors made of the coefficients αi,
βi and γi respectively, then the linear system corresponding to the discrete
formulation (18) can be written




A1 M N

MT B2 0

NT 0 0







α

β

γ




=




0

Fβ

Fγ




(61)
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with

(A1)ij = ((ξ
h
)i, (ξh

)j)1,

Mij = −((ξ
h
)i.n,Φj)Γ,

Nij = (div (ξ
h
)i,Ψj)1,

(B2)ij = −(∇Φi,∇Φj)2,

(Fβ)j = −(f,Φj)2,

(Fγ)j = −(f,Ψj)1.

The resulting linear system is then solved using the preconditioning solver
GMRES.

For this test we choose the exact solution θ(x, y) = x(2−x)(3−x)(2−y)(1−y)y,
for which θ|∂Ω = 0. Let us denote by DoF the total number of degrees of
freedom associated with the finite element triangulation. If we set h = 2/n,
then we have DoF = O(h−2). We plot in Figure 4 the global error as a function
of DoF , this error being defined by

||(θ1−θ1h, ξ−ξh
, θ2−θ2h)||global = ||θ1−θ1h||Ω1

+||ξ−ξ
h
||Ω1

+||∇θ2−∇hθ2h||Ω2
.

10
2

10
3

10
4

10
−1

10
0

DoF

G
lo

ba
l E

rr
or

 

 
Global Error
Slope equal to −1/2

Fig. 4. Global error as a function of DoF , regular case.

We clearly see that we have ||(θ1−θ1h, ξ− ξh
, θ2−θ2h)||global = O(DoF−1/2) =

O(h), which corresponds to the expected rate of convergence [16, Th. 3.2]
since the exact solution θ belongs to H2(Ω). This first result illustrates the
optimal convergence of the numerical method that we use to solve the discrete
problem (18).

Now, in order to verify the upper error bound, we plot in Figure 5 the ratio
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qup defined by

qup =
||(θ1 − θ1h, ξ − ξ

h
, θ2 − θ2h)||global

η
.

From this figure, we see that qup is uniformly bounded with respect to DoF .

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q up

DoF

Fig. 5. qup as a function of DoF , regular case.

This confirms the theoretical result of Theorem 4.5 and means that the esti-
mator is reliable.

Finally, in order to verify the lower error bound, we plot in Figure 6 the ratio
qlow defined by

qlow = max
T∈T

ηT

||θ1 − θ1h||T + ||ξ − ξ
h
||ωT

+ ||∇θ2 −∇hθ2h||ωT

.

Once again, we see that qlow is uniformly bounded with respect to DoF and
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3

10
4

0

1

2

3

4

5

6

7

8

9

10

q lo
w

DoF

Fig. 6. qlow as a function of DoF , regular case.

confirms the theoretical result of Theorem 4.7. The estimator is then efficient.

28



5.2 The singular solution

The second example consists in solving the two dimensional equation (1) with
A = Id on the domain Ω displayed in Figure 7 with Ω1 = {(r cosϕ, r sinϕ) :
0 < r < 1, π/2 < ϕ < 3π/2} and Ω2 = {(r cosϕ, r sinϕ) : 0 < r < 1, 0 < ϕ <
π/2}. In that case, we use unstructured meshes, and Γ is the segment between
the points (0, 0) and (0, 1).

(0,−1)

(0, 1)

(1, 0)(0, 0)

Γ

Fig. 7. The computational domain Ω and the associated mesh, singular case.

Defining r as the distance to the origin (r =
√
x2 + y2) and ϕ the angle in

the usual polar coordinates system, the test is performed with the singular
solution θ(x, y) = r2/3(1 − r) sin(2ϕ

3
). Once again, we have θ|∂Ω = 0, but the

solution is singular, namely θ /∈ H2(Ω).

Figures 8 to 10 are respectively similar to Figures 4 to 6. We observe that the
numerical solution converges towards the exact one with a rate of convergence
of 0(DoF−1/3) = O(h2/3), which corresponds to the a priori error analysis
theory [16, Th. 3.2] because θ ∈ H3/2(Ω). Once again the ratios qup and qlow

remain uniformly bounded with respect to DoF . This confirms that our error
estimator is reliable and efficient, even for singular solutions as theoretically
expected.

The tests presented in this section have been performed with the help of the
finite element code Simula+ developed by the LAMAV laboratory (Univer-
sity of Valenciennes, France) and the LPMM laboratory (ENSAM of Metz,
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France).
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Fig. 8. Global error as a function of DoF , singular case.
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Fig. 9. qup as a function of DoF , singular case.
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[7] E. Creusé, G. Kunert, and S. Nicaise. A posteriori error estimation for the Stokes
problem: Anisotropic and isotropic discretizations. Math. Models Methods Appl.

Sci., 14:1297–1341, 2004.
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